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1 Introduction
Non-volatile memory, or NVM, is coming. Several tech-
nologies are maturing (FeRAM, ReRAM, PCM, DWM,
FJG RAM), and soon we expect products from Intel, Mi-
cron, HP, SanDisk, and/or Samsung. Some of these prod-
ucts promise memory density close to flash and perfor-
mance within a reasonable factor of DRAM. This tech-
nology could substantially improve the performance of
software systems, especially storage systems.

Unfortunately, using NVM is hard: each technology
has its quirks, and the details of products are not yet
available. We need a way to integrate NVM into our soft-
ware systems, without full knowledge of all the NVM
product details and without having to redesign every soft-
ware system for each forthcoming NVM technology.

We advocate the use of customized key-value stores.
Rather than programming directly on NVM, developers
(1) design a key-value store customized for the appli-
cation, (2) implement the key-value store for the target
NVM technology, and (3) program the application using
the key-value store. When new NVM products emerge,
with similar performance characteristics but different ac-
cess mechanisms, developers need only modify the key-
value store implementation, which is simpler, faster, and
cheaper than redesigning the application. Thus, the key-
value store serves as a middle layer that hides the details
of the NVM technology, while providing a simple and fa-
miliar interface to the application. Customization ensures
that the design is performant and simple.

We illustrate this idea with an example, METRADB, a
key-value store that we customize for VSAN, a distributed
storage system offered by VMWARE. Key-value stores
vary in functionality. Some provide rich data types; some
have variable-length keys; and some support transactions
with various assurances. The ideal store for an applica-
tion depends on its needs. We explain the options, so that
developers can decide what they need. In METRADB, we
chose these options to satisfy the needs of VSAN.

We report on an early performance evaluation, which
compares METRADB against a general solution provided
by Intel, namely, the data structures in NVML [13]. We
find that METRADB’s performs 2.2x to 50x better in
terms of latency, and its throughput scales well with the
number of threads. This performance advantage comes
from the customized functionality of METRADB. The
trade-off of customization is that developers must build
a store for each application. This was not a significant

issue for METRADB: it has only 2.3K lines of C code.
We are not the first to propose a key-value store

over NVM. Prior work includes Echo [1], CDDS [14],
wB+Trees [3], and the data structures provided with
Intel’s NVML [13]. These are general solutions with
broad scope, while we advocate a custom solution for
each application. Similarly, other ideas to facilitate the
use of NVM include persistent regions [15], persistent
objects [4, 9], file systems [5, 6], persistent transac-
tions [8, 15], memory management [11], and durability
of lock-based code [2]. Again, these ideas target gen-
erality. Other works propose relaxed ordering of writes
to NVM [12, 10], nonvolatile caches [16], and other
software-hardware architectures [7]. These idea are or-
thogonal to and motivate our work, since they facilitate
access to NVM by proposing alternative hardware.

2 NVM: benefits and challenges
By NVM we mean memory that preserves its contents
when power is lost and that can be accessed at a granular-
ity of bytes or words rather than blocks. While there are
many NVM technologies, the most mature and promising
one is 3D XPoint from Intel and Micron. This technology
bring two key benefits relative to DRAM:

• Non-volatility. The memory survives power cycles, so
software need not resort to slow disks or flash.

• Density. DRAM is limited to a few terabytes per ma-
chine, but NVM can grow to tens of terabytes.

Relative to disks and SSDs, NVM has two advantages:

• Performance. Disks and SSDs can incur large write la-
tencies. NVM has performance closer to DRAM.

• Fine granularity. Disks and SSDs operate on 512- or
4096-byte blocks, making them inefficient for small
operations; NVM operates on individual words.

However, NVM brings many challenges to developers:

• Non-persistent caching: While memory is non-
volatile, memory caches are not. When the CPU stores
data, it remains in a cache until it is flushed.

• Out-of-order flushes: Caches may be flushed without
asking and out of order.

• Torn writes: Applications may explicitly flush data,
but if power is lost during the flush, only some parts
will be persistent.

• Complex interface: To persist data, applications must
follow a ritual of instructions: flushing dirty cache
lines, issuing a barrier, committing data, and issuing



another barrier (§6.3). This ritual is expensive, so de-
velopers must worry about how to minimize its use.

• Non-uniform wear: As the hardware provides no wear
leveling, if a word in NVM changes more often than
another, it will wear out more quickly. This can lead
to reliability issues if the developer is not careful.

• Lack of details: We lack details about cost and perfor-
mance of NVM.

The first four issues above relate to crash recovery, while
the last two issues relate to normal operation. We next
describe a middle layer for accessing NVM that can miti-
gate these issues.

