Pixelsior: Photo Management as a Platform Service for Mobile Apps

Kyungho Jeon, Sharath Chandrashekhara, Karthik Dantu, Steven Y. Ko
University at Buffalo, the State University of New York

Abstract

Photo management has become a sizable fraction of our
computer interaction. Due to economic incentives, every
software company wants to restrict users to using their
software for photo management and use. Unfortunately,
this results in duplication of images, repeated image ma-
nipulation operations, and an overall uneven and siloed
user experience. In this paper, we motivate the need for a
dedicated platform service for photo management which
can not only manage the photos on one device, but also
transparently manage content adaptation, image manipu-
lation and propagation of the manipulation to all the ap-
plications on a device, and all devices using the service.
Pixelsior presents our study of the requirements of such
a system as well as a preliminary design motivated by
requirements of consistency and efficiency.

1 Introduction

Spurred by the widespread use of camera-equipped de-
vices, the number of photos taken everyday has been
rapidly increasing over the last decade. While it is es-
timated that about 80 billion photos were taken in 2000,
in 2014, 550 billion photos were shared on Facebook,
WhatsApp and Snapchat alone [5]. With the advent of
newer wearables such as Go-Pro cameras, smart glasses,
and cameras embedded in household appliances, this
trend is clearly on the rise. As a result, photo apps have
become one of the most sought-after app categories for
regular users. For example, 5 of the top 10 installed free
apps in Google Play are related to photos[ﬂ

Today, photo management requires capabilities be-
yond simple photo capture and storage. At the very
least, photo management apps organize photos based on
basic parameters like time and location of acquisition.
Advanced apps have the ability to organize and search
images based on complex image processing techniques

! As of August 2015.

such as face detection and object recognition. Such apps
typically also allow their users to set specific tags for
easy classification and retrieval of photos. Moreover,
many photo apps have the ability to share photos across
devices and users, and in doing so, they allow their users
to manipulate their photos in various ways. For example,
Instagram and Snapchat provide many image filters.

A typical photo management app manages the photos
and the metadata separately. While the photo itself is
built around the file abstraction where a single photo is
represented by a file, the metadata containing the photo
versioning, tags, search indices, organization etc., are
decoupled from the photo and maintained separately—
often an app-specific database. This lack of a unified
interface to manage the photos entails three problems:
First, it often leads to duplicate images resulting from
filtering and resizing operations on the same photo by
multiple apps. Second, the rich semantic information ac-
quired from complex image processing cannot be shared
among apps unless the apps are developed in tight coop-
eration. Third, when a photo is shared across multiple
devices, it is hard to reason about propagating edit oper-
ations from one device to another when the images are
adapted to each device.

Recognizing these problems, we argue that a more
natural way of managing a photo is by encapsulating it
within a logical object which has a set of attributes—
for example, resized versions of the same photo, location
where the photo was taken (location tag), object and face
tags, etc. In addition, we believe that any app should be
able to modify and access these attributes using a unified
abstraction. Therefore, we propose to design a platform
service for photo management—Pixelsior. Taking an ex-
ample of Android, we envision this new abstraction to
be provided in addition to, or as an advanced version of
MediaStore [1]], which currently provides metadata and
URI for all available media data on a device.

Pixelsior treats a photo as an abstraction consisting
of an original image, various derived images, associ-

ated metadata, and version history. Given the increas-
ing modalities through which photos can be generated
and consumed (smartphones, tablets, laptops, televi-
sions, smart watches and others), Pixelsior also adapts
photos to suit the device by adjusting the resolution and
other image properties.

This abstraction would ease app developers from the
task of implementing photo management in the apps and
instead allow app developers to focus on innovative fea-
tures that differentiate their apps from other apps. By
separating this into a platform service, such functional-
ity can be availed uniformly by all apps instead of being
implemented separately inside each one of them.

Our goal in this paper is to identify the design require-
ments for Pixelsior and discuss potential design choices.
The contributions of our work are as follows—(i) we mo-
tivate the need for new abstraction for the management
of photos through a platform service, and (ii) we explore
the design space for the abstraction layer as well as for
the service itself.

