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Abstract

Flash-based key-value cache systems, such as Face-
book’s McDipper [1] and Twitter’s Fatcache [2], pro-
vide a cost-efficient solution for high-speed key-value
caching. These cache solutions typically take commer-
cial SSDs and adopt a Memcached-like scheme to store
and manage key-value pairs in flash. Such a practice,
though simple, is inefficient. We advocate to recon-
sider the hardware/software architecture design by di-
rectly opening device-level details to key-value cache
systems. This co-design approach can effectively bridge
the semantic gap and closely connect the two layers to-
gether. Leveraging the domain knowledge of key-value
caches and the unique device-level properties, we can
maximize the efficiency of a key-value cache system on
flash devices while minimizing its weakness. We are im-
plementing a prototype based on the Open-channel SSD
hardware platform. Our preliminary experiments show
very promising results.

1 Introduction
High-speed key-value caches, such as Memcached and
Redis, are the “first line of defense” in today’s low-
latency Internet services. Traditionally, these in-memory
key-value caches heavily rely on large amount of expen-
sive and power-hungry DRAM. In order to lower the To-
tal Cost of Ownership (TCO), a more cost-efficient alter-
native,flash-based key-value cache, has recently raised a
high interest in the industry [1, 2]. Facebook, for exam-
ple, deploys a flash-based Memcached-compatible key-
value cache system, called McDipper [1]. It is reported
that McDipper allows Facebook to reduce the number of
deployed servers by as much as 90% while still deliver-
ing more than 90% “get responses” with sub-millisecond
latencies [3]. Twitter also has a similar flash-based key-
value cache solution, called Fatcache [2].

Typically, these flash-based key-value cache sys-
tems directly use commercial flash SSDs and adopt a
Memcached-like scheme to manage key-value cache data
in flash, such as organizing key-values into slabs of dif-
ferent size classes, and using in-memory hash table to
maintain the key-to-value mapping, etc. Such a design,
though simple, disregards an important fact – The key-
value cache system and the underlying flash storage both
have veryuniqueproperties. Simply treating the flash

SSD as a faster storage and the key-value cache as a
regular application not only fails to exploit various op-
timization opportunities but also raises several critical
problems, namelyredundant mapping, double garbage
collection, andover-overprovisioning. In this study, we
advocate to reconsider the current software/hardware ar-
chitecture for designing an efficient key-value cache sys-
tem, highly optimized for flash.

2 Background and Motivation

2.1 Flash-based key-value caches
The existing flash-based key-value cache system design
is fairly similar to its in-memory counterpart – both use
a slab-based space management. Here we use Twitter’s
Fatcache [2] as an example for explanation:

The flash SSD space is first segmented intoslabs.
Each slab is often of several Megabytes and further di-
vided into an array ofslots(a.k.a. chunks) of equal size.
Each slot stores a “value” item. Slabs are logically orga-
nized into differentslab classesbased on the slot sizes.
An incoming value item is stored in a slab whose slot size
is the best fit of its size. For quick accesses, ahash map-
ping tableis maintained in memory to map the keys to
the slabs that contain the corresponding values. Query-
ing a key-value pair (get) is accomplished by searching
the in-memory hash table and loading the correspond-
ing slab block from flash into memory. Updating a key-
value pair (set) is realized by writing the updated value
to a new location and updating the mapping table entry.
Deleting a key-value pair (delete) simply removes the
mapping from the hash table. The deleted or obsolete
value items are left for garbage collection (GC) later. The
current design has three critical problems, which have
motivated us to perform this study.

