
Finding Consistency in an Inconsistent World: Towards Deep

Semantic Understanding of Scale-out Distributed Databases
Neville Carvalho, Hyojun Kim, Maohua Lu, Prasenjit Sarkar,

Rohit Shekhar, Tarun Thakur, Pin Zhou, Remzi H. Arpaci-Dusseau∗

Datos IO, University of Wisconsin–Madison∗

Abstract
We present a new problem in data storage: how to build
efficient backup and restore tools for increasingly popular
Next-generation Eventually Consistent STorage systems
(NECST). We show that the lack of a concise, consistent,

logical view of data at a point-in-time is the key underly-
ing problem; we suggest a deep semantic understanding

of the data stored within the system of interest as a solu-
tion. We discuss research and productization challenges
in this new domain, and present the status of our plat-
form, Datos CODR (Consistent Orchestrated Distributed
Recovery), which can extract consistent and deduplicated
backups from NECST systems such as Cassandra, Mon-
goDB, and many others.

1 Introduction
For much of the history of commercial computing infras-
tructure, data was stored in a simple and centralized man-
ner. An excellent example is found in traditional systems
such as Sun’s Network File System [2, 19], in which hun-
dreds of clients connected to a small number of servers;
while clients may cache copies of files (in memory or lo-
cal disks [12]), a single logical copy of data is persistently
stored in a well-known format on server-side disks.

This centralization not only eased the design and im-
plementation of said file services themselves [12, 19],
but also (importantly) sparked the creation of an en-
tire ecosphere of data management tools and techniques:
snapshots to find data at particular points in recent his-
tory [11], replication via RAID [18] to tolerate disk fail-
ures, backups to protect against more insidious forms
of data loss [13, 24], and long-term archives and cross-
site replicas to enable restoration after serious data disas-
ters [14]. Such tools are critical as they enable enterprises
to store and manage data to meet their availability, relia-
bility, and performance needs. These tools are more easily
implemented in the centralized design, as information can
be accessed in a single place (the server).

However, the central server no longer rules the world of
storage. One critical change is the rise of diversity; instead
of a single storage solution (e.g., an NFS filer), organiza-
tions host data in a vast collection of traditional storage
systems (such as EMC [7] and NetApp [11] block and

Client
0

Client
1

Client
2

Storage
Server

Network

Disk

Vantage Point:
Single place to

observe storage
and implement

services

Figure 1: Traditional Centralized Storage.

file servers), in traditional SQL databases [21], in scalable
distributed file systems such as GFS [8] and HDFS [20],
and in a new class of NoSQL distributed key-value storage
systems such as MongoDB, Cassandra, and Redis [1, 5].
Each system enables different applications and workflows
(e.g., traditional query processing on SQL databases, ad-
vanced analytics on HDFS, and scalable web services on
a NoSQL store), and as a result each are increasingly cen-
tral to the successful operation of modern businesses and
organizations. As an example, consider Apple’s cloud ser-
vices, which includes one of the world’s largest Cassan-
dra clusters as well as serious deployments of MongoDB,
CouchBase, and HBase [3].

Coincident with the surge of diversity is another key
trend, the distributed eventually-consistent nature of stor-
age services; modern systems no longer store data on
disks (or SSDs) within a single machine, but rather spread
data across many machines in replicated fashion; the
replication is implemented in an eventually-consistent
manner [6, 23], meaning that (some) replicas are updated
lazily; only after a long (and sometimes hard to deter-
mine) period of time will all replicas reflect the effects of a
particular update. Eventual consistency makes it easier to
build scalable, available storage; as a result, these systems
have gained widespread (and increasing) utilization.