2 Motivation

In this section, we identify key challenges in developing
photo apps for mobile devices to motivate the need for
a new platform service. Three popular app categories,
namely photo organizers, messaging, and social media
platform, are analyzed. First, we briefly describe essen-
tial features in mobile photo apps. Then, we present the
problems arising in implementing those features.

2.1 App Features

Popular photo apps provide features in three categories:
capture and store, retrieval, and image editing. Each cat-
egory can involve many extra operations as we discuss
below.

Capture and storage: The most basic feature of
photo apps is to capture a photo. Often this also includes
capturing a set of metadata (such as location, date, etc.),
and embedding within the photo. This metadata can be
used later for photo apps in various ways.

Once an app captures a photo, the app stores the photo
on its local storage. Additionally, the app might synchro-
nize the photo with a cloud storage service and/or other
devices; the app might re-size and compress the photo for
faster viewing and sharing, and store the smaller image
along with the original; It might also want to store ad-
ditional metadata generated from computer vision tech-
niques such as face detection, object recognition, and
landmark detection.

Retrieval: Another basic feature of photo apps is re-
trieval. For retrieval and search, apps could allow pho-
tos to be manually organized into albums. Sophisticated

apps use computer vision techniques to automatically or-
ganize and sort the photos by various parameters such as
place, people etc. For example, if the user searches for
“Niagara falls”, the app would automatically retrieve all
the photos taken in Niagara falls.

Image editing: Beyond storage and retrieval, many
popular photo apps such as Instagram and Snapchat are
built around image editing functionality. Edit operations
vary in complexity from resizing to image filters, and as
complex as manual retouching at a pixel level granular-
ity. Several social interactions fueled by these features
demonstrate their importance [2].

2.2 Challenges

The landscape today is a potpourri of different ecosys-
tems providing their own (often partial) solutions to the
three desired operations listed above. Technical and eco-
nomic incentives have motivated companies to silo these
operations in their own worlds, making it harder for users
to have a uniform experience across apps and easily view,
share, and manipulate images easily and consistently
across apps. In abstract, here are some requirements to
enable such functionality.

Unified view and interface: One of the major chal-
lenges in providing a unified view of the photos across
the apps is the management of duplicate images that var-
ious apps create independently. Consider a specific case
of mobile messaging apps which often reduce the size of
images before sending them. If a user sends a photo to
her friends and each of them uses a different messaging
app, then the apps generate and possibly store multiple
resized images of the same photo. A similar situation
could happen in using social media apps. Posting a photo
to a social media site after applying filters also results in
an original image and its derived image. These dupli-
cates are not desirable, result in excess usage of storage
and bandwidth, and are annoying to users [2]. It is desir-
able to have a consistent view of photos across apps.

Metadata management: The second challenge is
metadata management of the photos. As discussed, pho-
tos are tagged with metadata when they are captured.
Moreover, many apps use image processing and machine
learning techniques to associate each photo with rich se-
mantic information. These trends result in a nontrivial
amount of metadata to be managed.

Even though we have a de-facto standard format to
store metadata in an image file (http://www.exif.
org/), it is not flexible enough to support all kinds of
metadata an app would like to use. Thus, an app builds its
own custom metadata management tightly coupled with
the app. A typical approach is to have a separate meta-
data database table where each relation includes meta-
data and links to image files. However, such an im-

http://www.exif.org/
http://www.exif.org/

Type Interface In Out

Description

. readPhoto id, policy image Returns an image with the requested policy. A policy can ask
Read/Write
to retrieve a specific resolution of the image or a more generic
request like the “best quality”, “fastest fetch”, etc.
writePhoto id, image none Creates a new photo in the service.
search list: query list: photo Returns a list of photos matching with a given list of queries
Search and Quer; . . .
Query queryPhoto id metadata Returns metadata associated with the photo.
queryPhotoHistory id history Returns the photo’s change history.

Transformation transform id, transformation id

Applies the specified transformation and generates a new photo
by recording the transformation. The transformation can be a
built-in one of Pixelsior or app-specific.

Table 1: Basic APIs provided in Pixelsior

plementation does not allow multiple apps to share the
metadata database unless the apps are developed in co-
ordination. Therefore, any sharing of images results in
two problems. First, it results in duplication of meta-
data across apps. Second, this makes the metadata man-
agement harder. Whenever a photo is updated or edited,
the developer has to automatically update all the related
metadata along with the photo. Failing which might
leave the metadata in an inconsistent state. It is ideal to
have no duplicates in both images and the image meta-
data for consistency.

