
ZEA, A Data Management Approach for SMR

Adam Manzanares1, Noah Watkins2, Cyril Guyot1, Damien LeMoal1, Carlos Maltzahn2, and
Zvonimir Bandic1

1Western Digital Research
2University of California, Santa Cruz

1 Introduction

Digital data is projected to double every two years cre-
ating the need for cost effective and performant storage
media [4]. Hard disk drives (HDDs) are a cost effective
storage media that sit between speedy yet costly flash-
based storage, and cheap but slower media such as tape
drives. However, virtually all HDDs today use a tech-
nology called perpendicular magnetic recording, and the
density achieved with this technology is reaching scal-
ability limits due to physical properties of the technol-
ogy [17]. While new technologies such as shingled mag-
netic recording (SMR) that further increase areal density
are slated to enter the market [6], existing systems soft-
ware is not prepared to fully utilize these devices because
of the unique I/O constraints that they introduce.

SMR requires systems software to conform to the
shingling constraint. The shingling constraint is an I/O
ordering constraint imposed at the device level, and re-
quires that writes be sequential and contiguous within a
subset of the disk, called a zone. Thus, software that
requires random block updates must use a scheme to se-
rialize writes to the drive. This scheme can be handled
internally in a drive or an alternative approach is to ex-
pose the zone abstraction and shingling constraint to the
host operating system. Host level solutions are challeng-
ing because the shingling constraint is not compatible
with software that assumes a random-write block device
model, which has been in use for decades. The shingling
constraint influences all layers of the I/O stack, and each
layer must be made SMR compliant.

In order to manage the shingling write constraint of
SMR HDDs, we have designed a zone-based extent al-
locator that maps ZEA logical blocks (ZBA) to LBAs of
the HDD. Figure 1a depicts how ZEA is mapped onto a
SMR HDD comprised of multiple types of zones, which
are described in Table 1. ZEA writes logical extents,
comprised of data and metadata, sequentially onto the
SMR zone maintaining the shingling constraint.

2 Related Work

Previous work has shown that drive-level management
of the shingling constraint is a viable approach for SMR
HDDs [3, 11]. The main drawback of drive level so-
lutions is that their implementations can lead to unpre-
dictable performance under certain workloads [1]. Some
studies look at shingled disk data management from the
perspective of the log-structured file system [16, 2]. We
were able to adapt the NILFS2 log-structured file system
to a shingled disk by mapping file system metadata to a
conventional zone. This was a functional approach, but
existing problems within NILFS2 reduced space utiliza-
tion and performance was not acceptable.

HiSMRfs, TableFS, and SFS are file systems that have
decoupled metadata and data policies [8, 15, 13]. SM-
RDB proposes that a KV interface is well suited for SMR
devices [14]. WiscKey is another storage system that
provides a KV interface and has properties that may work
well with an SMR device [12]. Our goal is not to provide
a KV or file system interface to the SMR drive, but rather
to provide a building block for higher level abstractions
in order to provide flexibility. Work related to data place-
ment policies within SMR devices is complementary to
our work [9].

The data management challenges on SSDs that require
a translation layer is very similar to the challenges faced
by drive-managed(DM) SMR devices, although many
performance assumptions are different [5]. Our interface
has a similar API to Nameless Writes [19], but we inten-
tionally leave garbage collection to the consumer of our
API in order to provide predictable performance. In addi-
tion we do not tie a logical extent to metadata at ingest, or
provide segments in order to maintain a light-weight im-
plementation. Caveat-Scriptor [10] proposes that SMR
HDDs do not enforce any write restrictions and instead
a host manages all aspects of writing. This is promising
work, but there are currently no SMR HDDs that support
this model.



SMR HDD

CZ SRZ SRZ SRZ SRZ

ZEA ZEA

DATA MD DATA MD DATA MD

WP WP

(a) ZEA SMR Management

LBA

(16)

SZ

(16)

ZBA

(64)

BP

(16)

BP

(16)

MAG

(32)

CS

(32)

(b) ZEA Metadata

Figure 1: ZEA Architecture Figure 1a illustrates how a ZEA instance is mapped to one write pointer based SMR zone. Figure 1b
represents the per-write metadata that ZEA places on a SMR zone.

