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Abstract
Much research effort has been devoted to improving

the performance of the I/O stack in mobile devices, but
limited time has been spent evaluating mobile applica-
tion performance from the user’s perspective. In this pa-
per, we try to understand how applications running on the
newest devices behave with respect to this metric. We
develop a methodology for quantifying user-perceived
latency and use it to evaluate four common application
benchmarks with I/O stack optimization on two of the
latest smartphones. Contrary to our expectation, we find
that (i) these applications respond reasonably fast and (ii)
the user-perceived latency does not drastically (at most
11.8%) benefit from I/O stack optimizations.
1 Introduction

Over the last decade, mobile devices, including smart-
phones and tablets, have become ubiquitous. Prevailing
wisdom [4, 5] suggests that the performance of the
storage subsystem in such devices plays an important
role in application performance. One recent study [5]
finds that storage performance does indeed affect the
performance of several common applications. Another
study [4] identifies the Journaling of Journal (JOJ)
phenomenon (when the file system journals the database
journal activities), as the root cause of inefficiency in the
storage I/O stack in smartphones.

This has motivated work on a range of SQLite
database optimizations, including tuning the database
journaling mode [4], eliminating SQLite journaling I/Os
through multi-version B-tree [6], and minimizing the
synchronization overhead with WALDIO [7]. Other
work focuses on reducing the overhead of the Ext4 file
system journaling by ensuring a single I/O operation
on the synchronous commit path [12] or trading off
data staleness for better application responsiveness [11].
Another recent study points out that boosting the priority
of part of the asynchronous I/Os will improve the
responsiveness [2]. Moreover, two studies leverage the
battery in mobile devices to improve the efficiency of
the storage subsystem [3, 8].

Much of the aforementioned research [2, 4, 6–8, 12]
is devoted to improving the performance of the SQLite
database and the Ext4 file system in smartphones. In
comparison, limited effort has been spent on evaluating
the application performance from the user’s perspective.
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Nitin et al. [5] evaluate this dimension of application per-
formance on a suite of Android application benchmarks.
However, their experiments were conducted on a rela-
tively old Android smartphone. Given the advances in re-
cent hardware, these results may not longer be accurate.
In another study, Jinglei et al. [11] evaluate app respon-
selatency using the time required to finish a predefined
user interaction path on the device. However, the lack of
synchronizations between the simulated interactions and
the application under test means that the execution time
may not accurately measure the latency perceived by the
user. For instance, the test harness may return before the
web page is 100% rendered, reporting a shorter latency
than the user would actually see.

In this paper, we revisit the impact of storage on ap-
plication performance, and look at this from a fresh per-
spective. We make two main contributions. First, we
develop a methodology for evaluating application per-
formance that is based on user perception. We define
the notion of a stable GUI state and then use the transi-
tion time between two consecutive stable GUI states as
the metric for user-perceived latency. Second, we use
our methodology to evaluate the impact of storage I/O
stack optimizations on the application performance on
two of the latest smartphones (Samsung Galaxy S4 and
Google Nexus 5X). We evaluate four application bench-
marks from past work with the SQLite optimization that
disables fsync() and the Ext4 file system optimization
that turns off the journaling in the Ext4 file system.

In our evaluation, the four representative applications
that we test respond reasonably fast in a consistent man-
ner, with an average user-perceived response time rang-
ing from 0.9 second to 1.9 seconds. Moreover, our re-
sults show that the SQLite optimization can only reduce
the user-perceived latency by up to 7.2% on the Galaxy
S4 and 7.8% on the Nexus 5X; whereas, eliminating Ext4
journaling can only reduce the user-perceived latency by
up to 6.7% on the Galaxy S4 and 3.6% on the Nexus
5X. With both optimizations the user-perceived latency
can be reduced by up to 11.8% on the Galaxy S4 and
11.5% on the Nexus 5X. Our results seem to suggest that
the performance of the storage I/O stack, while still im-
portant, may no longer be a dominating factor for user-
perceived application performance in the latest Android
smartphones.

