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Abstract

In this paper, we present a flash solid-state drive (SSD)
optimization that provides hints of SSD internal behav-
iors, such as device I/O time and buffer activities, to
the OS in order to mitigate the impact of I/O comple-
tion scheduling delays. The hints enable the OS to make
reliable latency predictions of each I/O request so that
the OS can make accurate scheduling decisions when to
yield or block (busy wait) the CPU, ultimately improving
user-perceived I/O performance. This was achieved by
implementing latency predictors supported with an SSD
I/O behavior tracker within the SSD that tracks I/O be-
havior at the level of internal resources, such as DRAM
buffers or NAND chips. Evaluations with an SSD pro-
totype based on a Xilinx Zyng-7000 FPGA and MLC
flash chips showed that our optimizations enabled the OS
to mask the scheduling delays without severely impact-
ing system parallelism compared to prior I/O completion
methods.

1 Introduction

Flash memory technology, in the form of flash solid-
state drives (flash SSDs), is steadily replacing prior
storage technology based on the value of affordable
microsecond-level random access memory. However, the
user-experienced performance of these SSDs has yet to
reach its full potential since the time spent in the soft-
ware portion of the I/O path has been magnified [5, 4, 7].

These software overheads were initially noticed in
studies of next-generation memory technologies, such
as PCM and STT-MRAM, which are expected to give
nanosecond-scaled latencies, and ignited several efforts
to address the problem [3, 9, 8, 6]. Yet, these studies do
not apply well when considering flash SSDs because the
latency of flash memory technology scales at microsec-
onds. This large latency requires a significant amount of
parallelism in both SSDs and host systems in order to
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benefit the users.

Flash memory latency, whether in nanoseconds or mil-
liseconds, makes it difficult to decide whether to yield
the CPU or not when the CPU awaits /O completion
since the scheduling delay can cause a non-negligible
impact on performance. Blocking the CPU (i.e., polling
[9]) would avoid such delays but would be at the cost
of sacrificing parallelism. Recently, internal parallelism
of SSDs (NAND channels, chips, dies, and planes) has
been increased to meet the demands on performance, ca-
pacity, and costs. To utilize the capability of SSDs fully,
the OS should multiplex higher numbers of I/O contexts
(i.e., threads or state machines). This, in turn, increases
the chance of scheduling.

We can minimize these scheduling delays based on ac-
curate estimation of SSD latencies. However, queueing
delays caused by high parallelism in SSDs and internal
operations, such as garbage collection, make it impossi-
ble. To address this issue, we propose an optimization
that enables the OS to make precise decisions on when
to yield the CPU or not upon a new I/O request. The op-
timization eliminates or hides I/O completion scheduling
delays while preserving system parallelism. This is done
by placing latency predictors supported by an I/O behav-
ior tracker inside the SSD. The tracker gathers informa-
tion about the whereabouts of each I/O request and the
state of each internal resource, such as DRAM buffers
and NAND chips.

Here, latency predictors either aid the OS in determin-
ing the latency of the next I/O request or interrupt the
OS when a pending I/O would finish in the near future.
With such information, the OS can make decisions on
whether to yield the CPU or not, or it can prepare itself
to overlap the I/O time with the expected I/O completion
scheduling delays. Such H/W and S/W interactions are
done with an extended SSD interface, implemented as an
in-band channel that is piggybacked on I/O completion
paths.

To evaluate our proposal, we employed a Xilinx Zyng-



7000 SoC FPGA-based OpenSSD 2 Cosmos evaluation
board [2] accompanied with a flash DIMM module based
on MLC technology [1]. Evaluations on a prototype SSD
showed that our method was capable of reducing the im-
pact of scheduling delays while having a low impact on
system parallelism.

2 Background and Motivation

In this paper, we aim to optimize user-perceived latency
of flash SSDs by minimizing I/O completion scheduling
delays without sacrificing system parallelism. Here, we
observed that the fact that the OS was blind to the lev-
els of SSD latency that it would experience was the main
obstacle of tackling such delays. This motivated us to ex-
plore the design space in which the SSD actively inform
the OS of its behavior upon performing system optimiza-
tions.

2.1 System Impact of Modern SSDs

Modern SSDs employ a significant amount of paral-
lelism in order to keep up with the value of a high-
performance random access storage device. Careless
I/O control results in low resource utilization with
hotspots. SSDs employ various techniques to spread
I/0O requests to achieve maximum utilization and perfor-
mance. DRAM buffers, backed with high-capacity ca-
pacitors, are employed to serve as staging areas to per-
form such optimizations. Such performance consider-
ations run deep in SSD design and have an impact on
various SSD internal I/O tasks.