Unfortunately, the combination of diversity and
eventually-consistent distribution, while solving numer-
ous application needs, has muddied the waters for the
rest of the data administration and management toolchain.
How can a tool create a consistent backup, if it cannot
readily discern what the current state of the storage sys-
tem is? How can an efficient deduplicated backup be re-

1



Client
0

Client
1

Client
2

Storage
Server

Network

Disk

No Single
Vantage Point

Storage
Server

Disk

Storage
Server

Disk

Figure 2: Modern Distributed Storage.

alized, if the replicas are not created in an easily under-
stood format? How can these necessary features be real-
ized underneath a large and diverse set of storage systems?
Simply put, the techniques and approaches developed for
centralized storage no longer function in the diverse and
eventually-consistent storage era we have today.

In this paper, we discuss the new challenges that arise
in this new era of Next-generation Eventually-Consistent

STorage (NECST), particularly as it relates to the entire
set of needs found in NECST storage management. We
first describe why there is a need for data lifecycle man-
agement, and then present detailed examples of the new
problems that arise in the NECST environment. The core
problem, as we outline, is simple: that tools and sys-
tems cannot readily obtain an efficient, consistent, and

logical view of data beneath these complex, diverse, and
distributed NECST systems. Finally, we put forth a vi-
sion that describes how to rectify many of these difficult
issues and realize a new era of distributed storage man-
agement. Specifically, we believe that the key to success
centers upon a deep semantic understanding of the data
being stored within these new storage systems. Only by
monitoring and inspecting I/O traffic and reconstructing
its meaning (i.e., whether a quorum has been reached, or
exactly how a particular data item has been replicated) can
critical NECST management functions be implemented in
an efficient and scalable manner.

At Datos IO, we are have built a first-generation stor-
age management platform for NECST systems: CODR
(Consistent Orchestrated Distributed Recovery). While
we have made significant progress, we also believe there
are interesting research challenges left to be addressed;
our hope is that this paper spurs further innovation in this
critical problem domain.

2 The Need: Travel Back In Time
Before delving into examples, we first answer the simple
question: why are tools and systems for managing the life
cycle of data needed? The main reason is simple: en-
terprise organizations of any size and across any indus-
try vertical have a fundamental need to restore and access
particular versions of data from different points in time.

The reasons to go back in time are manifold. One com-
mon set of problems arise from operational errors (a.k.a.

“fat fingers”) [10, 17], where an operator mistake leads to
corruption or loss of data. Even with excellent protection
in place (e.g., highly redundant RAID [18]), operator mis-
takes can easily lose data; having the ability to recover an
older version after such a mistake is critical.

Another typical scenario is disaster recovery [14],
where an entire site’s data has been lost and must be re-
stored. Being able to quickly create a consistent snapshot
of data, and then copy said snapshot to a safe remote site,
enables quick recovery in the event of a large-scale catas-
trophe (e.g., a fire or flood).

One more interesting use case is found in cloning [22],
in which a (read-only) snapshot of a data set is created.
The snapshot can then be used for offline data analytics,
allowing updates to the main store to proceed unimpeded.

Of course, being able to access older or different ver-
sions of data implies that large amounts of old data must
be kept in some format. Fortunately, new compression
technologies, such as deduplication [16, 24], have be-
come commonplace. Thus, with space-efficient backup
and archival technology, all of the above use cases for data
management can be realized without excessive costs.

3 Background
As described earlier, the world of storage is changing.
No longer content with simple block-based storage sys-
tems [15], industry-standard network file systems [19], or
even traditional SQL databases [21], users have started ex-
ploring a range of storage systems that pave new ground
in how data is stored and accessed. We now describe how
these modern distributed storage systems operate, focus-
ing on two important systems: MongoDB and Cassandra.

MongoDB is a cross-platform document-oriented
database that eschews the traditional table-based re-
lational database structure and instead uses dynamic
schemas and the JSON document format. The design
simplifies application development and deployment as
schema changes are no longer onerous. MongoDB pro-
vides high availability with replica sets where each replica
set consists of two or more eventually consistent copies of
the data. Each replica set member may act in the role of
primary or secondary replica at any time, where the pri-
mary replica performs all writes and reads by default; the
secondary replicas can also perform reads. When a pri-
mary replica fails, the replica set automatically conducts
an election process to determine which secondary should
become the primary. MongoDB builds sharding on top
of replication; the data is split into ranges (based on a
shard key) and distributed across multiple (typically three)
replica sets.

