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Abstract
The performance of storage devices has been increased
significantly due to emerging technologies such as Solid
State Drives (SSDs) and Non-Volatile Memory Express
(NVMe) interface. However, the complex I/O stack
of the kernel impedes utilizing the full performance of
NVMe SSDs. The application-specific optimization is
also difficult on the kernel because the kernel should pro-
vide generality and fairness.

In this paper, we propose a user-level I/O framework
which improves the performance by allowing user appli-
cations to access commercial NVMe SSDs directly with-
out any hardware modification. Moreover, the proposed
framework provides flexibility where user applications
can select their own I/O policies including I/O comple-
tion method, caching, and I/O scheduling. Our evalu-
ation results show that the proposed framework outper-
forms the kernel-based I/O by up to 30% on microbench-
marks and by up to 15% on Redis.

1 Introduction
The new emerging technologies are making a remarkable
progress in the performance of storage devices. NAND
flash-based Solid State Drives (SSDs) are being widely
adopted on behalf of hard disk drives (HDDs). The next-
generation non-volatile memory such as 3D XPoint [8]
promises the next step for the storage devices. In accor-
dance with the improvement in the storage performance,
the new NVMe (Non-Volatile Memory Express) inter-
face has been standardized to support high performance
storage based on the PCI Express (PCIe) interconnect.

As storage devices are getting faster, the overhead of
the legacy kernel I/O stack becomes noticeable since it
has been optimized for slow HDDs. To overcome this
problem, many researchers have tried to reduce the ker-
nel overhead by using the polling mechanism [5, 13] and
eliminating unnecessary context switching [11, 14].

However, kernel-level I/O optimizations have several
limitations to satisfy the requirements of user applica-
tions. First, the kernel should be general because it pro-
vides an abstraction layer for applications, managing all
the hardware resources. Thus, it is hard to optimize the
kernel without loss of generality. Second, the kernel can-
not implement any policy that favors a certain applica-
tion because it should provide fairness among applica-

tions. Lastly, the frequent update of the kernel requires
a constant effort to port such application-specific opti-
mizations.

In this sense, it would be desirable if a user-space
I/O framework is supported for high-performance stor-
age devices which enables the optimization of the I/O
stack in the user space without any kernel intervention.
In particular, such a user-space I/O framework can have a
great impact on modern data-intensive applications such
as distributed data processing platforms, NoSQL sys-
tems, and database systems, where the I/O performance
plays an important role in the overall performance. Re-
cently, Intel released a set of tools and libraries for ac-
cessing NVMe SSDs in the user space, called SPDK [7].
However, SPDK only works for a single user and appli-
cation because it moves the whole NVMe driver from the
kernel to the user space.

In this paper, we propose a novel user-level I/O frame-
work called NVMeDirect, which improves the perfor-
mance by allowing the user applications to access the
storage device directly. Our approach leverages the stan-
dard NVMe interface and works on commercial NVMe
SSDs without any hardware modification. Since the
user-space I/O framework does not go through the ker-
nel during actual I/Os, it allows for many optimization
opportunities. Unlike SPDK, NVMeDirect can co-exist
with the legacy I/O stack of the kernel so that the exist-
ing (kernel-based) applications can use the same NVMe
SSD with NVMeDirect-enabled applications simultane-
ously on different disk partitions. Another advantage of
NVMeDirect over SPDK is that the proposed framework
provides flexibility in queue management, I/O comple-
tion method, caching, and I/O scheduling where each
user application can select its own I/O policies according
to its I/O characteristics and requirements. For example,
if an application requires a super-fast latency, it can al-
locate a dedicate queue and use the polling mechanism
after issuing I/O commands directly to the NVMe SSDs.
One may implement a differentiated I/O service inside of
an application by isolating a queue for high-priority I/O
requests. This can be useful for database servers where
boosting the I/O performance of logging is known to be
important to improve the overall performance [9, 10].

Our experimental results on a commercial NVMe
SSD indicate that the proposed scheme outperforms the



kernel-based I/O by up to 30% on microbenchmarks and
by up to 15% on Redis. We also show that the proposed
NVMeDirect framework can provide the differentiated
service successfully by boosting the prioritized I/O re-
quests.