2.2 Critical Issues
• Problem 1: Redundant mapping. Modern flash
SSDs implement a complex Flash Translation Layer
(FTL) in the firmware. A key function of FTL is to trans-
late Logical Block Addresses (LBA) to Physical Flash
Memory Pages. Although a variety of mapping schemes
exist [8], for performance reasons, high-end SSDs often
adoptpage-level mappingfor a fine-grained logical-to-
physical address translation. As a result, for a 1TB SSD
with a 4KB page size, a page-level mapping table could
be as large as 1GB. Integrating such a large DRAM on



device raises not only production cost and also reliabil-
ity concerns upon power failures. In the meantime, at
the application level, the key-value cache system also
manages another mapping structure, the in-memory hash
table, which translates a hashed key to the correspond-
ing slab block. These two mapping structures co-exist at
the two levels simultaneously, which unnecessarily dou-
bles the memory consumption and also incurs high com-
plexity and other issues. The problem essentially stems
from the fact that the generic page-level mapping is de-
signed for general-purpose file systems rather than key-
value cache systems. In a typical key-value cache, for
example, the slab size is typically in Megabytes, which
is 100-1,000 times larger than flash page size. It means
that the fine-grained page-level mapping scheme adopted
in the FTL of high-end flash SSDs is simply anexpensive
over-kill. If we could directly map the hashed keys to the
physical locations in flash, we can completely remove
this redundant and highly inefficient mapping for lower
cost, simpler design, and improved performance.

• Problem 2: Double garbage collection. Garbage
collection (GC) is a well-known performance bottle-
neck of flash devices [7]. In flash memory, the smallest
read/write unit is a page (e.g., 4KB), and a page cannot
be overwritten in place until the entireerase block(e.g.,
256 pages) is erased. As so, upon a write, the FTL simply
marks the obsolete pages as “invalid” and writes the data
to another physical location. At a later time, a GC pro-
cedure is scheduled to recycle the invalidated pages and
maintain a pool of clean erase blocks. Since valid pages
in the to-be-cleaned erase block must be first copied out,
cleaning an erase block could take as much as dozens
to hundreds of milliseconds to complete, especially for
large erase blocks. The key-value cache, similarly, also
has a GC procedure, which recycles the slab space occu-
pied by obsolete or deleted key-value pairs, whose size
could be much smaller than flash pages.

These two independent GC processes are redundant
and could interfere with each other. For example, from
the device FTL’s perspective, it is unaware of the seman-
tic meaning of page content. Even a flash page contains
no valid key-value pairs, the entire flash page appears to
be “valid” at the device level, as long as the page is not
trimmed explicitly. During the FTL-level GC, this page
has to be copied and moved, though unnecessarily. Also,
since the FTL-level GC has to assume all valid pages
contain useful content, it cannot selectively recycle the
semantically valid entries, not to mention aggressively
invalidating certain semantically unimportant data. For
example, even if a page contains only one valid key-
value pair, the entire page is still regarded as valid and
cannot be erased, although the key-value cache may con-
sider it as a removable item. Also note thatTRIM com-
mand [4] cannot address this issue. If we could merge

the two-level GCs and control the GC process based on
the semantic knowledge of the key-value cache, we can
completely remove all the abovesaid inefficient opera-
tions and create new optimization opportunities.

• Problem 3: Over-over-provisioning. In order to
minimize the performance impact of GC to foreground
I/Os, the device FTL typically reserves a portion of flash
memory space, called Over-Provisioned Space (OPS), to
maintain a pool of clean blocks ready for use. High-
end SSDs often reserve 20-30% or even larger amount
of flash space as OPS. From the user’s perspective, how-
ever, such a 20-30% OPS space is nothing but an expen-
sive unusable space. We should note that the static fac-
tory setting of OPS in SSDs is mostly based on a conser-
vative estimation for being prepared to handle the worst
case (i.e., highly intensive write traffic). Unfortunately,
key-value cache systems are often read-intensive [6]. Re-
serving such a large portion of flash memory space is a
significant resource waste, considering the high cost of
flash memory. In the meantime, as key-value cache sys-
tems possess rich knowledge about the I/O patterns and
are capable of accurately estimating the incoming write
intensity, and based on such estimation, a reasonable
OPS could be determined during runtime for maximiz-
ing the usable flash space. Considering the importance
of cache size to the cache hit ratio, if we could leverage
the domain knowledge of the key-value cache systems to
determine the optimal (minimized) OPS size, such a 20-
30% extra space could be saved to significantly improve
cache hit ratio and system performance.

