
Silver: A scalable, distributed, multi-versioning,
Always growing (Ag) File System

Michael Wei?†, Amy Tai?‡, Chris Rossbach?

Ittai Abraham?, Udi Wieder?, Steven Swanson†, Dahlia Malkhi?

?VMware Research, †University of California, San Diego, ‡Princeton University

Abstract

The storage needs of users have shifted from just need-
ing to store data to requiring a rich interface which en-
ables the efficient query of versions, snapshots and cre-
ation of clones. Providing these features in a distributed
file system while maintaining scalability, strong consis-
tency and performance remains a challenge. In this pa-
per we introduce Silver, a file system which leverages the
Corfu distributed logging system to not only store data,
but to provide fast strongly consistent snapshots, clones
and multi-versioning while preserving the scalability and
performance of the distributed shared log. We describe
and implement Silver using a FUSE prototype and show
its performance characteristics.

1 Introduction

Storage capacity has steadily grown over the years,
and with it, software workloads and user expectations
increasingly shifted toward write-once, ever-growing
stores. This paper introduces Silver, a distributed file-
system designed as an ever-growing store.1 Silver builds
on the principles of a log-structure store, which were his-
torically introduced in order to serialize IO [11, 6], not
to expose the versions. It retains the lock-free read/write
IO path of classical LFS, enhanced with with features of
modern LFS file systems [10, 17, 15], such as “time-
travel” versions, copy-on-write (CoW), snapshot and
cloning. At the same time, it provides a clean-slate, effi-
cient design for distributed logging, global snapshot, and
unconstrained cloning with recursive-write avoidance.

The write-once substrate of Silver utilizes the Corfu
[2] distributed logging system. Silver keeps track of all
changes in the log, enabling users to go back to any point
in time for almost free. It is built to be truly append-

1We name the system after silver, the element indicated by the sym-
bol Ag, which stands for “Always Growing”.

only and never overwrites data. While other append-
only file systems exist, especially in the realm of opti-
cal media [1], Silver combines Corfu with Replex [12], a
unique replication protocol which enables efficient log
virtualization to support multiple writers, low-latency
linearizable reads, and the ability to create fast copy-on-
write clones. The Silver design has the following desir-
able properties:

• Data is sharded over a cluster for scalability, and at
the same time, Silver provides read-after-write strict
consistency semantics.

• At the foundation of the system is a log, which sup-
ports multi-versioning with continuous, consistent
snapshots: every operation to Silver is logged and
Silver efficiently supports “time-travel” on the log.

• Every directory in the file system hierarchy is
mapped a virtualized log, called a “stream”, serving
as an indirect reference to the latest state of the di-
rectory. Uniquely, this allows copy-on-write snap-
shot cloning of files or sub-directories at any level
while completely circumventing the recursive up-
date problem [16] (Section 2.3).

• At any moment, taking a snapshot is done simply by
capturing a prefix of the log, which allows for easy
implementation of tiering.

• Resting on the LFS approach, concurrent readers
and writers have separate IO paths and require no
locking.

2 System

2.1 Distributed Log

Silver is built on top of a distributed, shared log [2, 3].
Our log is made of two components: a high throughput

1



Operation Description
read(addresses) Get the data stored at a particular

address or list of addresses.
read(stream,
address)

Get the data stored at a particular
address or list of addresses on a
specific stream.

read(address,
offset, len)

Partially read len bytes of an extent
entry at address and offset.

append(stream,
address, data)

Append data to a given address on
a particular stream.

check(stream) Get the last address written to on a
particular stream.

Table 1: Operations supported by our distributed log.

sequencer which orders append operations and a write-
once storage device which stores updates. This design
has been shown to scale to more than half a million op-
erations per second [2]. We have previously described
an implementation of this design on a FPGA in hard-
ware [14].

As described in Tango [3], in addition to the basic
log append and random read operations, our log also
supports streams, which are essentially virtualized logs
within our log, identified by a unique 128-bit id. In Sil-
ver, we implement log virtualization using Replex [12],
a unique replication protocol which enables fast, random
access to streams by building a secondary index during
replication. This avoids the overhead and complexity
of traversing backpointers in Tango. Replex also has
strong failure recovery characteristics which are outside
the scope of this paper.