The higher degree of parallelism of modern SSDs bur-
dens the host system with context-multiplexing over-
heads that introduce non-negligible scheduling delays.
Multiple I/O contexts competing for CPU cycles vary
user-perceived scheduling delays. SSD internal tasks
also cause significant variability in latency observed
from the host system. Even with the presence of DRAM
hits or NAND read operations, which have (fairly) fa-
vorable latencies, the OS has to assume higher levels of
latencies and neglect any optimizations based on lower
latencies.

2.2 SSDs, Unblinding the OS

Blindness of the OS so that it is unaware of SSD laten-
cies is the root of all evil that leads to suboptimal con-
servative approaches. For example, blocking a CPU core
in the case of a DRAM buffer (or cache) hit (Figure 1-
1 left) would eliminate the scheduling delay, but the OS
yields the CPU assuming much higher latencies (Fig-
ure 1-1 right) and takes the penalties of scheduling de-
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Figure 1: Minimizing the impact of I/O completion

scheduling delays by having SSDs actively inform the
(0N

lays because it has no information on such hits (at the
question marks in Figure 1-1).

What if we have predictable latency? The negative
impacts of scheduling delays can be minimized since we
can make a best decision that benefits the system based
on an accurately predicted latency (Figure 1-2). To this
end, we were motivated to achieve predictable latency.

In this work, we positioned ourselves to define such
predictability as being able to predict what comes next
instead of trying to make SSD latencies adhere to a con-
stant latency value. Here, we unblind the OS by inform-
ing it about SSD internals to enable accurate latency pre-
dictions based on such information. To achieve this, our
proposal is to reinforce SSDs to inform the OS with ap-
propriate information. The OS is informed to make pre-
dictions (at the bold exclamation marks) of the expected
completion time of an I/O (the gray exclamation marks),
making it possible to eliminate (Figure 1-2 left) or mask
(Figure 1-2 right) the impact of scheduling delays from
the critical path.

3 Design and Implementation

Based on our motivations, we implemented an I/O path
in which the SSD actively cooperates with the OS in or-
der to optimize user-perceived performance. The goal
of the cooperation is to enable proper decisions, whether
yielding or blocking a CPU upon an I/O request would
be beneficial. Such cooperation is based on an accurate
prediction of SSD latencies, which lies as the main chal-
lenge in our work. Our main strategy to the challenge is
to predict the latencies within SSDs, not outside SSDs.
To achieve this, the I/O path has an I/O behavior
tracker within the SSD controller S/W, which speaks



to the predictor in the OS device driver through an ex-
tended SSD interface. Our I/O path is based on modest
changes only that are limited to S/W components and im-
plemented both in the host OS and the SSD controller.

3.1 Predicting the I/O Time of SSDs

The most challenging part of our design is predicting the
behavior of SSDs, which is highly variable. Our ap-
proach to this problem is to decompose SSD internals
into individual components (DRAM buffers and NAND
chips), each behaving in a simple way (compared to the
whole system), and exploit the simple behavior to ease
the prediction. This prediction activity is based on a sim-
ple model of SSD internals depicted in Figure 2-1 (a),
where I/0 requests first visit the DRAM buffer for op-
portunities of caching (reads) or aggregating (writes) and
then are issued to the NAND array.

1) Classifying I/O Requests: In the I/O path, each
I/O request is classified in terms of its destined compo-
nents, and the prediction is based on the previous be-
havior of the individual components. The I/O behavior
tracker, implemented within the SSD, tracks these com-
ponent behaviors, which are translated into parameters of
multiple behavioral models, each representing individual
components (detailed in Section 3.2). Based on the mod-
els and the parameters gathered by the tracker, the OS
classifies (predicts) the next I/O request at the I/O issue
context (Figure 2-1 (a)) based on the criteria, as shown
in Figure 2-4.

2) Remaining I/0 Time: Even with the power of ac-
cessing internals of SSDs from an SSD controller, pre-
dicting the I/O time of an SSD is still challenging. While
there are components with predictable latency, such as
DRAM buffers, that a simple classification can help (up-
per row in Figure 2-4), predicting latencies of a NAND
chip array (lower row in Figure 2-4) is difficult with the
presence of multiple I/O requests colliding and queued
up on resources (Figure 2-3 (i)), along with the inher-
ent variability of the chips (Figure 2-3 (n)). To over-
come the challenge, a predictor within the SSD considers
only the remaining part of the I/O time (Figure 2-3 (m))
and predicts only for small-read operations, which have
low variance in NAND I/O latency (Figure 2-2 (n)). La-
tency prediction begins only after a NAND I/O command
(a single page read) is actually issued to a NAND chip
(the beginning of Figure 2-3 (m)), effectively eliminating
the queuing delays (Figure 2-3 (i)) from the prediction
landscape. For cases when predictions can be inaccurate
(write operations) or have marginal benefits (larger 1/0),
the predictor simply falls back to not predicting anything.