2 Background
NVM Express (NVMe) is a high performance and scal-
able host controller interface for PCIe-based SSDs [1].
The notable feature of NVMe is to offer multiple queues
to process I/O commands. Each I/O queue can manage
up to 64K commands and a single NVMe device supports
up to 64K I/O queues. When issuing an I/O command,
the host system places the command into the submission
queue and notify the NVMe device using the doorbell
register. After the NVMe device processes the I/O com-
mand, it writes the results to the completion queue and
raises an interrupt to the host system. NVMe enhances
the performance of interrupt processing by MSI/MSI-X
and interrupt aggregation. In the current Linux kernel,
the NVMe driver creates a submission queue and a com-
pletion queue per core in the host system to avoid locking
and cache collision.

3 NVMeDirect I/O Framework
3.1 Design
We develop a user-space I/O framework called
NVMeDirect to fully utilize the performance of
NVMe SSDs while meeting the diverse requirements
from user applications. Figure 1 illustrates the overall
architecture of our NVMeDirect framework.

The Admin tool controls the kernel driver with the
root privilege to manage the access permission of I/O
queues. When an application requests a single I/O queue
to NVMeDirect, the user-level library calls the kernel
driver. The kernel first checks whether the application
is allowed to perform user-level I/Os. And then it creates
the required submission queue and the completion queue,
and maps their memory regions and the associated door-
bell registers to the user-space memory region of the ap-
plication. After this initialization process, the applica-
tion can issue I/O commands directly to the NVMe SSD
without any hardware modification or help from the ker-
nel I/O stack. NVMeDirect offers the notion of I/O han-
dles to send I/O requests to NVMe queues. A thread
can create one or more I/O handles to access the queues
and each handle can be bound to a dedicated queue or
a shared queue. According to the characteristics of the
workloads, each handle can be configured to use different
features such as caching, I/O scheduling, and I/O com-
pletion. The major APIs supported by the NVMeDirect
framework are summarized in Table 1. NVMeDirect also
provides various wrapper APIs that correspond to NVMe
commands such as read, write, flush, and discard.
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Figure 1: The overall architecture of NVMeDirect.

Separating handles from queues enables flexible
grouped I/O policies among multiple threads and makes
it easy to implement differentiated I/O services. Basi-
cally, a single I/O queue is bound to a single handle as
Thread A in Figure 1. If a thread needs to separate read
requests from write requests to avoid read starvation due
to bulk writes, it can bind multiple queues to a single han-
dle as Thread B in Figure 1. It is also possible to share a
single queue among multiple threads as Thread C and D
in Figure 1.

NVMeDirect also offers block cache, I/O scheduler,
and I/O completion thread components for supporting
diverse I/O policies. Applications can mix and match
these components depending on their needs. Block cache
manipulates the memory for I/O in 4KB unit size sim-
ilar to the page cache in the kernel. Since the NVMe
interface uses the physical memory addresses for I/O
commands, the memory in the block cache utilizes pre-
translated physical addresses to avoid address translation
overhead. I/O scheduler issues I/O commands for asyn-
chronous I/O operations or when an I/O request is dis-
patched from the block cache. Since the interrupt-based
I/O completion incurs context switching and additional
software overhead, it is not suitable for high performance
and low latency I/O devices [13]. However, if an appli-
cation is sensitive to bandwidth rather than to latency,
polling is not efficient due to the significant increase in
the CPU load. Thus, NVMeDirect utilizes a dedicated
polling thread with dynamic polling period control based
on the I/O size or a hint from applications to avoid un-
necessary CPU usage.
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API Description

nvmed = nvmed open(dev path) Open and get the information of device
result = nvmed close(nvmed) Close the NVMe device
queue = nvmed create queue(nvmed) Create an I/O queue and map it to user-space
result = nvmed destroy queue(queue) Delete an I/O queue
handle = nvmed create handle(queue) Create an I/O handle bound to a specific I/O queue
handle = nvmed create mq handle(queues) Create an I/O handle bound to multiple I/O queues
result = nvmed destroy handle(handle) Delete an I/O handle
result = nvmed set param(handle, param, val) Set a parameter for I/O queue or handle
buffer = nvmed get buffer(num pages) Allocate a buffer
result = nvmed put buffer(buffer) Deallocate a buffer

Table 1: Major APIs defined in the NVMeDirect framework.

3.2 Implementation
The NVMeDirect framework is composed of three com-
ponents: queue management, admin tool, and user-level
library. The queue management and the admin tool are
mostly implemented in the NVMe kernel driver, and
user-level library is developed as a shared library.