Update management: The last challenge we discuss
is management and propagation of edits to photos (like
filters) across devices, often across different resolutions
of the same image. Manipulating photos in mobile de-
vices has become common and popular [3]. Assuming
that a photo on a mobile device (the original image) is
synchronized with another device, users would want the
manipulation on the original to be propagated to the other
device. This does not happen across apps in the current
scenario unless the two apps have a tight coordination. It
is desirable to be able to perform the same image manip-
ulations on different apps.

In Section [3] we explore the design space for address-
ing these challenges.

3 Design Space

This section overviews the design space for our envi-
sioned platform service for photo management. We sep-
arate our discussion into three parts—a developer’s point
of view, the internal photo representation, and update
propagation. The discussion from the viewpoint of de-
velopers explains that Pixelsior is a platform service for
apps. The discussion of our internal photo representation
answers the question of what information needs to be
managed in our platform service. The discussion of our

implementation considerations examines the question of
how the information can be managed. Our purpose is
to discuss the factors we need to consider in designing
a platform service for photo management ; it is not nec-
essarily to present the final design. We leave the final
design as our future work.

3.1 A Developer’s Point of View

Table [I] shows the basic APIs that our Pixelsior de-
sign provides, which are available as platform service
APIs to all apps running on a mobile device. The APIs
have three categories—read/write, search, and transform.
First, readPhoto interface allows an app to retrieve a
photo with a set of policies. A policy can specify a res-
olution which an app will retrieve, e.g., a thumbnail of
a particular size to display. It can also be used for auto-
matic content adaptation done by Pixelsior such as “best
fit for display” which triggers Pixelsior to determine the
best resolution for display. Automatic adaptation can
be done based on various contexts, e.g., display resolu-
tion and size, network connectivity, and battery status.
writePhoto is a simple write operation that allows an
app to store a photo.

Second, search allows an app to search and organize
photos based on query strings on tags. A tag is a string
attached to a photo, defined by an app, and can be used
to group multiple photos into a collection; some example
tags include locations, time and date, detected faces, etc.
An app can use multiple tags for one photo.

Third, transform allows an app to edit a photo in
various ways. transform takes a photo object and ap-
plies a photo edit operation. We envision Pixelsior would
provide some built-in edit operations as well as an inter-
face for an app to register its own implementation of an
edit operation. This way, our design could allow the ease
of development for apps that do not require advanced
photo edit functionality, without preventing app develop-

{
"images": [

"orignal": {
"uri":"https://url_to_image_object"

¥

"thumbnail": {
"derived_by": transform("original", thumbnail()),
"content_file": "/local/path/to/thumbnail_file"

¥

"1920x1080": {

"derived_by": transform("original", resize((1920, 1080))),

"content_file": "/local/path/to/file"
}
]
"tags": [
"selfies", "loc: Buffalo, NY"

1
}

Figure 1: A proposed design of photo object internal rep-
resentation in JSON-like format.

ers from innovating in the space of photo editing. When
an app applies an edit operation on a photo, the app can
choose to either create a new photo object or include the
result in the photo as a derived image. In either case, Pix-
elsior records the applied operations in the logical photo
object. This allows apps to be provenance-aware. Such
provenance-awareness allows an application to trace the
transformation history of a photo back and forth, so the
application can support a large set of operations such as
undo/redo of photo edits, restoration of a deleted photo,
quick retrieval of all transformed photos from an original
photo, etc [4].

3.2 Internal Photo Representation

Pixelsior internally uses a new representation model to
manage photos. This includes typical information for
a photo, i.e., the name, the raw data, and the metadata
(e.g., the file format). In addition, Pixelsior associates
each photo with all additional metadata mentioned ear-
lier in Section [3.1] such as tags and transformation his-
tory. An example of the proposed representation format
is presented in Figure|l| Each photo object can include
multiple images and each image can be stored either in
local storage or in the cloud (specified as uri in Fig-
ure EI) In addition, each image is annotated with how
the image is derived. In order to capture these differ-
ent types of information, Pixelsior internally organize a
photo object as a tree. Each photo object can have mul-
tiple versions of images and each image is represented
as a node in the tree. If a photo is derived from another
photo as the result of applying a manipulation operation,
they form a parent-child relationship. A new photo just
taken creates a new tree, while a transformed photo from
another one either extends a tree or creates a new tree.
The actual management of these trees, as well as the