3) Precompletion: For the remaining I/O time, the
SSD side latency predictor takes the moving average of
three observed latency values as the prediction and no-
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tifies the host OS of a predefined period (precompletion
window in Figure 2-3 (1)) before (Figure 2-1 (d)) the ac-
tual completion occurs (Figure 2-1 (e)).

3.2 OS I/0O Path Optimizations

The simple behavior of each individual component is
modeled with coarse-grained implementation neutral be-
havioral models (Figure 3), which serve as an agreement
between the latency predictor and the OS, in order to
provide accurate predictions as well as protect SSD in-
ternals.

1) Applying Behavioral Models: We applied two
models (Figure 3) to model the behavior of the DRAM
buffer (left) and the I/O completion of NAND chips
(right). The DRAM buffer model (Figure 3-left) is used
by the device driver to determine whether a write request
would result in a DRAM hit (under buffer full threshold)
or a NAND I/O (exceeding buffer full threshold). The
I/O completion model (Figure 3-right) is used by the la-
tency predictor within the SSD to notify the OS that a
predictable I/O operation is underway and that the actual
completion would occur within a period called the pre-
completion window (Figure 2-3 (1)). The models are ap-
plied to cover the I/O requests classified into the gray ar-
eas of Figure 2-4, although this can be extended by defin-
ing additional behavioral models (i.e., read cache hits,
read prefetching hits), which leads to our future work.

2) Eliminating Scheduling Delays: For shorter laten-
cies, experienced when an I/O request hits the DRAM
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buffer within SSDs (Figure 2-2 (f)), the OS device driver
knows that this will happen by comparing the remaining
space of the buffer and the amount of write I/O it has
to issue (Figure 3 left). This is possible since the exact
amount of free space within the buffer is passed from the
SSD through the completion of the previous completion.
Upon buffer hits, the OS responds with blocking the CPU
core (busy waiting [9]) for the I/O completion in order to
eliminate the scheduling delay.

3) Hiding Scheduling Delays: For I/O requests
headed for the NAND chips (Figure 2-2 (h)), the I/O
path yields the CPU in order to preserve system paral-
lelism at the cost of scheduling delays. To deal with
this delay, the I/O path overlaps scheduling delays to
hide the impact from the critical path. This is achieved
by aligning the size of the precompletion window with
the size of scheduling delays (target window size in Fig-
ure 3-right). If the precompletion window undershoots
the target, scheduling delays are exposed depending on
how much the window undershot (under: gray area in
Figure 3-right). However, the window cannot overshoot
since parallelism can be harmed due to the penalty of
busy waits (over: right side of the target window in Fig-
ure 3-right). In addition, these scheduling delays can
vary depending on system load, so the window should
consider system load as well. Currently, the precomple-
tion window is a fixed value given a priori that is planned
to be reinforced with a dynamic feedback mechanism
based on runtime measurements.

4 Evaluation

4.1 Experimental Setup

1) Implementation: We implemented a prototype SSD
on top of the "Greedy FTL firmware”, which was in-
cluded in the commercial distribution of the OpenSSD2
Cosmos evaluation board [2]. The implementation of our
SSD was not a full-blown SSD, although it implements
key features described in Section 3. One key limitation
was that only a single I/O context (I/O depth 1) could be
handled at a time while state-of-the-art SSDs are capable
of handling 32 I/O requests (i.e., SATA 3.0) or more (i.e.,
NVM-Express) simultaneously.

2) Methodology: The OpenSSD2 evaluation board
was connected to the host as an end point with a PCI-
Express Genl x4 connection. The host system was
equipped with an Intel i7-4770 3.30 Ghz Quad-core CPU
(hyper-thread enabled), loaded with a custom block de-
vice driver that we developed on Linux 3.5.0. The I/O
depth limitation limited the evaluation scenarios to a sin-
gle thread competing with other parallel contexts, such
as I/O threads or CPU threads. In the scenarios, we used
Fio 2.1.3 for I/O threads (including the precompletion-
based I/O thread) and a custom-built program that burns
CPU cycles. To see the benefits of precompletions, we
show the average latency without NAND latency and the
throughput of the background task (CPU or I/O oriented)
compared to when it was executed alone.