We implement the queue management module in the
NVMe driver of the Linux kernel 4.3.3. At the initializa-
tion stage, the admin tool notifies the access privileges
and the number of available queues to the queue man-
agement module with ioctl(). When an application re-
quests to create a queue, the queue management module
checks the permission and creates a pair of submission
and completion queues. The module maps the kernel
memory addresses of the created queues and the doorbell
to the user’s address space using dma common mmap() to
make them visible for the user-level library. The module
also exports the memory addresses via the proc file sys-
tem. Then, the user-level library can issue I/O commands
by accessing the memory addresses of queues and door-
bell registers.

The block cache in the user-level library allocates
the memory when an application requests to create a
buffer for the buffered I/Os. The memory in the block
cache is indexed by the radix tree and allocated by the
nvmed get buffer() function.

The I/O completion thread is implemented as a stand-
alone thread to check the completion of I/O using
polling. Multiple completion queues can share a single
I/O completion thread or a single completion queue can
use a dedicated thread to check the I/O completion. The
polling period can be adjusted dynamically depending on
the I/O characteristics of applications. Also, an applica-
tion can explicitly set the polling period of the specific
queue using nvmed set param(). The I/O completion
thread uses usleep() to adjust the polling period.

4 Evaluation
We compare the I/O performance of NVMeDirect with
the original kernel-based I/O with asynchronous I/O sup-
port (Kernel I/O) and SPDK using the Flexible IO Tester

(fio) benchmark [3]. For all the experiments, we use a
Linux machine equipped with a 3.3GHz Intel Core i7
CPU and 64GB of memory running Ubuntu 14.04. All
the performance evaluations are performed on a commer-
cial Intel 750 Series 400GB NVMe SSD.

4.1 Baseline Performance
Figure 2 depicts the IOPS of random reads (Figure 2a)
and random writes (Figure 2b) on NVMeDirect, SPDK,
and Kernel I/O varying the queue depth with a single
thread. When the queue depth is sufficiently large, the
performance of random reads and writes meets or ex-
ceeds the performance specification of the device on
both NVMeDirect, SPDK, and Kernel I/O. However,
NVMeDirect achieves higher IOPS compared to Ker-
nel I/O until the IOPS is saturated. This is because
NVMeDirect avoids the overhead of the kernel I/O stack
by supporting direct accesses between the user applica-
tion and the NVMe SSD. As shown in Figure 2a, we can
see that our framework records the near maximum per-
formance of the device with the queue depth of 64 for
random reads, while Kernel I/O has 12% less IOPS in
the same configuration. In Figure 2b, when NVMeDi-
rect achieves the maximum device performance, Kernel
I/O shows 20% less IOPS. SPDK shows the same trend
as NVMeDirect because it also accesses the NVMe SSD
directly in the user space.

4.2 Impact of the Polling Period
Figure 3 shows the trends of IOPS (denoted by lines)
and CPU utilization (denoted by bars) when we vary the
polling period per I/O size. The result is normalized to
the IOPS achieved when the polling is performed with-
out delay for each I/O size. We can notice that a signif-
icant performance degradation occurs in a certain point
for each I/O size. For instance, if the I/O is 4KB in size,
it is better to shorten the polling period as much as pos-
sible because the I/O is completed very quickly. In case
of 8KB and 16KB I/O sizes, there is no significant slow-
down, even though the polling is performed once in 70µs
and 200µs, respectively. At the same time, we can re-
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Figure 2: Asynchronous I/O performance of Kernel I/O, SPDK, and NVMeDirect varying the queue depth (QD).
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Figure 3: IOPS and CPU Utilization by the polling pe-
riod per I/O size normalized to the best performance

duce the CPU utilization due to the polling thread to 4%
for 8KB I/Os and 1% for 16KB I/Os. As mentioned in
Section 3.1, we use the adaptive polling period control
based on this result to reduce the CPU utilization associ-
ated with polling.

4.3 Latency Sensitive Application
The low latency is particularly effective on the latency
sensitive application such as key-value stores. We eval-
uate NVMeDirect on one of the latency sensitive appli-
cations, Redis, which is an in-memory key value store
mainly used as database, cache, and message broker [2].
Although Redis is an in-memory database, Redis writes
logs for all write commands to provide persistence. This
makes the write latency be critical to the performance of
Redis. To run Redis on NVMeDirect, we added 6 LOC
(lines of code) for initialization and modified 12 LOC
to replace POSIX I/O interface with the corresponding
NVMeDirect interface with the block cache. We use the
total 10 clients with workload-A in YCSB [6], which is
an update heavy workload.