We describe the basic operations supported by our log
in table 1. Silver is entry-oriented, not block oriented,
and clients may only append and read entries. Entries in
our log are variably-sized and we do not impose a size
limit.

2.2 Distributed File System Design

On disk, Silver is stored as an ever-growing log as de-
scribed in section 2.1. Figure 1 depicts the on-disk lay-
out of Silver and compares it to other file systems in use
today. Unlike these file systems, however, Silver is dis-
tributed and replicated so that there is a global log and
stream replicas which provide locality and efficient ran-
dom accesses. The log is divided into three different
types of streams, which represent either file metadata,
data or directories:

• Metadata streams, which contain file metadata and
represent files, such as attributes. Small files ≤4KB
also store data in the metadata stream.

• Data streams, which contain the actual file data.

• Directory streams, which contain directories that
point to other directory or file streams.

AgFS

btrfs

new
dir a

new
dir a

new
file b

add
file b

add
file b

write
“hi”

write
“bye”

new
dir a

new
file b

add
b

b
->2

upd.
b

new
extent

“hi” “bye”

FS 
tree

Extent
tree Extents

inodes
data

blocks

Directory
Stream “a”

File
Stream “b”

FFS inode
a

inode
b

b -> 2 “bye”

new
file b

write
“hi”

write
“bye”→∞ →∞

→∞

Global Log

Stream
Replicas

Figure 1: Simplified models of the on-disk layouts of Silver, btrfs [10]
and FFS [8]. In each file system, a directory named a is created and a
file b is created in it with the contents “hi”. Finally, file b’s contents
is overwritten with “bye’. Unlike the other file systems, Silver is repli-
cated, and stream replicas provide efficient random access to streams.

Each stream consists of entries which record updates
or changes. For example, when a file is added to a direc-
tory, an “add” entry is appended to the directory stream
with a pointer to the file’s metadata stream. Table 2
contains the basic operations supported by each stream.
Even though users may delete directories or overwrite
data, the log preserves the order in which changes are
applied to the file system, so that a delete operation can
easily be “undone”. Every address in the log is a ver-
sion in the file system, and “time-travel” can be done by
restricting traversal to a specific set of addresses.

Every file system starts with a root directory. Clients
use the stream ID of the root directory to find the file
system. To open a file system, an uninitialized client first
calls the check function to get the last update on the
root directory from the sequencer. The client then must
read the entire root directory stream and apply those up-
dates in-memory to get the current state of the root direc-
tory.

Once the root directory is read, subsequent traversals
of the file system selectively read the streams necessary
to satisfy that request. For example, to perform a ls
of a child directory, the client would only need to read
the stream for that directory. All requests for metadata
(metadata and directory streams) are served quickly and
efficiently from in-memory state, and updating that state
consistently involves merely contacting the sequencer,
reading any updates on the stream and then applying it
to the in-memory state. This permits fast data structures
such as hash tables and skip-lists to be used rather than
the traditional B-trees for the file map.

2



Operation Description
All Streams
copy(srcid, dstid, ver) Copies a stream with the

given srcid up to ver to dstid
File Stream
setAttr(attr, val) Sets an attr to a given val
write(data, offset) Writes data to a given offset.
Data Stream
write(data, offset) Writes data to a given offset.
Directory Stream
addChild(child) Adds child to the directory

if it does not exist.
delChild(child) Remove child from the di-

rectory if it exists.
setAttr(attr, val) Sets an attr to a given val

Table 2: Types of operations supported on streams.

However, keeping the data for large files in memory
would be costly and impractical. To implement large
files efficiently, we implement extent entries, which con-
tain the entire file within a single entry, and we support
partial reads of that entry. The single entry is written
sequentially into the log and does not require multiple
pointers or a tree structure to traverse, unlike traditional
file systems which write many extents that must be tra-
versed through a tree due to allocation and reallocation
of the extent space. This allows fast random accesses to
large chunks of data stored efficiently within the log.

