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Abstract
Storage consolidation due to server virtualization puts

stringent new requirements on Storage Array (SA) per-
formance. Virtualized workloads require new perfor-
mance optimizations that cannot be totally addressed by
merely using expensive hardware such as SSDs. This
position paper presents Virtual Machine Disk Image
(VMDI) introspection—a key technique for implement-
ing a variety of virtualization-oriented I/O optimiza-
tions. VMDI introspection gives SAs an understand-
ing of guest file system semantics, such as determining
object types and classifying read and write operations.
We explore possible approaches for VMDI introspection
and then describe a set of VMDI-introspection-based
optimizations. Our prototype implementation with en-
hanced meta-data caching and placement shows 11% to
20× performance improvement.

1 Introduction
Analysis of today’s IT trends suggests that by 2014 al-
most 70% of all x86 applications will be virtualized [2].
It has been shown that the workloads experienced by
Storage Arrays (SAs) in virtualized setups are signif-
icantly different from those observed in physical se-
tups [6, 16]. Most modern storage solutions are opti-
mized for non-virtual workloads, but many optimiza-
tions such as traditional meta-data caching and read-
ahead are not efficient in virtualized deployments.

Furthermore, widespread deployment of virtualiza-
tion in modern data-centers, combined with the trend to-
wards storage consolidation, demands increased perfor-
mance from SAs. Solutions based on HDDs are limited
by high latency and power consumption, while flash-
based arrays are too expensive for large datasets. Tiered
solutions involving multiple types of storage (e.g., per-
sistent RAM, SSD, and HDD) reduce cost, but it is hard
to consistently place data in the correct tier. Thus, ex-
ploring virtualization-aware optimizations is a reason-
able alternative research direction.

Placing Virtual Machine Disk Images (VMDIs) on lo-
cal, clustered, or distributed file systems is a common
way to store per-Virtual-Machine data. VMDIs provide
a convenient mechanism for VM isolation, data man-
agement, simple and efficient versioning, recovery, and
mobility. Unfortunately, this increased manageability
comes at the expense of performance. For example, SAs
often apply different policies to data and meta-data (e.g.,
cache space and eviction, commit intervals). Such op-
timizations would benefit VMDIs, which have a com-

plex internal structure that fits well into the meta-data-
vs.-data classification. But from the SA’s point of view,
all VMDI blocks are the same—data blocks—so these
optimizations cannot be applied.

We propose that SAs introspect VMDI files to under-
stand their complex internal structure. This understand-
ing can be leveraged to perform optimizations on all in-
coming I/O operations. For example, incoming writes
to a directory or to inode blocks can be interpreted as
file creations or updates. Meta-data-intensive workloads
such as these can then be improved by caching appro-
priate portions of VMDI files in faster storage or having
meta-data cached separately to avoid cache pollution.

Block-level introspection is a known technique [1,5,8,
11–15] but we are the first to apply it for optimizing NAS
performance for virtual workloads. We begin this pa-
per by discussing introspection techniques and the layers
in the virtualized I/O stack where introspection can be
implemented. We then analyze possible introspection-
based optimizations, and finish by presenting a proto-
type implementation that demonstrates several possible
improvements. Our general conclusion is that basic in-
trospection optimizations can be added to an SA with
relatively little effort, while providing performance im-
provements of up to 20× for some operations.

2 Introspection Techniques
We first discuss various approaches to storing VMDIs,
then discuss techniques for introspection and their po-
tential difficulties.

Storage Setups. Figure 1 depicts two typical storage
configurations. In the first, an external Storage Array
(SA) is connected to a hypervisor machine as a SAN
or NAS. In the second (NoSAN) setup, VMDI files are
stored locally to the hypervisor. In this paper we focus
on the SA-based setup, although the NoSAN setup can
also benefit from VMDI introspection. In either case
there is a back-end file system such as VMFS, WAFL,
GPFS, or ZFS that manages all VMDIs. Inside the VM,
the guest OS’s file system executes both meta-data and
data operations, but with few exceptions the back-end
file system views all operations as data accesses.

Introspection can be implemented either within the
back-end file system itself, or at a layer above it (e.g.,
NFS/SMB/iSCSI server). The latter approach is less in-
trusive for complex back-end file systems and can inde-
pendently support different file systems. However, this
method precludes knowledge of back-end file system in-
ternals (e.g., on-disk layouts) and therefore may be re-



stricted in the type of optimizations it can implement.