Essentially, all the above-said issues stem from a fun-
damental problem in the current architectural design:
The key-value cache manager runs at the application
level and views the storage abstraction simply as a se-
quence of sectors; the flash memory manager (i.e., the
FTL) runs at the device layer and views incoming re-
quests simply as a sequence of individual I/Os. This,
unfortunately, creates a hugesemantic gapbetween the
key-value cache and the underlying flash storage. In the
next section, we will describe our cohesive design ap-
proach to bridge this semantic gap and build a highly op-
timized flash-based key-value cache system.

3 Design

3.1 Overview
Our design consists of three main layers (see Figure 1):
(1) An enhanced flash-aware key-value cache, which is
highly optimized for flash memory storage, runs at the
application level, and directly drives the flash manage-
ment; (2)A thin intermediate library layer, which pro-
vides a slab-based abstraction of low-level flash memory
space and an API interface for directly and easily oper-
ating flash devices (e.g.,read, write, erase). (3) A
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Figure 1: The Architecture Overview.

specialized flash memory SSD hardware, which exposes
the physical details of flash memory medium and opens
low-leveldirectaccess to the flash memory medium.

3.2 Application level: Key-value Cache
The key-value cache runs at the application level. For
space limit, here we only discuss three key aspects that
differentiate our design from the conventional one.

• Unified Direct Mapping . In order to address the dou-
ble mapping issue, a key change made in our design is to
remove all the intermediate mappings, and directly map
the SHA-1 hash of the key to the corresponding physical
location (i.e., the slab ID and the offset) in the in-memory
hash table. This is feasible, since the underlying library
layer exposes the flash memory space in an abstraction
of slabs to the upper-level applications. An incoming re-
quest simply looks up the hash table, retrieves the map-
ping information, and sendsread command via the li-
brary layer to load the data from flash.

This unified direct mapping not only removes the time
overhead for the intermediate mapping but also dramat-
ically reduces the demand for on-device DRAM buffer
– Multiple mapping tables are collapsed into one sin-
gle must-have in-memory hash table, and the large FTL-
level mapping table can be completely removed from the
device. By removing a page-level mapping, we could
save hundreds of Megabytes to even Gigabytes on-device
DRAM space, which could either reduce production cost
or allow a better use of on-device DRAM, such as on-
device caching/buffering.

• Slab Management. Similar to Memcached, our key-
value cache system also adopts a slab-based space man-
agement scheme. In our design, the flash space is divided
into equal-sized slabs. Each slab is statically mapped
to a flash memory erase block (8MB). When mapping
the slab to flash blocks, we have considered two possible
mappings,per-channel mappingandcross-channel map-
ping. The former maps a slab to one channel, while the

latter maps a slab to multiple channels in a round-robin
way. Although the latter may yield better bandwidth for
one single slab access, it causes the multi-block pollu-
tion problem upon updates. Considering that a typical
key-value cache has sufficient slab-level parallelism, we
choose the simpler per-channel mapping, which also al-
lows us to easily infer the relationship between slabs (in
different channels or not) and to support multiple key-
value cache instances by separating channels.

To handle the “no in-place overwrite” constraint, we
maintain an in-memory slab buffer for each slab class.
An incomingPUT of a key-vale pair is first stored in an
in-memory slab, according to its value size, and when the
in-memory slab buffer is full, the entire slab is flushed to
an in-flash slab for persistent storage. For cross-channel
load balance, we maintain a queue of free slabs for each
channel and select the queue for allocation in a round-
robin manner. On each queue the slab with the smallest
erase count is first selected for wear-leveling purposes.
When the system runs out free slabs, the key-value cache
starts the GC procedure to reproduce clean slabs. Thus,
from the device’s perspective, all I/Os seen at the device
level are in large-size slabs, which completely removes
the need for a generic GC at the FTL level.