3 Main idea and rationale
Instead of programming on NVM directly, we believe de-
velopers should introduce a middle layer that hides the
complexity of the NVM. When a new NVM technology
emerges, developers need not modify the application,
just the middle layer. This layer consists of a key-value
store library with transactions. A key-value store offers
operations to write and read key-value pairs, and possibly
more functionality, depending on the store. A key-value
store is a good abstraction: it is simple and familiar, it
can be implemented easily, and it can perform well.

But a plain key-value store does not suffice to address
the above challenges (§2); it must also provide transac-
tions to avoid torn writes and facilitate crash recovery.

We propose that the key-value store be customized for
an application. Many applications do not need all fea-
tures possible in a key-value store (discussed next), and
those features may hinder performance and simplicity.

4 Features of key-value stores
Broadly, key-value stores permit users to put, get, and
delete key-value pairs, but key-value stores vary in their
exact functionality and data models:

• Key length. Keys can be fixed- or variable-length, and
fixed-length keys can be sparse (e.g., 8-byte integers)
or dense (e.g., 0..32K).

• Value length. Values can be fixed- or variable-length.
• Value types. Values can be typed or opaque. Typed-

values can offer richer operations, such as increment
for numerical types or set union for set types.

• Operations. Besides gets and puts of key-value pairs,
the store may support: (a) gets and puts of partial val-
ues given by an offset and length, (b) multigets and
multiputs of many pairs at once, (c) key enumeration,
ordered or not, and (d) read-modify-write.

• Containers. If present, containers provide different
namespaces to avoid key clashes across users.

• Transactions. If present, transactions provide atom-
icity, isolation, or both. Atomicity protects against
crashes and torn writes. Isolation protects against con-
current access.

5 Case study: VSAN
We now explain how NVM can be used for a specific ap-
plication, a VMWARE product called VSAN. VSAN is a
distributed storage system that provides logical volumes,
where each volume is partitioned and replicated across
storage servers. A server stores the volumes on disks or
SSDs; in the former case, it can use SSDs as a server-side
cache. In addition, clients cache data in memory for effi-
ciency. We envision three uses of NVM in VSAN.

SSD cache metadata. Servers have an SSD block cache;
this cache needs a map from SSD to disk LBAs. The map
can exceed the DRAM allocated to VSAN. Moreover, re-
constructing the map upon recovery can be costly. NVM
can avoid these problems. This use case leverages NVM’s
non-volatility and larger capacity than DRAM.

Client cache. VSAN clients can benefit from a larger
cache than fits in DRAM. This use case leverage’s NVM’s
larger capacity.

Checksum storage. VSAN supports 32-byte checksums
of 4 KB blocks for reliability. Unfortunately, disk stor-
age is block aligned, making it inefficient to store the
checksum. Various schemes are possible, but they cause
fragmentation or increase the number of disk operations.
NVM solves the problem because it operates on words.
This use case leverages NVM’s fine access granularity
and non-volatility.

In all use cases, NVM accesses require low latency and
high throughput since they affect VSAN’s performance.

6 Key-value store design for VSAN
We now explain how we customize the design of ME-
TRADB for VSAN with 3D XPoint as the NVM technol-
ogy. Our design employs existing techniques or varia-
tions; our goal is not to propose new mechanisms but
rather to combine known mechanisms in a custom way
for a specific application.

6.1 Features of METRADB
Key-value stores vary in functionality (§4). VSAN needs
the following features, which we take as the requirements
of METRADB:

Feature Choice for VSAN
Keys Fixed length
Values Variable length, untyped
Operations Get, Put, and Delete only
Containers Yes
Transactions Atomicity only, within one container

More precisely, in the VSAN use cases (§5), keys are
always small binary identifiers, and values can be small
values or buffers with generic lengths—hence the choice
of fixed-length keys and variable-length untyped values.
For the supported operations, it suffices to be able to
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read, write, and delete keys. Containers are needed be-
cause different components of VSAN will use the key
value store. Finally, transactions with atomicity facilitate
crash recovery, but transactions need not support isola-
tion and need not span multiple containers because each
container will be accessed by one thread and each thread
will access one container at a time.

6.2 Application interface
The interface to the key-value store is below.

Operation Description
open(name,flags) open/create container, get handle
remove(name) remove container
close(h) close a handle

put(h,k,buf, len) put key-value pair
get(h,k,buf, len) get key-value pair
delete(h,k) delete key-value pair

commit(h) commit transaction
abort(h) abort transaction

Broadly, there are container operations (open, remove,
close), key-value operations (put, get, delete), and trans-
actional operations (commit, rollback). Opening a con-
tainer returns a handle to that container, which is later
used to put and get key-value pairs. Puts, gets, and
deletes are executed in the context of a transaction, which
can be later committed or aborted. A transaction is lim-
ited to operate on a single container.