Table 2 shows the throughput and latency of Redis on
Kernel I/O and NVMeDirect. NVMeDirect improves the
overall throughput by about 15% and decreases the aver-
age latency by 13% on read and by 20% on update oper-
ations. This is because NVMeDirect reduces the latency
by eliminating the software overhead of the kernel.

4.4 Differentiated I/O Service
I/O classification and boosting the prioritized I/Os is im-
portant to improve the application performance such as

Throughput Latency
(ops/s) Read (µs) Update (µs)

Kernel I/O 46,563 209.18 217.61
NVMeDirect 53,570 183.05 173.32

Table 2: Redis performance comparison on 10 clients.

writing logs in database systems [9, 10]. NVMeDirect
can provide the differentiated I/O service easily because
the framework can apply different I/O policies to the ap-
plication using I/O handles and multiple queues.

We perform an experiment to demonstrate the possi-
ble I/O boosting scheme in NVMeDirect. To boost spe-
cific I/Os, we assign a prioritized thread to a dedicated
queue while the other threads share a single queue. For
the case of non-boosting mode, each thread has its own
queue in the framework. Figure 4 illustrates the IOPS of
Kernel I/O and two I/O boosting modes of NVMeDirect
while running the fio benchmark. The benchmark runs
four threads including one prioritized thread and each
thread performs random writes with a queue depth of
4. As shown in the result, the prioritized thread with a
dedicated queue on NVMeDirect outperforms the other
threads remarkably. In the case of Kernel I/O, all threads
have the similar performance because there is no mech-
anism to support prioritized I/Os. This result shows that
NVMeDirect can provide the differentiated I/O service
without any software overhead.

5 Related Work
There have been several studies for optimizing the stor-
age stack as the hardware latency is decreased to a few
milliseconds. Shin et al. [11] present a low latency
I/O completion scheme based on the optimized low level
hardware abstraction layer. Especially, optimizing I/O
path minimizes the scheduling delay caused by the con-
text switch. Yu et al. [14] propose several optimization
schemes to fully exploit the performance of fast storage
devices. The optimization includes polling I/O comple-
tion, eliminating context switches, merging I/O, and dou-
ble buffering. Yang et al. [13] also present that the
polling method for the I/O completion delivers higher
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Figure 4: Random write performance with I/O priority.

performance than the traditional interrupt-driven I/O.
Since the kernel still has overhead in spite of several

optimizations, researchers have tried to utilize direct ac-
cess to the storage devices without involving the kernel.
Caulfield et al. [5] present user-space software stacks
to further reduce storage access latencies based on their
special storage device, Moneta [4]. Likewise, Volos et
al. [12] propose a flexible file-system architecture that
exposes the storage-class memory to user applications
to access storage without kernel interaction. These ap-
proaches are similar to the proposed NVMeDirect I/O
framework. However, their studies require special hard-
ware while our framework can run on any commercial
NVMe SSDs. In addition, they still have complex mod-
ules to provide general file system layer which is not nec-
essary for all applications.

NVMeDirect is a research outcome independent of
SPDK [7] released by Intel. Although NVMeDirect is
conceptually similar to SPDK, NVMeDirect has follow-
ing differences. First, NVMeDirect leverages the kernel
NVMe driver for control-plane operations, thus exist-
ing applications and NVMeDirect-enabled applications
can share the same NVMe SSD. In SPDK, however, the
whole NVMe SSD is dedicated to a single process who
has all the user-level driver code. Second, NVMeDi-
rect is not intended to be just a set of mechanisms to al-
low user-level direct accesses to NVMe SSDs. Instead,
NVMeDirect also aims to provide a large set of I/O poli-
cies to optimize various data-intensive applications ac-
cording to their characteristics and requirements.

6 Conclusion
We propose a user-space I/O framework, NVMeDirect,
to enable the application-specific optimization on NVMe
SSDs. Using NVMeDirect, user-space applications can
access NVMe SSDs directly without any overhead of
the kernel I/O stack. In addition, the framework pro-
vides several I/O policies which can be used selectively
by the demand of applications. The evaluation results
show that NVMeDirect is a promising approach to im-
prove application performance using several user-level
I/O optimization schemes.

Since NVMeDirect does not interact with the kernel
during the I/Os, it cannot provide enough protection nor-
mally enforced by the file system layer. In spite of this,

we believe NVMeDirect is still useful for many data-
intensive applications which are deployed in a trusted
environment. As future work, we plan to investigate
ways to protect the system against illegal memory and
storage accesses. We are also planning to provide user-
level file systems to support more diverse application
scenarios. NVMeDirect is available as opensource at
https://github.com/nvmedirect.
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