Apache Cassandra is similar to MongoDB in the
adoption of a distributed database model with sharding
and replication, as well as the use of eventual consistency
to propagate writes through the system. However Cassan-

2



System Type Updates Shard Replicate

MongoDB Document In-place Replica set M-S
Cassandra Wide-column Append Single node M-M
CouchDB Document Append Single node M-M

Redis Key-Value Append Single node M-S
DynamoDB Doc/K-V Append Single node M-M

Table 1: Comparison of Different Systems. In the right

column, M means master, S means Slave.

dra is different in MongoDB in terms of its data model and
the mechanism by which sharing and replication is imple-
mented. Cassandra’s data model is a partitioned row store
where rows are organized into tables. The first component
of a table’s primary key is the partition key; within a par-
tition, rows are clustered by the remaining columns of the
key. Unlike MongoDB, every node can service reads and
writes leading to a masterless replication model. Sharding
is based on the partition key of a row.

4 The Problem: Inconsistency
We now discuss some of the specific new problems that
arise in trying to create tools that can monitor, snapshot,
backup, and restore modern distributed storage systems.
All of the problems relate to one fundamental underlying
issue: the difficulty of obtaining a space-efficient, logical,

and consistent view of data within the storage system.

Quorum Updates: Quorum-based replication is an age-
old method of building distributed data stores [9]. One
problem that is common in quorum-based replication
schemes is determining the order of updates across
replicas, which is essential in deciding which values
should comprise a snapshot. For example, many NoSQL
databases allow write requests to return success if a quo-
rum of nodes merely acknowledge the receipt of the write
request. While this optimization improves performance
(i.e., writes can proceed at the speed of memory), it leads
to complications in capturing the state of the system. For
example, if two write requests to the same database object
arrived at two different nodes at roughly the same time,
it is difficult to determine a strict ordering between the
two write requests. The lack of ordering thus makes it
challenging to determine the latest value of the database
object at any given point in time.

Let us examine a specific example of a Cassandra clus-
ter with a certain number of nodes operating with a par-
ticular quorum consistency level. Imagine two nodes (A
and B) that perform a write on the same column of a row
at the same timestamp. Because Cassandra resolves order
using timestamps, the exact order of these two writes is
not known. One could break the non-determinism using a
lexicographic order on the value of the column, but this is
not necessarily deterministic from the perspective of the
application. A backup or archival tool must be able to un-
derstand such a situation and create a backup or archive
that is meaningful despite this type of difficulty.

Resharding and Migration: Sharding (or partitioning)
data items across nodes is essential in building distributed
storage [4]; re-sharding them, to distribute load and avoid
hotspots, is also essential. Unfortunately, capturing a con-
sistent version of a distributed database is greatly com-
plicated when data is constantly migrating between the
nodes of the clustered system. For example, in a Mon-
goDB cluster, documents within a certain key range may
move between different shards as the partitioning dictates
that the accesses to different shards be balanced across the
cluster.

Consider MongoDB, which uses a rebalancing ap-
proach to distribute data of a sharded collection evenly
across a sharded cluster. When a shard has too many
chunks as compared to other shards, MongoDB automat-
ically balances the chunks across shards. The balancing
procedure in MongoDB for sharded clusters is entirely
transparent to the user and application layer. In such a sit-
uation, if a system administrator attempts to create a con-
sistent snapshot of the database cluster, the administrator
may discover that the same database key is present in mul-
tiple shards. Thus, any data management system must be
cognizant of such intricacies and handle it accordingly.