2.3 Streams and Indirection

An important optimization is that pointers in Silver al-
ways refer to other streams by their id, rather than a phys-
ical address as in other file systems. For example, in fig-
ure 1, directory a points to metadata stream b, rather than
physical address 2. This allows the pointer to b to remain
valid even after it is updated and clients can quickly get
the latest version by contacting the appropriate stream
replica. In this manner, we eliminate the dependency on
the equivalent of the inode map in LFS [11]. Other file
systems, like btrfs, suffer from the recursive update prob-
lem [16] so updates must propagate to the root, as the
pointer to physical address 2 is no longer valid, so a new
root must be written pointing to the new update leading
to significant write amplification.

Efficiently supporting streams has many benefits,
which we describe in the next sections:

Caching - Read Path Separation. File systems today
employ many reader-writer locks for mutual exclusion
where read and write paths intersect, since writers may
overwrite previously written data. In Silver, the read path
and write path are separated since no overwriting occurs:
any successful write is immutable, which obviates the
need for mutual exclusion logic. Mutual exclusion is

a even bigger problem in a distributed systems where
many have resorted to relaxed consistency for perfor-
mance, Silver is able to never compromise consistency
by never overwriting.

This separation greatly simplifies caching in Silver.
Silver currently implements a efficient LRU cache of log
entries in DRAM for faster log traversal and to cache
large files, while in-memory state serves as a cache for
both metadata and small files. In a traditional distributed
file system, eviction of stale data must be detected and
often the entire file must be copied. In Silver, updat-
ing stale state simply involves contacting the sequencer,
which informs the client of staleness immediately, and
reading any updates, which are stored as deltas from the
log, and applying the state in-memory.

Tiering - Write Path Separation. Isolating the write
path also simplifies tiering, and allows Silver to easily
take advantage of heterogeneous storage systems. For
example, consider a storage system which consists of fast
NVM, SSD and hard disks. A tiered Silver system could
direct writes first to fast NVM. As the NVM fills up se-
quentially, writes can be evicted to the SSD in large se-
quential chunks, permitting the NVM to be reused. Be-
fore eviction, a small update to the read cache’s map
would allow reads to continue being serviced, and the
read cache would make sure that popular old entries
still have fast service times, despite being evicted out to
archival storage.

Reclaiming Space. Even though Silver is designed on
an ever-growing log, we recognize that practical storage
considerations may limit the number of updates which a
system can store. To mitigate this limitation, we offer
two mechanisms: first, we offer a compress command
which compresses prefixes of the log, and appends the
compressed prefixes to the end of the log. Second, we
offer a checkpoint mechanism which takes an address
and compacts the history of each stream into a single
entry to free space. However, once a checkpoint is per-
formed, “time-travel” to history previous to the check-
point is no longer permitted since history is lost. Users
may choose to checkpoint only the histories they are in-
terested in. As compression and checkpointing always
free data from the start of the log and append to the end
of the log, this allows a fixed storage space to be used as
a circular buffer.

Snapshots. Since every update to Silver is logged, Sil-
ver supports full time travel by playing back the log.
Snapshots are truly free in Silver, unlike other log-based

3



systems where snapshots must be explicitly created to
freeze data blocks. In addition, Silver is always consis-
tent because the log is an authoritative source for the or-
dering of writes. Shipping a snapshot of Silver is as sim-
ple as transferring a prefix of the log. Currently a user of
Silver can read the file system version by reading a spe-
cial entry in the file system - reading this entry queries
the sequencer. To access the snapshot, a clone command
is provided which takes the version number and directory
(which may be the root) as a parameter and creates a new
fully writeable clone of the directory using CoW, which
is described in the next section.

Copy on Write. Copy on Write (CoW) is a feature
supported by many logging file systems. It enables a file
system to quickly create a diverging copy by referencing
the source and only recording changes. Silver supports
CoW of any stream. The copy command creates a CoW
entry with the source stream and an address, which de-
notes the version where the new stream diverges from the
source stream (we require that source version < destina-
tion version). When a directory entry is copied, subse-
quent traversals to children of that directory create copies
as well to ensure that the new history diverges from the
source.