3 SMR Drive Models

The shingling constraint of an SMR device can be man-
aged either at the drive-level, or at the host-level in soft-
ware. While DM devices are a drop-in replacement for
existing HDDs, they suffer from two important limita-
tions. First, the resources required to provide the virtual
block device interface introduces cost and complexity in
the drive design. Additionally, DM devices can suffer
from unpredictable performance due to the read-modify-
write cycles used to reclaim space within zones [1].
In contrast, host-managed(HM) drives fully expose the
zone abstraction allowing for application-specific man-
agement of the shingling constraint.

The T10 Zoned Block Command (ZBC) standard [18]
introduces terminology and behavior that is compatible
with SMR HDDs, but is not specific to SMR. The T10
standard defines three types of zones that can exist within
a block device, shown in Table 1. These zone types are
conventional, sequential write preferred, and sequential
write required.

First, a conventional zone (CZ), an area of the logi-
cal block address (LBA) space that is semantically equal
to a SCSI Block Command (SBC) HDD, has no restric-
tions on I/O ordering. A sequential write preferred zone
(SPZ) places no restriction on I/O ordering. However,
unlike a CZ, the SPZ introduces the concept of a write
pointer, which is equal to the largest LBA written to
within the zone. Applications should write at the write
pointer within a sequential write preferred zone, but the

drive is capable of dealing with random writes if they
arise. A sequential write required zone (SRZ) also ex-
poses a write pointer, but the device will reject writes to
any location other than at the write pointer.

A SMR device is HM when it is shingled and contains
sequential write required zones. For completeness, we
also define a host-aware device to be one containing se-
quential write preferred zones. Since host-aware SMR
HDDs and DM SMR HDDs are preferably written se-
quentially and contiguously within a zone, systems soft-
ware designed for HM devices will be compatible with
all SMR HDDs. Therefore we have chosen to focus on
systems software for HM SMR drives.

4 ZEA Design & Performance

ZEA focuses on minimizing the metadata overhead of
indirected writes that are an artifact of obeying the shin-
gling constraint, while balancing the read/write perfor-
mance and start-up times of ZEA. ZEA will only return
successfully from a put operation if the data and meta-
data for the extent have been written providing a consis-
tent transaction. In the proposed architecture each zone
has a separate instance of ZEA, because each zone has a
separate write pointer.

The Put method of ZEA has an argument of a logical
extent, which consists of a data buffer and a ZBA, and
returns the drive LBA of where the logical extent was
placed. During a Put operation, metadata mapping the
logical extent to a LBA is placed after the data that is

Type Write Restriction Intended Use Con Abbreviation
Conventional None In-place updates Increased Resources CZ

Sequential Preferred None Mostly sequential writes Variable Performance SPZ
Sequential Required Sequential Write Only sequential writes Lack of Systems Software SRZ

Table 1: ZBC Zone Types

2



 0

 10

 20

 30

 40

 50

 60

 70

1K 2K 4K 8K 16K

T
im

e
 (

s
)

Extents

2BP
4BP
8BP

16BP

(a) Start Up Time

 8

 10

 12

 14

 16

 18

 20

 22

4K 32K 256K 1M 2M

T
im

e
 (

s
)

PutSize (B)

ZEA
BLKDEV

(b) Write Performance

 5

 6

 7

 8

 9

 10

 11

 12

 13

4K 32K 256K 1M 2M

T
im

e
 (

s
)

PutSize (B)

ZEA
BLKDEV

(c) Read Performance

Figure 2: ZEA vs. Block Device Performance

contained within the extent. ZEA will append the logical
extent at the write pointer of the zone as long as there
is space available for the logical extent and its associ-
ated metadata within the zone. Within the extent meta-
data generated by ZEA are back pointers to the metadata
of previously written extents. In addition, a checksum
of the data contained within the extent and a marker in-
dicating metadata is stored in the extent metadata. The
metadata placed by ZEA enables a consumer to discover
the logical extents that have been written to a zone on-
demand. The Get operation requires that the user supply
an argument of an extent that uses a LBA addressing and
not a ZBA. The get operation retrieves an entire logical
extent if the supplied LBA address and length matches
the start LBA and length of a logical extent placed by
ZEA. The consumer of ZEA is responsible for prevent-
ing/handling ZBA writes to multiple zones and deciding
when/how to garbage collect zones.

In addition to the Put/Get methods of ZEA we have
implemented metadata iterators over the logical to phys-
ical metadata mappings written by ZEA. These iterators
can be used at start up to discover all logical extents that
have been written and the sequence of how the logical
extents have been written. This functionality gives the
consumer of ZEA the ability to discover all logical extent
writes and their order on demand and this information is
used for garbage collection policies.