Recovery After Reconfiguration: Even if one were to
capture a consistent version of a clustered system, recov-
ery presents another challenge by itself, due to the chang-
ing nature of clustered systems. For example, system
topology may have changed between the time of backup
and and the time of restore (due to node failure or addi-
tion). The change in topology implies that the partition-
ing strategy in the current cluster will be different from
that when the version was taken. Reconciling the differ-
ences in partitioning strategy is hard if one attempts to
restore the clustered system quickly without incurring the
expense of a subsequent repair.

Here we present a specific example. Suppose we have a
Cassandra cluster with three nodes. The primary keys are
partitioned across the three nodes in the system. Assum-
ing a lexicographic partition, we can assume that database
entries with keys starting with [A–I] go to Node 1, those
with keys starting with [J–S] go to Node 2 and the re-
maining keys starting with [T–Z] go to Node 3. Let us
assume that we are backing up data in this system every
day. After a week, we add a fourth node to the Cassan-
dra cluster, following which the entries in the cluster will
be re-partitioned across all the four nodes. After the re-
partitioning is complete, the database entries with keys in
the ranges [A–G], [H–N], [O–T], [U–Z] reside in Nodes
1, 2, 3 and 4 respectively. Due to an operational error fol-
lowing this re-partitioning but before the cluster is backed
up, all data is lost. At this point, we have to rely on one of
the backups that were taken in the week before the fourth
node was added. When any one of these backups is re-
stored to the cluster, entries with the original range splits

3



[A–I], [J–S], [T–Z] go to Nodes 1, 2 and 3, and no data
goes to Node 4. However, this is inconsistent with the
current partitioning strategy; consequently, a query for a
database entry starting with Z will be redirected to Node
4 which has no data and the query will fail.
Deduplication Difficulty: In traditional systems, data
replication is simple to understand at the physical level;
for example, in a mirrored RAID system, each block and
its replicas are bitwise identical. Thus, when performing
deduplication, similar blocks are readily identified.

Unfortunately, in modern clustered storage systems,
data copies are not always exactly identical, thus creat-
ing a new challenge for data management: how can data
management tools create efficient backups or archives if
they cannot discern one copy of a data item from another?

Let us examine a specific scenario to understand the
problem better. In a multi-master system with multiple
replicas like Cassandra, the data stored in each node is
quite different. For example, in a Cassandra cluster with
5 nodes n1–n5, configured with 3 replicas, the contents
in 5 nodes after inserting 5 rows with key k1–k5 to the
cluster (assuming k1–k5 are evenly distributed to the 5
nodes) might be:

n1: k1 row, k4 row, k5 row

n2: k1 row, k2 row, k5 row

n3: k1 row, k2 row, k3 row

n4, k2 row, k3 row, k4 row

n5: k3 row, k4 row, k5 row

As we can see, none of the replicas are bitwise iden-
tical. One may argue that the traditional variable chunk
deduplication might work in this scenario if the average
chunk size is set to the average row size. However, those
techniques require the average row size to be large and
the variation of row sizes to be small to avoid an explo-
sion of metadata. Even if the above requirements are met,
the contents for the same row (key) in different nodes are
still likely different due to the nature of weak consistency
in a distributed system.

5 Deep Semantic Understanding
As we have seen above, gaining a consistent, logical
view of storage in the NECST environment presents us
with new and interesting challenges: quorum updates, re-
sharding and migration, recovery to different topologies,
and deduplication under non-identical replicas all com-
plicate storage management (and related tools) consider-
ably. Simply put, the architecture of NECST storage en-
gines forces us to rethink how the entire storage ecosys-
tem around NECST will be realized.