4.2 Results

In this study, we report 1) the effect of predicting DRAM
buffer hits through classification, 2) the accuracy of
device-side remaining time predictions, and 3) & 4) the
impact of precompletions to project the impact on full-
featured SSDs.

1) Classifying I/O Requests: The impact of I/O clas-
sification was verified by measuring the latency of a sin-
gle I/0 thread performing small random write operations.
To limit the latency impact of DRAM buffer flushes and
garbage collection overwhelming the average latency, we
limit the frequency of buffer full situations and sepa-
rately report buffer hit latencies. Our I/O path was able
to reduce average latency up to 5.8 us from the baseline.
While the baseline experiences scheduling delays even
when I/O requests hit the write buffer, I/O classification
allows write buffer hits to be identified and minimizes
the scheduling delays by blocking the CPU.

2) Predicting Flash Latency: To verify the I/O la-
tency predictability of flash memory when in indepen-
dent devices, we measured the latency of flash com-
mands on an LP-DDR flash DIMM equipped with four
MLC 25 nm 16 GB flash chips [1] provided by the
OpenSSD?2 project. This measurement was done inside
the SSD on top of the flash controller logic, which in-
cludes ECC correction !. Flash latencies for read opera-
tions had very little variance (Table 1) compared to other
operations (i.e., DMA engine). The error, which is a root
of the sum of squared differences, was less than 1 ps.

3) Precompletion I/O vs I/O Threads: Light gray
bars and lines in Figure 4 show the system impact of the
completion schemes interacting with I/O threads. Polling
with (POLL_PRIO) or without (POLL) task priority (nice-

I'The high latency was due to the unoptimized implementation of the
stock NAND controller of the OpenSSD2 project. Scheduling delays in
this work, in terms of latency, are small with respect to the high latency
of the evaluation board, although modern SSDs have lower latencies.



Table 1: Accuracy of Latency Predictions (three-value
moving average)

H/W || Measured | Std. dev | Predicted | Error
Flash 352 us 0.66 pus 352 us 0.94 ps
DMA 9 us 0.26 ps 9 us 0.56 ps
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Figure 4: Precompletion I/O threads vs CPU threads

ness) showed the best latency, while interrupts (IRQ)
showed scheduling delays up to 11 ps. The cost of reduc-
ing this amount of scheduling delays was the excessive
CPU cycles causing 17.75% throughput degradation of
the background I/O threads.

Precompletions solve this dilemma between latency
and parallelism by masking the scheduling delays (11 ps)
underneath the SSD I/O time while doing no harm to
background threads. However, a precise precomple-
tion window should be given based on observations on
scheduling delays. In Figure 4, the best latency was
achieved with a 16 ps precompletion window (PRE16).
Having a window larger than 16 ps burns more CPU cy-
cles, although this was marginal compared to poll-based
methods.

4) Precompletion I/O vs CPU Threads: Dark gray
bars and lines in Figure 4 show the interactions with
CPU threads. With these interactions, we had to increase
the priority of the polling thread (POLL_PRIO) since poll
turns an I/O task into a CPU thread. The CPU scheduler,
Linux CFS in this case, gave the poll thread an equal
share of the CPU, so the poll thread (POLL) had difficul-
ties in acquiring the CPU on time. The measured latency
of (POLL) was significantly greater (1,488 us), while
there was no significant drop in background through-
put. In contrast, interrupt-based I/O threads, which are
threads other than POLL and POLL_PRIO, did not experi-
ence this problem.

Here, the cost of a shortened latency of POLL_PRIO
was a significant drop in background CPU task perfor-
mance, which recorded only 80% throughput (ops/sec)
compared to the solo-run scenario. Yet, precompletion
effectively reduced this latency without severely degrad-
ing CPU tasks. In addition, the right size of the precom-
pletion window had to be used (PRES) in this case.

5 Conclusion

In this paper, we presented a flash SSD latency optimiza-
tion technique and reviewed the preliminary results to-
ward minimizing the impact of scheduling delays. Our
optimization exploits accurate latency predictions that
were enabled by tracking behavioral parameters within
the SSD. These predictions are based on simplified SSD
behavioral models, which are agreed between the OS and
the SSD a priori. The accuracy of such predictions is
backed with the help of SSDs actively filling in the cru-
cial parameters required for the models.

This was based on the insight that it is far easier to
predict the behavior of individual components within an
SSD than to predict the behavior of multiple components
(the SSD as a whole) as a system. Based on this prelimi-
nary work, in future work we plan to evaluate the impact
of our optimization on a full-featured SSD under high
parallel workloads.
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