Figure 2 illustrates the time to read the metadata writ-
ten by ZEA within a zone and the read/write performance
of ZEA when a block size of 4KiB is used. All experi-
ments are an average of 10 runs and include error bars.
Figure 2a plots the start up time of ZEA versus the num-
ber of extents allocated within the zone for varying num-
bers of back pointers that ZEA is using. Recall that ZEA
leverages pointers to previous metadata entries and that
this is a tunable parameter. As expected this time grows
linearly with the number of extents that are allocated.

Figure 2b shows the write performance of ZEA vs.
writing to a block device. ZEA and the block device
are two separate HDDs that are the same model, with
the ZEA experiments conducted with SMR compliant

firmware. In this experiment we write 1024 extents
of sizes varying from 4KiB to 2MiB and compare this
to writing the same amount of data directly to a block
device. ZEA issues SCSI read and write commands
through libzbc [7], a library that implements ZBC com-
patible SCSI commands, while the block device is using
direct I/O. Figure 2b indicates that ZEA has no overhead
on write performance as compared to writing to a block
device. The extra metadata write is masked by the time
taken for the write head to settle over the position of the
extent data to be written. When the time to write the
extent data is large enough to mask the time taken for
the head to settle over the position to write extent data,
the amount of metadata written is small, relative to the
extent data, to make an impact on performance. In the
experiment used to generate Figure 2c we issue sequen-
tial reads through ZEA and to the block device using the
same parameters used to generate Figure 2b, except we
fix the total amount of data read to 1GiB. ZEA is slower
than the block device for all put sizes, and this differ-
ence is exacerbated by small put sizes. We attribute this
difference in performance due to the fact that ZEA is is-
suing reads through the SCSI layer, which does not per-
form read-ahead, and the block device is employing read-
ahead.

5 LevelDB & ZEA

To demonstrate the usability of ZEA we created a sim-
plified file system, the ZEA file system, ZEAFS, which
was designed to be compatible with the LevelDB back-
end interface. ZEAFS has two major goals, mapping ex-
tents to files, and maintaining a directory name space.
LevelDB databases use a single directory to hold files,
and we leverage this flat name space in our file system
design. We have chosen to store directory and file al-
location information in a CZ located at the start of the
SMR drive used for our experiments. This decoupling
of metadata used to mange the shingling constraint from
metadata used to map ZEA extents onto storage abstrac-
tions provides ZEA based architectures flexibility.

3



CZs

SMR HDD

SRZ 0 SRZ 1 SRZ n
. . .

. . .

ZEAFS MD ZEA 0 ZEA 1 ZEA n

ZEA File System

LDB File System Plugin

Figure 3: ZEA + LevelDB Architecture

Figure 3 illustrates the modified architecture of Lev-
elDB that is used when an SMR drive is the target media.

To elucidate the performance of ZEAFS we ran sev-
eral benchmarks comparing the performance of LevelDB
when ZEAFS and ext4 are used for storage. We have
chosen to compare against ext4 because it is mature and
widely used. The test system that we have used contains
a six core 1.9GHZ Xeon CPU, contains 48GiB of mem-
ory and we run our experiments on two HDDs. The first
HDD is a 6TB VendorA HDD, denoted as HDA in exper-
iments. The second drive is an 8TB VendorB DM SMR
HDD, denoted as HDB in our experiments. In order to
run ZEA on HDA we have flashed the firmware of HDA
to be a zbc compliant HM HDD, formatting the drive
with 1% of the drive as a CZ and the rest of the drive as
SRZs of 256MiB in size. To get ZEA to run on HDB
we use the emulation mode of libzbc and configured the
CZ and SRZ with the same parameters used for the HDA
with modified firmware.

In the first experiment a total of 1GiB of data was
written and we varied the size of the value of the KV
pair inserted into the database from 4KiB to 2MiB. The
KV pairs are inserted into the database in integer order
(not lexicographically sequential) without the LevelDB
sync flag for the first experiment and sync enabled on the
second experiment. Data is periodically synced to the
disk due to flushing of sstables and compactions when
the sync flag is not used. The ext4 configuration of Lev-
elDB leverages the Linux Page Cache and we have added
a 5MiB file write buffer to ZEAFS files to provide a fair
comparison between ZEAFS and ext4 versions of Lev-
elDB. ZEAFS will flush the file buffer to the disk when-
ever a sync operation is performed on a file.