We believe the key to progress on this new and impor-
tant problem lies in gaining a deep semantic understand-

ing of the replicated data that comprises modern storage
systems. This understanding consists of numerous facets
of how such systems operate, including:

• Quorum reconciliation. Unlike traditional storage,
where it is relatively easy to tell when an update
has taken place, the simple task of knowing when
an update has been committed to the storage sys-
tem is challenging. NECST systems demand that
tools and systems that are interested in what is stored
within them understand the basics of how quorums
are formed, and exactly how and when a data item
is safely replicated within the system. By having a
comprehensive understanding of the NECST replica-
tion protocol, a backup tool can determine the order
of updates and form a coherent view of storage.

• Redundant-copy detection. Unlike traditional
striped or mirrored systems, in which redundancy is
easily observed, NECST systems may encode data
copies in a non-bitwise-identical fashion. Thus, a
NECST backup or archival system must be able to
meticulously comb through the NECST system to
determine where logically identical copies reside,
so as to be able to coalesce them and thus achieve
storage-efficient backup.

• Configuration-oblivious backup and restore.

Distributed systems have frequent configuration
changes, scaling up to meet new demands or down
when a failure occurs and a system is removed
from operation. NECST tools must be able to
store, and then recreate, data despite the fact that its
configuration has changed.

Deep semantic understanding thus enables a data-
management platform to comprehend exactly what data
is being stored and how it is updated, enabling the
efficient creation of compact backups, snapshots, and
archives. However, deep semantic understanding alone
is not enough.

Specifically, NECST tools must also meet a number of
performance-oriented goals to be effective, adding as little
overhead on the main storage data path as possible. Such
data-path minimality is critical for deployment. Further,
NECST tools must scale. The sine qua non of modern
storage systems are their ability to add nodes to increase
capacity and performance; thus, new storage-management
tools must be able to keep pace.

Alternate Approaches: Initially, we evaluated simple ap-
proaches to quorum reconciliation, redundant-copy detec-
tion, and configuration-oblivious backup/restore. For ex-
ample, we used a distributed key-value store to keep track
of every row in a database snapshot; on scanning all the
rows in the database snapshot, quorum reconciliation and
redundant copy detection were performed using the con-
tents of the key-value store. However, at large scale, the
contents of the store cannot be placed in memory without
great cost. Alternatively, if stored on disk, access would
harm the SLAs that the backup system has promised.

4



Similarly, one could implement a configuration-
oblivious restore by simply using the insert APIs of the
target database cluster. This approach impacts the fore-
ground workload and compromises the speed of restore.

Finally, instead of realizing a single platform under-
neath a range of modern storage systems, each system
could provide its own versioning, backup, and related
tools. We feel this approach is not viable for the following
two reasons. First, it complicates management, requiring
administrator knowledge of many tools (one per storage
system) instead of one. Second, it is a waste of human
effort. Much of the code needed to implement these fea-
tures would be similar across systems, and building said
features within each is thus a waste of time and effort.

6 Datos IO CODR
At Datos IO, we have built a first-generation platform to
meet the storage management needs of the NECST era,
called CODR (Consistent Orchestrated Distributed Re-
covery). CODR currently provides backup and restore
features for a number of distributed storage systems, such
as Cassandra and MongoDB among others. CODR intro-
duces the concept of versioning, where a version is de-
fined to be a cluster consistent snapshot of a scale-out dis-
tributed database.

Backup proceeds in numerous phases. First, CODR
first takes a full snapshot of the database of interest; af-
ter this, CODR tracks changes applied to the database and
generates incremental versions for the changes.

To capture database contents from the nodes of NECST,
CODR can either leverage native local-snapshot support
on each node (as with Cassandra) and stitch together a co-
herent whole from said parts, or obtain the contents by
other means, such as extracting contents from files within
the underlying local file system (as with MongoDB). The
latter requires care; files may change during extraction.
These approaches are highly efficient, greatly reducing
overheads as compared to querying the data store directly.

The complexity of tracking changes between versions
is also different across NECST systems, depending on
whether the database is append-only or update-in-place.
In general, append-only systems present fewer challenges.