Other CoW file systems suffer from fragmentation un-
der random writes because they must allocate data blocks
or extents for a CoW file and update pointers for every
write. This problem is so bad that most logging file sys-
tems recommend disabling CoW support, especially for
large files. Silver does not suffer from this problem: ran-
dom writes are sequentialized by virtue of the log, and
the fast streaming support eliminates problems fragmen-
tation may pose.

3 Evaluation

We have prototyped Silver in Java 8 over FUSE, through
the use of Java Native Runtime (JNR) bindings. While
the use of Java prevents our current prototype from per-
forming as well as a native implementation, our proto-
type enables us to understand and evaluate the key ben-
efits of Silver. Our implementation is scalable and dis-
tributed: following the design of Corfu [2], our log can
be sharded and replicated across many nodes. However,
while we aim to be as POSIX compliant as possible,
due to limitations in FUSE, Silver is not fully POSIX-
compliant. Furthermore, the use of FUSE adds signifi-
cant overhead.

Our current implementation Silver is elegant and con-
cise, taking a mere 3,186 SLOC in Java. Part of the sim-
plicity of Silver owes to the fact that much of the stream-

Operation Latency
clone fs 0.8ms
clone dir 0.8ms
clone file 0.8ms
access fs (mount) 1.8ms
access cloned fs 2.2ms
access dir 0.9ms
access cloned dir 1.0ms
access (cat) 4KB file 0.6ms
access cloned 4KB file 0.8ms

Table 3: Silver performance on a 1Gbit network link.

ing logic is implemented in the distributed log, which
is about 15k SLOC but reusable by other applications
(other applications may directly use the log simultane-
ously with Silver). We also envision that the distributed
log may be implemented in hardware.

In table 3, we show the basic performance of Sil-
ver with 3x replication, demonstrating fast cloning per-
formance. No distributed file system that we are aware of
can provide such a consistent global snapshot efficiently.
Due to the different guarantees provided by other file sys-
tems and the overhead of FUSE, we are unable show
meaningful comparisons with other file systems, which
we leave to future work.

4 Related Work

Log-structured CoW File Systems. While Silver is
distributed, single node log-structured file systems still
serve as a useful comparison point for Silver’s design.
Historically, these stores were introduced mostly in or-
der to serialize IO, and not in order to expose the history
of versions. Systems like LFS [11] and Zebra [6] aggres-
sively garbage-collected all by the latest updates to any
block. Consequently, the metadata issues they tackle are
quite different: the name space did not need to expose
versions, nor support cloning and snapshots.

btrfs [10], nilfs [7], WAFL [5] and ZFS [17] are copy-
on-write file systems with snapshot capability. These
systems primarily log metadata, but data is typically
stored in allocated regions called extents in btrfs and
slabs in ZFS. Generating snapshots, as a result, is not au-
tomatic as the filesystem must lock data regions to create
a snapshot. Furthermore, the allocated regions are at risk
for inconsistency, whereas in Silver the log is the pristine
source of ordering for all metadata and file data. Finally,
allocators can suffer from fragmentation especially with
a high number of random writes. Silver converts random
writes into compact sequential writes while an efficient
cache mechanism enables these writes to be read effi-
ciently.

4



Append-only File Systems. Many append-only file
systems exist today which are primary a result of limita-
tions of physical media. For example, UDF [1] is an ex-
ample of a system designed for optical media, and Quin-
lan [9] describes a file system for early WORM media.
Unlike Silver, these file systems are mainly designed for
archival content, which is reflected by their slow access
times and mount times.

Distributed File Systems. Most distributed file sys-
tems such as the popular HDFS [4], Ceph [15] and Calv-
inFS [13] separate the storage of metadata and data. This
separation makes it difficult to create true snapshots: for
example, in HDFS and Ceph snapshots only capture the
state of the metadata. Data, which is stored separately
from metadata can continue to change after a snapshot,
resulting in a inconsistent snapshot. Furthermore, these
file systems are not copy-on-write, so creating a modifi-
able clone is an expensive operation.