2 Methodology
Smartphone applications by and large are Graphi-

cal User Interface (GUI) based interactive applications.



These have a front-end that accepts user generated and
system generated input events (e.g. clicks or swipes)
which produces deterministic graphical output [9]. The
GUI of an Android application contains a set W of GUI
objects (e.g., Buttons, Frames). Each GUI object w ∈W
is represented by a set Pw of properties, where each prop-
erty p ∈ Pw has a set of values Vp. The state of GUI
at a particular time t can be defined as a set of triples
SGUI = {(w, p,v)|w ∈W, p ∈ Pw,v ∈Vp}.

A typical smartphone user interaction usually involves
three steps: (1) find a GUI object (e.g., button, textbox),
(2) perform some operations (e.g., click, type, swipe)
on the GUI object, and (3) wait until a certain state is
reached (e.g., the content is shown on screen). This is re-
peated for the next operation. The user-perceived latency
of such operations greatly impacts the user’s quality of
experience and satisfaction [10]. The HCI community
has defined three time limits for user-perceived latency
based on human perceptual ability [10]:

• 0.1 second limit for the user feeling that the system
is reacting instantaneously.
• 1.0 second limit for the user to keep an uninter-

rupted flow on the task at hand.
• 10 second limit for keeping the user’s attention fo-

cused on the dialogue.

In general operations which take around 1 second are
considered relatively fast [10]. Given the GUI based and
interactive nature of mobile applications, we believe that
the user-perceived latency is the best metric for measur-
ing mobile application performance and will use these
numbers as baselines in our evaluation. If we deviate
much beyond the times given, then we assume that the
user is troubled by an applications performance.

The exact way to measure this latency while running
an application is subjective. In previous studies [5, 11],
MonkeyRunner (a GUI replay tool) is used to simulate
user interactions, and the execution time is used to rep-
resent the user-perceived latency. However, due to a lack
of synchronization between the simulated interaction and
the application under test, the measured latency may not
accurately reflect the latency a user actually perceives.
For instance, the application may still be waiting to fetch
data through the network while MonkeyRunner has al-
ready returned from performing the user action. In this
case the content may not be fully displayed on the screen
and when the user checks the screen after performing the
action, he or she will think the interaction is still under
processing and incomplete.

To make sense of this, we define a stable GUI state
and use the transition time between two consecutive sta-
ble GUI states as the metric for user-perceived latency.
When the application receives an input from the user,
the application will change its GUI state, and eventually

reach a stable state where the user thinks the interaction
is completed (e.g., a web page fully loaded). A stable
GUI state, must satisfy two conditions:

• the GUI state (SGUI) remains unchanged without
further user input.
• background jobs directly related to the operation are

completed.
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Figure 1: An example of user-perceived latency. The figure
shows the breakdown view of the user-perceived latency load-
ing a single web page.

Figure 1 shows an example of the user-perceived la-
tency and the GUI state transition throughout the load-
ing of a web page. Applications that take longer to re-
spond usually employ a percent-done indicator and in-
crementally update the screen to make the response feel
immediate to the user. When the user hits the button to
start loading a web page, which marks the start of the
user-perceived latency, the browser will send the request
through the network and wait to receive the data needed
for rendering the web page asynchronously. While re-
ceiving such data, the browser will periodically update
the progress bar and change the GUI state into a series of
unstable intermediate states which include when the web
page is not fully rendered. Eventually when all the data
is received, the fully rendered web page will be presented
to the user, and the app enters a stable GUI state, which
marks the end of the user-perceived latency.

Thus, user-perceived latency is measured as the time
taken to transition from the current stable GUI state at
the point an event is triggered by a user input, to the next
stable GUI state when operation is complete (e.g., a web
page is fully loaded and displayed on the screen). We be-
lieve that the user-perceived latency, which is quantified
by the interval time between two consecutive stable GUI
states, is an appropriate metric for measuring mobile ap-
plication performance.