6.3 Performance considerations
To achieve good performance with 3D XPoint NVM, we
must be concerned about three things: cache flushes,
memory fences, and NVM commits. Specifically, the CPU
caches are volatile; if an application wants its writes to
persist, it must flush the dirty cache lines using CLFLUSH,
CLFLUSHOPT, or CLWB instructions, then issue a mem-
ory fence using SFENCE to ensure the flushes are visible,
then commit data to NVM using PCOMMIT.1 To ensure
the writes are ordered before subsequent writes, the ap-
plication then needs to issue an additional fence using
SFENCE. The challenge is that the flush, fence, and com-
mit instructions are expensive and must be avoided to
obtain good performance.

6.4 Architecture
Figure 1 shows the architecture of METRADB. ME-
TRADB is a library that links to the application. In-
ternally, the library is organized as low-level back-end,
which is specific to NVM technology (3D XPoint), and
a high-level front-end, which is independent. The back-
end includes modules for logging transactions, manag-
ing segments for memory allocation, and implementing
the data index as a hash table. The front-end components

1 Asynchronous DRAM Refresh could simplify matters, but it re-
quires a special power supply and its details are not yet available.

Figure 1: METRADB architecture

manage the session with the application (open handles,
in-memory indexes for performance, etc), keep track of
existing containers, and execute transactions.

Below, we give more details about the data structure
(data index), the transaction mechanisms (transaction
manager), and memory allocation (segment manager).

6.5 Data structure
We store each container in a hash table where each
bucket has a head pointer to a doubly linked list. This is a
simple and efficient data structure. Inserting a key-value
pair requires just two writes: one write to a data buffer
containing the key-value pair, one to the previous tail of
the linked list. Minimizing writes is important in order to
avoid expensive cache flushes. We considered using bal-
anced trees or skip lists, but they were more complex and
incurred additional writes.

Each hash table has a fixed size chosen at creation
time. This is acceptable because we know the number
of keys, within an order of magnitude, of the containers
needed for each VSAN use case.

6.6 Transactions
We use logging to implement transactions, a well-known
technique. There are two types of logs: redo or undo.
Redo logs store information to reproduce the writes of
a transaction, while undo logs store information to re-
vert a transaction. Undo logs are simpler because trans-
actions can update the underlying data as they execute.
However, with NVM, it turns out that undo logs are much
less efficient: they require multiple NVM commits per
transaction because undo information must be commit-
ted to NVM prior to each transactional write (otherwise a
power failure may leave the data modified without undo
information). In contrast, a redo log need only be com-
mitted once to NVM, when the transaction commits. This
is much more efficient, so we choose a redo log.

Specifically, as the transaction executes, we append
its changes to the log. The log does not store the actual
buffers with newly written data, but rather references to
the buffers. This avoids subsequent copying overheads.
When the transaction commits, we append a commit
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record, commit the log to NVM, and update the hash table
to point to the written buffers.

METRADB uses transactions for two purposes: to pro-
vide user-level transactions within a container, and to ex-
ecute metadata operations on containers and segments
(e.g., create container, create segment). There are sepa-
rate logs for these: one log per container for user-level
transactions, and one global log for the metadata opera-
tions. We assume there is at most one thread executing a
user-level transaction per container; for metadata trans-
actions, we support multithreading using a global lock,
which suffices as these transactions need not be efficient.

6.7 Memory allocation
We keep track of memory allocations using slabs stored
in NVM. Each slab has buffers of a given length and
a bitmap indicating buffer availability. There are many
slabs, to provide buffers of many different sizes. When
a transaction executes and allocates a buffer, it creates a
DRAM copy of the bitmap of the appropriate slab. This
copy is called a shadow bitmap. The shadow bitmaps
track the tentative allocations done by the transaction.
Allocations within a container are done as part of the
transaction that allocates the buffer. When the transaction
commits, we copy the modified shadow bitmaps into the
real slab bitmaps in NVM. Note that a transaction commit
need not copy any data buffers.