Streams and Backpointers. Tango [3] presented the
concept of a stream within a distributed log. In Tango,
streams never referred to each other: rather they con-
tained opaque objects on a single log so that transac-
tions could be run against them. In Silver, our file system
leverages many streams in order to support efficient ac-
cesses and copies.

In Tango, backpointers are used to enable streams,
which imposes a burden on both the sequencer, which
must persist the last token that was issued for each
stream, and during failures, which require scanning the
log to find the stream. Furthermore, bulk reads of a
stream are not possible with backpointers. Silver uses
the Replex [12] replication protocol to address these is-
sues.

5 Conclusion

The storage needs of users have shifted from just needing
to store data to requiring a rich interface which enables
the efficient query of versions, snapshots and creation
of clones. Silver leverages a distributed shared log to
efficiently provide these components without sacrificing
consistency, scalability or performance.

References
[1] Optical Storage Technology Association. Universal Disk Format

Specification 2.60. 2005.

[2] Mahesh Balakrishnan, Dahlia Malkhi, John D Davis, Vijayan
Prabhakaran, Michael Wei, and Ted Wobber. Corfu: A distributed
shared log. ACM Transactions on Computer Systems (TOCS),
31(4):10, 2013.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu,
Vijayan Prabhakaran, Michael Wei, John D Davis, Sriram Rao,
Tao Zou, and Aviad Zuck. Tango: Distributed data structures over
a shared log. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pages 325–340. ACM,
2013.

[4] Dhruba Borthakur. Hdfs architecture guide. http:
//hadoop.apache.org/common/docs/current/
hdfsdesign.pdf, 2008.

[5] John K Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric
Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini, Ashish
Prakash, Keith A Smith, et al. Flexvol: flexible, efficient file
volume virtualization in wafl. In Usenix 2008 Annual Technical
Conference, pages 129–142. USENIX Association, 2008.

[6] John H. Hartman and John K. Ousterhout. Zebra: A striped net-
work file system. Technical Report UCB/CSD-92-683, EECS
Department, University of California, Berkeley, Apr 1992.

[7] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi,
Seiji Kihara, and Satoshi Moriai. The linux implementation of
a log-structured file system. ACM SIGOPS Operating Systems
Review, 40(3):102–107, 2006.

[8] Marshall K McKusick, William N Joy, Samuel J Leffler, and
Robert S Fabry. A fast file system for unix. ACM Transactions
on Computer Systems (TOCS), 2(3):181–197, 1984.

[9] Sean Quinlan. A cached worm file system. Softw., Pract. Exper.,
21(12):1289–1299, 1991.

[10] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage (TOS), 9(3):9,
2013.

[11] Mendel Rosenblum and John K Ousterhout. The design and im-
plementation of a log-structured file system. ACM Transactions
on Computer Systems (TOCS), 10(1):26–52, 1992.

[12] Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham,
and Dahlia Malkhi. Replex: A scalable, highly available multi-
index data store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), Denver, CO, June 2016. USENIX Associa-
tion.

[13] Alexander Thomson and Daniel J Abadi. Calvinfs: consis-
tent wan replication and scalable metadata management for dis-
tributed file systems. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 1–14, 2015.

[14] Michael Wei, John D Davis, Ted Wobber, Mahesh Balakrishnan,
and Dahlia Malkhi. Beyond block i/o: implementing a distributed
shared log in hardware. In Proceedings of the 6th International
Systems and Storage Conference, page 21. ACM, 2013.

[15] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long,
and Carlos Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 307–320.
USENIX Association, 2006.

[16] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. De-indirection for flash-based
ssds with nameless writes. In FAST, page 1, 2012.

[17] Yupu Zhang, Abhishek Rajimwale, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. End-to-end data integrity for file
systems: A zfs case study. In FAST, pages 29–42, 2010.

5

http://hadoop.apache.org/common/docs/current/hdfs design.pdf
http://hadoop.apache.org/common/docs/current/hdfs design.pdf
http://hadoop.apache.org/common/docs/current/hdfs design.pdf

	Introduction
	System
	Distributed Log
	Distributed File System Design
	Streams and Indirection

	Evaluation
	Related Work
	Conclusion