• Garbage Collection. Garbage collection (GC) in our
design is application driven and there is no device-level
GC. When the system runs out free slabs, the key-value
cache system will start a GC procedure. Given the se-
mantic knowledge about the validity of slots, we can per-
form a more fine-grained GC in one single procedure.
We have two strategies to identify a target slab for clean-
ing: (1) Locality-based cleaning, which selects the most
seldomly accessed slab based on the Least Recently Used
(LRU) order, and (2)Space-based cleaning, which se-
lects the slab containing the largest number of obsolete
value items. We apply the two policies depending on the
runtime system condition: When the system is under sig-
nificant pressure (e.g., when incoming requests are busy
waiting for a clean slab), we use the former approach to
quickly release the LRU slab space for fast response. An
aggressive measure, calledquick clean, can be applied by
simply dropping the entire slab, including all valid slots.
It is feasible, as our application is a cache – Clients are
required to write key-values to the backend store first, so
it is safe to aggressively drop any key-values. When the
system is under light pressure, we use the space-based
cleaning and try to retain all valid key-values in the cache
and recycle as much invalidated slot space as possible.
Once a victim slab is identified, we scan the slots and
migrate valid ones to another slab and put the cleaned
slab back to the queue.

• Over-Provisioning Space Management. OPS in our
design is not of a fixed size. Using the flash space for
caching allows us to dynamically adjust the usable cache
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space. We desire to maintain an OPS size just enough
to handle incoming writes. In our current prototype, we
adopt a self-tuning feedback-based solution. We set two
watermarks,low (WL) andhigh (WH ). Ideally, the size
of the clean block pool should be between the two wa-
termarks, which means that the speed of cleaning slabs
is roughly equal to that of consuming them. Our self-
tuning solution works as follows: When the low water-
mark is hit, we lift the low/high watermarks by doubling
the value to quickly respond to increasing writes; when
the high watermark is hit, we linearly drop the low/high
watermarks to give more cache space back. In this way,
we can keep the OPS space automatically adaptive to the
incoming traffic. Another mathematical model based so-
lution is under development.

3.3 Library Level: libssd

As an intermediate layer, thelibssd library glues to-
gether the application and device layers. It provides an
abstraction of flash memory space in the form of slabs
and an API interface to directly drive the SSD opera-
tions. In particular,libssd has three main functions:
(1) Slab-to-block mapping, which statically maps a slab
to one (or multiple contiguous) flash memory blocks in
a channel. Such a mapping can be calculated through a
mathematical conversion and does not need another map-
ping table. (2)Operation transformation, which converts
key slab operations, namelyread, write, anderase,
to flash memory operations, which allow the key-value
cache system to operate in units of slabs, rather than
flash memory pages/blocks. (3)Bad block management,
which maintains a list of flash memory blocks that have
been detected to be “bad” and ineligible for allocation,
and hides them from the key-value cache.

3.4 Hardware Level: Open-Channel SSD
We use a customized SSD hardware similar to the Open-
Channel SSD used in SDF [11]. This PCI-E SSD con-
tains 12 channels, each of which connects to two Toshiba
19nm MLC flash chips. Each chip contains two planes
and has a capacity of 66GB. Unlike SDF, which exposes
the flash space as 44 host-visible block devices, our SSD
abstracts the flash memory space in 192 host-invisible
LUNs and statically maps them over the channels. An
ioctl interface is provided by the driver to directly op-
erate flash memory pages by specifying the target LUN
ID and the page number. Most FTL-level functions, such
as address mapping, wear-leveling, and bad block man-
agement, are bypassed. This allows us to remove the
device-level redundant operations and make them com-
pletely driven by the user-level applications. Other core
functions, such as error handling and flash control, are
still handled by the device.

4 Preliminary Results

We implement a prototype of the proposed flash-based
key-value cache system on the Open-Channel SSD hard-
ware, denoted as “Open-Channel”. Our implementation
of flash-aware key-value cache layer is based on Twit-
ter’s Fatcache [2]. Here we present some preliminary re-
sults to illustrate system basic performance and compare
the results with running the stock Fatcache on two com-
mercial SSDs, a 128GB Samsung 850 Pro and a 120GB
KingSpec PCIE-2u SSD.