Full and incremental snapshots are transferred, in par-
allel, to a backup storage system, which can be a single
node in smaller deployments, or a cluster in larger-scale
settings. At the backup store, CODR must process the
collection of local snapshots to realize a version. CODR
achieves this end by running an integrated quorum and
semantic-deduplication algorithm, resulting in a single,
space-efficient copy of the data.

CODR currently supports configuration-oblivious re-
store via deep indexing of each snapshot. A parallel copy
moves the data to the appropriate nodes and induces a lazy
database refresh to complete the restore.

7 Conclusions
We have described the burgeoning world of NECST stor-
age, in which eventually-consistent storage systems are
an important component in the enterprise datacenter. At
Datos IO, we have built a data-management platform for
these new and increasingly important storage systems. We
believe there are a wide range of interesting and challeng-
ing research problems in this space, and hope that others
may join us in realizing a world in which NECST storage
management is as easy and effective tomorrow as classic
storage management is today.

References
[1] Malik, Lakshman. Cassandra: A Decentralized Structured Storage
System. LADIS ’09.

[2] R. Arpaci-Dusseau, A. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, 2014. www.ostep.org.

[3] Asay. Apple’s Secret NoSQL Sauce Includes a Hefty Dose of Cas-
sandra. Tech Republic, 2015.

[4] Bronson, Amsden, Cabrera, Chakka, Dimov, Ding, Ferris, Giardullo,
Kulkarni, Li, Petrov, Puzar, Song, Venkataramani. TAO: Facebook’s
Distributed Data Store for the Social Graph. USENIX ’13.

[5] Chodorow. MongoDB: The Definitive Guide. O’Reilly, 2013.

[6] DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Siva-
subramanian, Vosshall, Vogels. Dynamo: Amazon’s Highly Available
Key-Value Store. SOSP ’07.

[7] EMC. Symmetrix Enterprise Information Storage Systems.

[8] Ghemawat, Gobioff, Leung. The Google File System. SOSP ’03.

[9] Gifford. Weighted Voting for Replicated Data. SOSP ’79.

[10] Gray. A Census of Tandem System Availability Between 1985 and
1990. Tandem TR 90.1, 1990.

[11] Hitz, Lau, Malcolm. File System Design for an NFS File Server
Appliance. USENIX Winter ’94.

[12] Howard, Kazar, Menees, Nichols, Satyanarayanan, Sidebotham,
West. Scale and Performance in a Distributed File System. TOCS 6(1),
February 1988.

[13] Hutchinson, Manley, Federwisch, Harris, Hitz, Kleiman, O’Malley.
Logical vs. Physical File System Backup. In OSDI ’99.

[14] Keeton, Santos, Beyer, Chase, Wilkes. Designing for disasters.
FAST ’04.

[15] Lee, Thekkath. Petal: Distributed Virtual Disks. ASPLOS’96.

[16] Muthitacharoen, Chen, Mazieres. A Low-Bandwidth Network File
System. A Low-Bandwidth Network File System. SOSP ’01.

[17] Oppenheimer, Ganapathi, Patterson. Why Do Internet Services
Fail? USITS ’03.

[18] Patterson, Gibson, Katz. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). SIGMOD ’88.

[19] Sandberg. The Design and Implementation of the Sun Network File
System. USENIX Summer ’85.

[20] Shvachko, Kuang, Radia, Chansler. Hadoop Distributed File Sys-
tem. In MSST ’10.

[21] Stonebraker, Rowe. The Design of POSTGRES. TKDE ’86.

[22] Subramanian, Sundararaman, Talagala, A. Arpaci-Dusseau, R.
Arpaci-Dusseau. Snapshots in a Flash with ioSnap. EuroSys ’14.

[23] Terry, Theimer, Petersen, Demers, Spreitzer, Hauser. Managing
Update Conflicts in Bayou. SOSP ’95.

[24] Zhu, Li, Patterson. Avoiding the Disk Bottleneck in the Data Do-
main Deduplication File System. FAST ’08.

5