With this metric, we build our benchmark suite using
the Espresso [1] testing framework that provides APIs
for simulating user interactions (e.g., click, type) within a
single app. The Espresso framework automatically syn-
chronizes between the user interaction and application
under test. One user operation is considered finished
in Espresso tests when there are no tasks in the default
AsyncTask thread pool and the UI thread is idle. In most
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cases, the application will enter the next stable GUI state
when these two conditions are met. However, in some
cases the user interaction results in a series of GUI state
changes, which makes it impossible for Espresso to know
when the GUI enters a stable state. To address this issue,
Espresso allows test writers to register their own cus-
tomized idling resources with Espresso so that Espresso
will wait until the background asynchronous jobs are
done. We implement our customized IdlingResource

for the WebView widget so that it will notify Espresso
when the web page is fully loaded. Our benchmark suite
simulates a set of predefined user interactions and reports
the GUI state transition time between two consecutive
GUI stable states, which we consider the best represen-
tation of the user-perceived latency.

3 Experiment Setup
3.1 Device Setup

We performed experiments on two smartphones, the
Samsung Galaxy S4 Google Play Edition and the Google
Nexus 5X. The Samsung Galaxy S4 was released in June
2013, and is equipped with a 1.9 GHz quad-core CPU,
2GB RAM and 16GB NAND flash internal storage, run-
ning Cyanogenmod 11.0 (Android 4.4 equivalent). The
Google Nexus 5X was released in October 2015, em-
ploying a 1.8 GHz hexa-core CPU, 2GB RAM and 32GB
internal NAND flash storage, running stock Android 6.0
Marshmallow. By default both phones store application
data in the Ext4 file system with journaling (in ordered
mode).

To estimate the performance benefits of storage stack
optimizations reported in the latest literature [2,6–8,12],
we adopt two specific performance optimizations in
our evaluation, that are each designed for the SQLite
database and Ext4 file systems:

• SQLITE NO SYNC: disable fsync() in SQLite.
• EXT4 NO JOURNAL: turn off Ext4 file system

journaling.

These optimizations eliminate the journaling overhead
in the SQLite database and Ext4 file systems com-
pletely. Although these optimizations clearly com-
promise the persistency guarantees from SQLite and
Ext4, they yield close to the optimal performance we
can expect from mitigating the journaling overhead in
SQLite and Ext4. Therefore, they represent the perfor-
mance upper bounds achievable by the latest optimiza-
tions aiming to minimize the storage stack overhead.
SQLITE NO SYNC removes I/Os to both database ta-
ble files and journal files from the transaction commit
path, and EXT4 NO JOURNAL eliminates all I/Os to
Ext4 journals.

We use the default/stock configuration of the devices
as the baseline, which has neither of the two optimiza-

App Workload
Web Loading top 50 websites in U.S one

by one
Facebook Swipe up the screen 50 times to

load news feed
Messenger Send 50 messages

Twitter Post 50 tweets
Table 1: Summary of application benchmarks.

tions turned on. To apply the SQLITE NO SYNC op-
timization, we rebuild the libsqlite.so shared library
with SQLITE NO SYNC defined and replace the original
library. To apply the EXT4 NO JOURNAL optimiza-
tion, we disable the has journal option in Ext4 using
tune2fs. By turning on and off these optimizations, we
test a total of four different configurations.
3.2 Application Benchmarks

We evaluate four popular Android applications, sum-
marized in Table 1. These applications have been studied
extensively in recent literature [4, 5, 11], much of which
has been in the context of providing evidence that the
storage performance greatly impacts the application per-
formance. Therefore, we keep the workload the same
across the configurations and evaluate the application
performance benefits from the different storage stack op-
timizations. For the Web benchmark we implement a
web browsing app consisting of a text box for entering
a website url and a WebView widget to display the web
page. We also implement a customized WebView idling
resources for Espresso that will notify Espresso when the
web page loading progress reaches 100%. For the Face-
book, Messenger (a.k.a. Facebook Messenger) and Twit-
ter benchmarks, we use a re-signed version of the apps
downloaded from Google Play so that the Espresso in-
strumentation tests run on real devices.