6.8 Data layout
Figure 2 shows the layout of data in NVM. Broadly, the
NVM is organized as a super block, a global log, contain-
ers, and segments. The super block indexes all containers
and their segments. The global log stores transactional
updates on the super block, and the allocation of contain-
ers and segments. Every container consists of a metadata
segment and several data segments. The metadata seg-
ment has a log for the transactions within its container,
and the buckets of the container’s hash table (pointers
to the heads of doubly linked lists). The data segments
store the slabs with the actual data of the hash table (ele-
ments in the doubly linked list), with each segment hold-
ing slabs of a fixed size; a bitmap indicates the allocated
slab entries.

7 Preliminary evaluation
The evaluation of METRADB has three goals: (1) assess
the latency of put, get, and delete operations, (2) assess
throughput scalability of these operations, and (3) iden-
tify any bottlenecks in the design or implementation.

We compare METRADB against Intel’s NVML, which
is a library for facilitating the programming on NVM.
The library provides atomic allocations of persistent ob-
jects, concurrent transactional updates, thread synchro-
nization, and persistent pointers. It also contains sev-
eral persistent data structures, which we use as key-value
stores for comparison.

Figure 2: Data layout in METRADB

Methodology. We measure operation latency using the
benchmark provided by NVML. We configure the bench-
mark to run lookup (get), insert (put), and delete opera-
tions on 250K key-value pairs with 1KB values. We com-
pare METRADB against five data structures provided in
NVML: radix-tree (ctree), B-tree (btree), red-black tree
(rbtree), and two hash-tables (htbl atomic and htbl tx).
These provide more features than METRADB (e.g., gen-
eral transactions), since METRADB is customized to the
needs of VSAN (§6); our goal is to understand the benefits
of customization and the costs of generality.

We also measure throughput scalability of METRADB
by running the benchmark with a variable number of
threads, each accessing its own container.

To analyze METRADB’s behavior, we run the bench-
mark under a profiler. We classify the execution time into
five categories: Log (logging data), Lock (synchroniza-
tion), HT-ope (hash table operations), Mem-ope (mem-
cpy operation), and Other (remaining executing time).

Testbed. We run experiments on Linux with kernel v4.4,
24 GB of RAM, and an Intel XeonE5-2440 v2 1.90GHz
CPU with 8 cores, each with 2 hyper-threads. NVM is not
yet available, so instead we flush data (CLFLUSH) to a
region of DRAM that is memory-mapped to a file.

Results. Figure 3a shows the latency of each system. The
y-axis indicates average latency per operation in µs. The
first bar is METRADB; the other bars are the various
NVML data structures. On each operation, METRADB
outperforms the best NVML data structure, htbl atomic.
The other NVML data structures are more powerful, but
this power is not needed for VSAN, reinforcing the benefit
of customization. The advantage of METRADB is greater
on put and delete operations: 6.6–15x for puts and 12–
50x for deletes, depending on the NVML structure. NVML
is worse as it logs and commits to NVM many times per
operation/transaction (and more for deletes than puts)
due to the use of an undo log, while METRADB can com-
mit the log only once per operation/transaction due to
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Figure 3: Evaluation results.

the use of a redo log. Using a redo log is feasible due
to METRADB’s limited functionality: redo logs in gen-
eral cause complexity and overheads because the system
needs special mechanisms for transactions to see their
own updates; with METRADB, however, these mecha-
nisms are straightforward and efficient since METRADB
has only two simple update operations—a benefit of cus-
tomization. For get operations, METRADB is better than
NVML by 2.2–10.2x. This difference is due to the use
of pointers with an extra level of indirection in NVML;
these pointers permit the key-value store to be shared
across different address spaces, but this is not needed for
VSAN—another benefit of customization.

Figure 3b depicts how METRADB’s throughput scales
as the number of threads increases, each thread access-
ing its own container. The y-axis is normalized to the
throughput of one thread, and the dashed line shows ideal
scalability. We can see that METRADB scales almost lin-
early up to 8 threads, which is the number of CPU cores.
Beyond 8, scalability suffers. Profiling information indi-
cates that the main cause is kernel-level locks that syn-
chronize parallel updates to the memory-mapped file.

Figure 3c shows a breakdown of the execution of gets,
puts, and deletes. For gets, the cost is dominated by mem-
cpy (Mem-ope) and the hash table (HT-ope). Puts spend
comparable time on memcpy, locking, and logging; locks
are acquired when the operation needs to create new data
segments; logging is expensive because it writes to NVM.
Deletes do not incur the overheads of memcpy or lock-
ing, and therefore are dominated by the hash table and
logging. Overall, we see that the inherent cost of mem-
cpy (for gets and puts) is comparable to the overheads
imposed by the store for the data structure, locking, and
logging. This indicates that there are no obvious bottle-
necks in any of the operations.
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