Photo A Photo B Photo C
A R, B:R, —r———1 r C:R,
T1
AR, Fr———7 r B:R, » C:R,
T,

— Original edit A, B, C: Photos

---» Appliededit T, T,; Transformations

..... » Resize R,, R,: Resolutions

Figure 2: A sequence of photo edit operations. It shows
an original photo (A) and its two resolutions (R; and R»,
as well as other photos (B) and (C) transformed in se-
quence. 77 and 75 indicate two different transformation
operations and the solid arrows indicate which resolu-
tions are used to transform.

generation of transformed photos, should be done effi-
ciently by Pixelsior. In doing so, Pixelsior should take
multiple front-ends into consideration (such as phones
and tablets). For example, a phone front-end for a user
might never retrieve a photo of the original resolution due
to its small screen size or resolution. If this is the case, it
makes sense for the phone front-end to only store scaled-
down photos on the device. However, if the user edits
a photo on another device, this update has to be propa-
gated to the phone front-end. Now this update propaga-
tion can be done in many ways, and the service needs
to implement an efficient mechanism. We discuss these
implementation considerations next.

3.3 Update Propagation

We note that edited photos can be propagated to another
device in one of two ways—either sending the result of
edits directly or sending only the edit operations and ap-
plying them locally. However, always preferring one way
over another will not yield satisfactory results. This is
because the cost of sending edited photos can be unnec-
essarily high; on the other hand, always locally apply-
ing edit operations, especially a sequence of operations,
might result in too much divergence as explained by Phan
et al [8]]. Thus, the service implementation should con-
sider these factors and decide on what the best way is.

Figure [2] illustrates this further. The sequence starts
with two versions of a photo with different resolutions,
R; and R;,. For the sake of the illustration, it assumes
that a device only access a particular resolution, e.g., the
high resolution, R, on a laptop, the low resolution, Ry,
on a mobile phone. In this case, if a user edits a photo
on a device, it should be propagated over different reso-
lutions. In Figure 2] solid arrows indicate the edits done
by a user over different resolutions.

When propagating an edited photo across different de-
vices, the platform may take the highest resolution copy,
apply the edit, generate multiple resolutions, and dis-
tribute those to appropriate devices. It is likely that this
will produce propagated photos with high quality. How-
ever, this is not the only way; for example, it is also pos-
sible to take a lower resolution copy and apply the edit
operations. For example, if a device has the low reso-
lution of Photo A and needs to generate Photo B, then
the device may apply the edit operations to transform its
copy of Photo A into Photo B. This possibility is indi-
cated by dotted arrows in Figure 2] between Photo A and
Photo B. Thus, the service needs to carefully evaluate
various options and choose the most effective one based
on contexts.

4 Related Work

Given the popularity of photos, a lot of work has been
done in the recent years which deals with efficiently
managing the photos, specially on the cloud. There is
also some previous work on content adaptation in mo-
bile computing. However we are not aware of any work
that provides a unified abstraction for photo management
and content adaptation in mobile apps. In this section,
we discuss the related work in the areas of mobile data
management and content adaptation.

Mobile data management: Simba [6] proposes a
data-sync service for mobile and cloud apps with a uni-
fied interface for objects and tables. While Pixelsior also
suggests a unified interface for accessing photos, our fo-
cus is mainly on simplifying photo management. Similar
to Pixelsior, Earp [12] proposes a application-level data
abstraction for mobile apps, but their focus is on fine-
grained sharing and protection mechanisms.

Content adaptation: There is a line of previous work
on supporting updates on adapted, low fidelity items
and their reconciliation with full versions, in a scenario
with PowerPoint and e-mail messages with media attach-
ments [7]], textual document [[11]], XML-based document
formats [9]], and images [8]]. quFile [10] provides an ab-
straction layer that encapsulates different representation
of the same logical data. The particular representation re-
turned by quFile is determined at the time, depending on
context and policy. Compared to quFile, Pixelsior sup-
ports editing operations on adapted data items and does
not depend on the traditional file abstraction.