The application benchmarks are implemented as An-
droid instrumentation tests to simulate the user actions
to perform the workloads specified in Table 1. Active
accounts are used in the Facebook, Messenger and Twit-
ter benchmark runs, and application data are cleaned up
before each benchmark is run to force the application to
write data to the local storage.
4 Evaluation

The evaluation, based on the experimental platform
and workload described above, seeks to answer the fol-
lowing three key questions in our attempt to shed more
light on the application performance and the perfor-
mance impact of storage in Android smartphones.
4.1 How much do the database and file

system benefit from storage stack opti-
mizations?

The performance of the SQLite database and Ext4 file
system are shown in Figure 2. The SQLITE NO SYNC
optimization speeds up the insert, update and delete
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Figure 2: Database and file system performance with opti-
mizations. Figure (a) shows the transaction throughput of sin-
gle op transaction in SQLite; I: Insert, U: Update, D: Delete.
Figure(b) illustrates the 4KB random read / write IOPS of the
Ext4 file system.
transaction throughput by respectively 15.0×, 17.6× and
16.8× on Samsung Galaxy S4 and 14.4×, 15.0× and
15.1× on Nexus 5X. The EXT4 NO JOURNAL op-
timization speeds up the 4KB random write IOPS on
Galaxy S4 and Nexus 5X by 3.4× and 7.1× respectively,
and does not affect the 4KB read IOPS. The boost on ran-
dom write IOPS leads to a SQLite transaction throughput
speedup of 1.5×, 1.2× and 1.2× on Samsung Galaxy S4
and 2.15×, 2.32× and 2.22× on Nexus 5X for the insert,
update and delete transactions respectively.

4.2 How much does the application perfor-
mance benefit from storage stack opti-
mization?

0

500

1000

1500

2000

2500

Web Facebook Messenger Twitter Web Facebook Messenger Twitter

Galsxy S4 Nexus 5

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Baseline

SQLITE_NO_SYNC

EXT4_NO_JOURNAL

BOTH OPT.

Figure 3: Average response time of the four application
benchmarks. Each latency value is averaged over 10 runs.
The standard deviation between runs is less than 5%.

To better assess the importance of storage perfor-
mance, we filter out the low-latency user actions (which
poses less user-perceived latency) that are unlikely to
trigger storage I/Os (e.g. type url), so that we can focus
on specific operations in each application. These are

• Web: click Go button on soft keyboard to start load-
ing a web page.
• Facebook: swipe up on the screen.
• Messenger: click the Send button.
• Twitter: click the Post button.

The average latency of the aforementioned operations
is shown in Figure 3. In this graph we show the average
of 10 runs of the experiments (the standard deviation is

less than 5%). Under the default configuration, the Sam-
sung Galaxy S4 takes about 1.7 seconds to load a web
page, and around 1.1 seconds to finish the measured user
interaction; Nexus 5X takes about 1.9 seconds to load a
web page, 0.9 second to swipe down the Facebook feed,
0.7 second to send a message and 0.5 second to post a
tweet. According to the response time guidelines we pre-
sented [10], these user interactions are reasonably fast
and thus provides a satisfactory user experience.