Figure 2: Set Throughput (Operations per Second)

We first measure the throughput ofset andget key-
value items of varied sizes. We use thetwemperfbench-
mark [13] from Twitter to issue set operations with key-
value item sizes of 256 bytes, 512 bytes and 1 KB to the
key-value cache. Figure 2 shows the throughput (opera-
tions per second). We can see that with 1KB items our
cross-layer solution can effectively achieve a throughput
as high as 172,335 ops/sec. Compared to the conven-
tional solution, our cross-layer solution is 55% and 43%
higher than running the stock Fatcache on KingSpec and
Samsung. For get operations, we find that its throughput
is mostly bounded by the read bandwidth of the SSDs, so
we omitted it here due to space constraint.

Table 1:Block Erase Count

SSDs
KV Cache Instance

1 2 4 6 8

Open-Channel 2492 2465 2440 1952 1938

SSDSim 2884 2861 2842 2815 2797

The second experiment is to compare erase counts of
our cross-layer solution and the conventional solution. In
our cache-driven system, erase operations can be easily
counted in the library code. However, we cannot directly
obtain erase counts on the two commercial SSDs. So,
we use the SSD simulator from Microsoft Research [5]
and configure it with the same parameters of the Open-
Channel SSD. Then we first repeat the test by running
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stock Fatcache on the Samsung SSD and collect the trace
by using theblktrace tool and then run the simulation
with the trace. So, the simulator simulates a conventional
solution and we compare it with our solution. To limit the
test duration, we confine the available SSD size to 30GB,
and preload it with 14GB data of 1KB items. The work-
load has 30 million records (30GB data) to overwrite all
the items based on a truncated Normal distribution.

Table 1 shows block erase counts. As we can see, GC
in our design is application driven and can directly ex-
ploit available semantic knowledge. By removing the
double GC problem and working at a fine granularity,
our GC is much more efficient. Compared to the conven-
tional solution, our design can get about 30% reduction
of erase counts. To test with a high I/O pressure, we in-
crease the number of cache instances from 1 to 8, and in-
terestingly, we find that as the instance number increases,
erase count decreases. This is because when the system
is under significant pressure, our aggressive GC policy,
quick clean, kicks in at the 6-instance case. As no extra
slot copies are needed, the block erase count is reduced
from 2,440 to 1,952, showing its effectiveness.

5 Other Related Work

Both flash memory and key-value systems are hot re-
search topics. Due to space constraint, we only present
the most related work here. The effect of redundant oper-
ations in software layers has been studied before. For ex-
ample, Yang et al. have pointed out that redundant struc-
tures and functions in multiple layers of logs could result
in negative effects on flash devices, such as increased
write pressure, and should be carefully handled [14].
Nameless Writes [15] presents a new device interface
to allow the device to directly control block allocation.
FSDV [16] attempts to remove the mapping redundancy
by directly storing physical flash addresses in the file sys-
tems. Our solution shares the samede-indirectionprinci-
ple as these prior studies. Another set of related work is
flash-based key-value stores. For example, SILT [9] opti-
mizes the key-value store with three basic stores for high
memory efficiency. NVMKV [10] is a light-weight key-
value store that builds upon an enhanced FTL. NVMKV
extends FTL primitives for simplifying the key-value
store design. Our approach is different. We aim to sim-
plify the device FTL design and expand the capabilities
of the key-value cache, such as directly driving GC. An-
other key distinction is that our work is on a key-value
cache rather than a persistent store, which offers unique
optimization opportunities, such as quick clean. Some
other prior research has also studied hybrid memory so-
lution for key-value caches. For example, Ouyang et al.
propose to adopt commercial flash SSDs to expand RAM
space for Memcached in HPC systems [12]. Our design
is a cohesive whole-system solution.

6 Conclusions
Building a highly efficient flash-based cache system
is challenging, because of the huge semantic gap be-
tween the applications and the devices. In this paper,
we present a holistic design, which enables three key
benefits, namely a unified single-level direct mapping,
a cache-driven fine-grained garbage collection, and an
adaptive over-provisioning scheme. We are implement-
ing a prototype on the Open-Channel SSD hardware and
our preliminary results show that it is highly promising.
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