S Summary

In this paper, we have motivated the need for a platform
service for photo data management and a high level ab-
straction for photos. As a platform service, our design

provides a unified view of photos to all apps and elimi-
nates the complexity of metadata and photo editing man-
agement. Our abstraction keeps track of the changes of
the photo, i.e., the original photo and how other photos
are produced using image edit operations. This abstrac-
tion can be used to determine the best way to propagate
updates across different devices. Our next steps are to
implement the design of Pixelsior and demonstrate its
utility.

Acknowledgements. This work has been supported

in part by an NSF CAREER award, CNS-1350883. We
thank anonymous reviewers for their helpful comments.

References

[1] MediaStore. http://developer.android.com/reference/
android/provider/MediaStore.html, Accessed: 2016-05-
15.

[2] My little sister taught me how to “snapchat like the teens”. http:
//goo.gl/wipU5Cl Accessed: 2016-03-10.

[3] BAKHSHI, S., SHAMMA, D., KENNEDY, L., AND GILBERT, E.
Why we filter our photos and how it impacts engagement. In 9th
International AAAI Conference on Web and Social Media (2015).

[4] CARATA, L., AKOUSH, S., BALAKRISHNAN, N., BYTHEWAY,
T., SOHAN, R., SELTZER, M., AND HOPPER, A. A primer on
provenance. Commun. ACM 57,5 (May 2014), 52-60.

[5] EvANS, B. The explosion of imaging. http://goo.gl/
0AdkzQ. Accessed: 2015-08-13.

[6] GO, Y., AGRAWAL, N., ARANYA, A., AND UNGUREANU, C.
Reliable, consistent, and efficient data sync for mobile apps. In
Proceedings of the 13th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2015), FAST’15, USENIX
Association, pp. 359-372.

[7] LARA, E. D., KUMAR, R., WALLACH, D. S., AND
ZWAENEPOEL, W. Collaboration and multimedia authoring on
mobile devices. In Proceedings of the 1st International Confer-
ence on Mobile Systems, Applications and Services (New York,
NY, USA, 2003), MobiSys *03, ACM, pp. 287-301.

[8] PHAN, T., ZORPAS, G., AND BAGRODIA, R. Middleware sup-
port for reconciling client updates and data transcoding. In Pro-
ceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services (New York, NY, USA, 2004), Mo-
biSys *04, ACM, pp. 139-152.

[9] PuTtTAsSwWAMY, K. P., MARSHALL, C. C., RAMASUBRAMA-
NIAN, V., STUEDI, P., TERRY, D. B., AND WOBBER, T.
Docx2go: Collaborative editing of fidelity reduced documents on
mobile devices. In Proceedings of the 8th International Confer-

ence on Mobile Systems, Applications, and Services (New York,
NY, USA, 2010), MobiSys *10, ACM, pp. 345-356.

[10] VEERARAGHAVAN, K., FLINN, J., NIGHTINGALE, E. B., AND
NOBLE, B. qufiles: The right file at the right time. Trans. Storage
6, 3 (Sept. 2010), 12:1-12:28.

[11] VEERARAGHAVAN, K., RAMASUBRAMANIAN, V., RODEHEF-
FER, T. L., TERRY, D. B., AND WOBBER, T. Fidelity-aware
replication for mobile devices. In Proceedings of the 7th Interna-
tional Conference on Mobile Systems, Applications, and Services
(New York, NY, USA, 2009), MobiSys *09, ACM, pp. 83-94.

[12] Xu, Y., HUNT, T., KWON, Y., GEORGIEV, M., SHMATIKOV,
V., AND WITCHEL, E. Earp: Principled storage, sharing, and
protection for mobile apps. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16) (Santa
Clara, CA, Mar. 2016), USENIX Association, pp. 627-642.

http://developer.android.com/reference/android/provider/MediaStore.html
http://developer.android.com/reference/android/provider/MediaStore.html
http://goo.gl/wipU5C
http://goo.gl/wipU5C
http://goo.gl/0AdkzQ
http://goo.gl/0AdkzQ

	Introduction
	Motivation
	App Features
	Challenges

	Design Space
	A Developer's Point of View
	Internal Photo Representation
	Update Propagation

	Related Work
	Summary