With only SQLITE NO SYNC turned on, the av-
erage user-perceived latency of the measured user in-
teractions in the Web, Facebook, Messenger and Twit-
ter benchmarks is reduced by 5.5%, 7.2%, 2.7%
and 6.7% from the baseline respectively on Sam-
sung Galaxy S4, and 0.6%, 2.8%, 0.5% and 7.8%
from the baseline respectively on Nexus 5X. With
only EXT4 NO JOURNAL turned on, the application
benchmarks exhibit 5.3%, 2.1%, 3.0% and 6.7% im-
provements in user-perceived latency over the baseline
on Samsung Galaxy S4, and 1.4%, 3.6%, 0.4% and 3.0%
on Nexus 5X. Turning on both optimizations can reduce
the user-perceived latency of the four applications un-
der test by 6.3%, 7.2%, 2.6% and 11.8% from the base-
line on Samsung Galaxy S4, and 1.2%, 5.0%, 1.1% and
11.5% from the baseline on Nexus 5X.
4.3 Why doesn’t the application benefit

from better storage performance?
The storage performance benefits seen by the appli-

cations largely depend on how they manage their data.
Some applications manage all their data in the database,
some may leave all the application data unstructured in
raw files, while others have both the database and raw
files in their storage schema. We collect the I/O trace
to /data partition using the blktrace tool in a bench-
mark run under the default configuration on Galaxy S4.
As shown in Figure 4, the IO intensity in the bench-
mark test of Web, Messenger and Twitter is relatively
low compare to the maximum IOPS available, while in
the Facebook benchmark test the bursty IOPS reaches
450. Further analysis of the I/O traces demonstrates that
the average response time of these I/Os (mostly writes) is
only 28 milliseconds, which is relatively small compared
to the user-perceived latency of 1.1 seconds. Neverthe-
less, considering that the benchmark test excludes all hu-
man reaction time, the IO intensity is likely to be much
smaller in real life scenarios.

We were surprised at the result of the Web benchmark
for which the database optimizaiton has almost no effect.
(see Figure 3) given that it is basically the same as the
WebBench [5] in a previous study, where the WebBench
served as the evidence that storage performance signif-
icantly affects the performance of the application. The
previous work shows that the storage schema used by
the browser application consists of a set of blobs storing
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Figure 4: IO activity of four benchmarks.

cached image and media files, and two SQLite database
files storing the index to manage the web cache. They
also identified that the synchronous writes to the SQLite
database files cause a significant delay. However, we find
no SQLite database files for the web cache index in both
smartphones we tested, instead the index is stored in a
flat file. By comparing the WebView cache directory be-
fore and after the benchmark run we find that the app
generates 740 new files (including cache blobs and in-
dex), for a total of approximately 18MB data.

To gain a better understanding of the correlation be-
tween web page loading and I/O activities, we re-run
the Web benchmark with a 4-second interval inserted
between each individual page loading. We collect I/O
traces using blktrace during the benchmark run and plot
the activity in Figure 5. The user-perceived web page
loading time is denoted as red (shaded) in the figure. As
seen, the I/O bursts and the web page loading periods
are not aligned, suggesting that the writes to the index
files and cache blobs are no longer on the critical path of
web page loading. This is exactly the solution previous
studies have suggested. Therefore, the inefficient design
and unnecessary delay in web browser may have been
resolved as the Android software has evolved in the last
four years.

Time Stamp (seconds)

IO
PS

Figure 5: I/O activities for loading 10 web pages. The figure
shows the IOPS when loading 10 web pages in the Web bench-
mark. A four-second interval is inserted between two consecu-
tive web page loadings. The red area in the figure denotes the
loading time of each web page.

5 Conclusion
Our results question the prevailing wisdom about the

impact of storage on the smartphone application perfor-
mance. A threat to validity of our study is that it does
not look a vast range of applications nor a wide vari-

ety of smartphones. As a result, we cannot claim that
our results are broadly representative. However, the fact
that on the latest smartphones with powerful CPUs, large
DRAM and fast storage devices, the user-perceived la-
tency of four common applications does not benefit much
from storage system optimizations suggests that more
work is needed to identify the bottleneck in modern mo-
bile systems. With the latest hardware and software in
modern smartphones, the storage system seems to no
longer be the performance bottleneck whereas applica-
tions used to suffer from wimpy storage systems.
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