The most important trend from Figure 4a is the fact
that ZEAFS is able to reduce the variance of performance
for the HDB HDD. Ext4 is not strictly sequential and
spreads data and metadata across the LBA space of the

HDD. Even though LevelDB is writing sequentially to
each individual file it uses, the access pattern seen by
the HDD is not SMR friendly. DM SMR HDDs require
indirection schemes to manage the shingling-constraint
and their implementations are fixed and will work well
with a limited set of workloads. ZEAFS, being built on
top of ZEA, serializes access to zones of the HDD pro-
viding purely sequential access within well defined LBA
regions, which is an access pattern that matches the phys-
ical properties of SMR HDDs. The second trend that we
can glean from Figure 4a is the fact that ZEAFS matches
or exceeds the performance of ext4 when LevelDB is
used.

Figure 4b varies the size of KV pairs inserted into Lev-
elDB, but now issues a sync operation after every KV
pair insert. In these experiments we limited the num-
ber of put operations to 1024, to highlight the fact that
small KV pairs inserts that are synced are much slower as
compared to the previous experiment. A key take away
from these graphs is that ZEAFS is faster than ext4 for all
drives. If we look at the HDA drive we can conclude that
ZEAFS has fewer disk operations than ext4 per sync op-
eration. ext4 uses a journal to keep metadata consistency
in the face of crashes, which comes at a performance
penalty for small file sync operations. ZEAFS writes all
metadata updates synchronously, which can limit its per-
formance under batch operations but is superior for small
sync operations. Figure 4b shows that HDB HDD be-
haves much more predictably with synced KV puts until
a size of a 2MiB KV pair is used, but once again ZEAFS
eliminates the performance variance.

Figure 4c plots the read performance of LevelDB on
top of ext4 and ZEAFS when reading 1GiB of KV pairs
in integer order. The first trend highlighted in Figure 4c
is the fact that ZEAFS has lower read performance as
compared to ext4 when the HDA HDD is used (with an
exception for 256K KV pairs). This performance dis-
crepancy is most prominent in the case of 4K KV pairs.
ZEAFS on HDA has no read-ahead mechanism because
I/Os are issued directly through the SCSI layer, limiting
its read performance for small requests. The trend seen
with the HDA HDD is reversed when we look at the re-
sults from the HDB HDD. Read performance is lower
with ext4 as compared to ZEAFS. There are two key fac-
tors that give ZEAFS an advantage on HDB as compared
to HDA. The first is that we emulate a zbc compliant de-
vice on HDB using software as opposed to firmware for
the HDA. This means the HDB will be able to leverage
read-ahead and the page-cache since it is seen as a block
device by the OS. Secondly the write time for HDB on
ext4 is much larger than the write time of the HDB using
ZEAFS, which may indicate that compactions are occur-
ring during read experiments which negatively impacts
read times.

4



 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

4K 32K 256K 1M 2M

T
im

e
 (

s
)

PutSize (B)

HDA-EXT4
HDA-ZEA

HDB-EXT4
HDB-ZEA

(a) Write Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K 32K 256K 1M 2M

T
im

e
 (

s
)

PutSize (B)

HDA-EXT4
HDA-ZEA

HDB-EXT4
HDB-ZEA

(b) Sync Write Time

 10

 20

 30

 40

 50

 60

 70

4K 32K 256K 1M 2M

T
im

e
 (

s
)

PutSize (B)

HDA-EXT4
HDA-ZEA

HDB-EXT4
HDB-ZEA

(c) Read Time

Figure 4: LevelDB Performance The graphs in Figure 4 compare the write/read performance of LevelDB on top of EXT4 and
ZEAFS on two HDDs. The first HDD is a 6TB VendorA Drive (HDA) and the second drive is an 8TB VendorB SMR Drive (HDB)

6 Discussion and Conclusion

In order to provide HM SMR software abstractions the
complete I/O stack must be verified/modified to be SMR
compatible. In addition, high-level abstractions such
as file systems and KV stores that are designed to be
SMR compliant lack the flexibility to be reused by other
projects. In response to these challenges we designed
and evaluated a SMR compatible extent allocator, ZEA.
In this work we demonstrate the performance character-
istics of ZEA by comparing it to a raw block device. In
addition we were able to incorporate ZEA with LevelDB
to benchmark a drive managed and emulated HM SMR
HDD. ZEA shows promise in the fact that it smooths out
performance for a DM HDD and is compatible with HM
HDD. This current work demonstrates the utility of ZEA
and in our future work we intend to build a SMR com-
patible KV store based on ZEA.

References
[1] AGHAYEV, A., AND DESNOYERS, P. Skylight: a window on

shingled disk operation. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (2015), USENIX
Association, pp. 135–149.

[2] AMER, A., HOLLIDAY, J., LONG, D. D. E., MILLER, E. L.,
PRIS, J.-F., AND SCHWARZ, T. Data management and layout for
shingled magnetic recording. IEEE Transactions on Magnetics
47, 10 (Oct. 2011).

[3] CASSUTO, Y., SANVIDO, M. A., GUYOT, C., HALL, D. R.,
AND BANDIC, Z. Z. Indirection systems for shingled-recording
disk drives. In Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on (2010), IEEE, pp. 1–14.

[4] GANTZ, J., AND REINSEL, D. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.

[5] GIBSON, G., AND GANGER, G. Principles of operation for shin-
gled disk devices. Tech. Rep. CMU-PDL-11-107, Carnegie Mel-
lon University Parallel Data Lab, April 2011.

[6] GREAVES, S., KANAI, Y., AND MURAOKA, H. Shingled
recording for 2-3 tbit/in 2. Magnetics, IEEE Transactions on 45,
10 (Oct 2009), 3823–3829.

[7] HGST. Libzbc.

[8] JIN, C., XI, W.-Y., CHING, Z.-Y., HUO, F., AND LIM, C.-
T. Hismrfs: A high performance file system for shingled storage

array. In Mass Storage Systems and Technologies (MSST), 2014
30th Symposium on (June 2014), pp. 1–6.

[9] JONES, S., AMER, A., MILLER, E. L., LONG, D. D. E.,
PITCHUMANI, R., AND STRONG, C. Classifying data to reduce
long term data movement in shingled write disks. In Proceedings
of the 31st International Conference on Massive Storage Systems
and Technology (MSST 2015) (June 2015).

[10] KADEKODI, S., PIMPALE, S., AND GIBSON, G. A. Caveat-
scriptor: Write anywhere shingled disks. In 7th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage 15)
(Santa Clara, CA, July 2015), USENIX Association.

[11] LIN, C.-I., PARK, D., HE, W., AND DU, D. H-swd: Incorpo-
rating hot data identification into shingled write disks. In Mod-
eling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th International Symposium
on (Aug 2012), pp. 321–330.

[12] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from val-
ues in ssd-conscious storage. In 14th USENIX Conference on
File and Storage Technologies (FAST 16) (Santa Clara, CA, Feb.
2016), USENIX Association, pp. 133–148.

[13] MOAL, D. L., BANDIC, Z., AND GUYOT, C. Shingled file sys-
tem host-side management of shingled magnetic recording disks.
In 2012 IEEE International Conference on Consumer Electronics
(ICCE) (Jan 2012), pp. 425–426.

[14] PITCHUMANI, R., HUGHES, J., AND MILLER, E. L. Smrdb:
Key-value data store for shingled magnetic recording disks. In
Proceedings of SYSTOR 2015 (May 2015).

[15] REN, K., AND GIBSON, G. Tablefs: Enhancing metadata ef-
ficiency in the local file system. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference (Berke-
ley, CA, USA, 2013), USENIX ATC’13, USENIX Association,
pp. 145–156.

[16] SELTZER, M., BOSTIC, K., MCKUSICK, M. K., AND STAELIN,
C. An implementation of a log-structured file system for unix. In
Proceedings of the USENIX Winter 1993 Conference Proceedings
on USENIX Winter 1993 Conference Proceedings (Berkeley, CA,
USA, 1993), USENIX’93, USENIX Association, pp. 3–3.

[17] SHIROISHI, Y., FUKUDA, K., TAGAWA, I., IWASAKI, H.,
TAKENOIRI, S., TANAKA, H., MUTOH, H., AND YOSHIKAWA,
N. Future options for hdd storage. Magnetics, IEEE Transactions
on 45, 10 (Oct 2009), 3816–3822.

[18] T10. Zoned block commands.
[19] YIYING ZHANG, LEO ARULRAJ, ANDREA C. ARPACI-

DUSSEAU, REMZI H. ARPACI-DUSSEAU. De-indirection for
Flash-based SSDs with Nameless Writes. In Proceedings of the
10th Conference on File and Storage Technologies (FAST ’12)
(San Jose, California, February 2012).

5