Guest-assisted approach. One way to perform intro-
spection is to run a guest OS daemon that has access
to the guest’s file system structures and related opera-
tions. The daemon can pass relevant data to the SA on
the network. Guest-assisted introspection allows error-
less meta-data classification and incurs low overhead.
However, in many cloud environments it is impossible
to force all VMs to run special-purpose software, es-
pecially since VMs run different versions of different
OSes, and accounting for the daemon’s CPU cycles and
I/O operations can be difficult. Thus, we do not believe
that this approach is viable in most environments.

Black-box approach. Another way to perform intro-
spection is to have the SA parse the internal structure of
VMDI files without any assistance from the guest OS.

VMDI files come in a variety of formats: Virtual-
Box (.vdi), VMware (.vmdk), and Microsoft (.vhd), to
name a few. Most of these formats have several flavors
and multiple versions. Fortunately, their specifications
are publicly available and there are libraries that can
handle them all via a unified interface [10, 17]. VMDI
files commonly contain several partitions and logical
volumes (e.g., Linux LVM). To be practical, introspec-
tion must be able to parse these structures. There are
currently 29 on-disk file systems supported by the Linux
mainline, and all can potentially reside within a VMDI
volume. Fortunately, only a few are in widespread use,
and many use similar on-disk layouts (e.g., FFS-like).
Thus, storage vendors can make an impact for the ma-
jority of their users by supporting introspection-based
optimizations on only the most widespread file systems.

To implement introspection for simpler file systems
such as ext2/3, we have found it easiest to develop in-
trospection modules from scratch. For more complex
designs, code from programs like fsck, mkfs, and as-
sociated libraries can often be reused.

To automate the process of introspection for any
VMDI file, it is helpful that many modern SAs run Linux
internally, which means that they have built-in support
for almost all the file systems that can be in a VMDI file
(even if the VM runs Windows). One challenge is that
kernel file systems map meta-data and data blocks to de-
vice blocks, while introspection needs the reverse map-
ping to determine which blocks map to which file system
structures. Fortunately, the recently added FIOMAP and
FIBMAP ioctls provide that functionality and can be
extended to extract even more information useful for in-
trospection. More generally, we speculate that in the fu-
ture the VFS layer could be extended to support methods
to ease introspection.

Security and reliability optimizations usually require
absolutely correct answers from the VMDI introspection
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Figure 1: Two common server virtualization configurations:
Storage Arrays (SAs) and NoSAN setups.

engine. However, for many performance optimizations,
it is acceptable if introspection makes occasional mis-
takes. For example, errors in correctly predicting meta-
data decrease the efficiency of meta-data placement and
caching but do not break a system or corrupt the data.
Thus, techniques that probabilistically detect file sys-
tem layouts without prior knowledge of a file system’s
internal organization can be applied. For example, an
analysis of the differences between blocks after every
write might distinguish meta-data from data with accept-
able accuracy. Alternatively, a one-time probe process
could execute a controlled set of operations in the VM,
so that block operations could be correlated with their
file-system equivalents [15]. Mkfs is a natural example
of such a probe, because it typically writes only to meta-
data regions. These two methods cannot provide 100%
accuracy (e.g., mkfs cannot detect indirect blocks), but
for many introspection-based optimizations, such as in-
telligent caching, perfection is not required.

Difficulties. Write operations to a VMDI file may not
be able to be classified until future writes are received.
For example, for reliability reasons many file systems
update data blocks before writing the associated meta-
data. Some file systems (e.g., FFS-like) use fixed meta-
data layouts and only the indirect blocks are allocated
dynamically. But other file systems allocate most of
their meta-data dynamically (e.g., Reiserfs, Btrfs). For
such B-tree-based file systems, writes cannot be classi-
fied until the B-tree root is written. Thus, an introspec-
tion facility should support deferred write classification.

The introspection module needs to maintain a map-
ping between block offsets and file objects. Page-table-

2



like mappings can be used for block-based file systems,
but for extent-based designs, more space-efficient data
structures should be used.

In addition to technical challenges, there may also
be legal and privacy concerns. It is possible that some
users may not appreciate cloud providers scanning their
VMDIs and analyzing incoming requests. Introspection
therefore should be an optional, user-controlled feature.

3 Optimizations
Production data centers typically have many hypervisors
(and many more VMs) accessing a single SA, leading
to an imbalance between the sizes of the VM and SA
caches. Therefore, it is critical for the SA to allocate
cache space intelligently. A key benefit of VMDI in-
trospection, leading to many possible optimizations, is
the ability to distinguish between data and meta-data.
For example, a straightforward approach is to pre-load
a VMDI’s meta-data into the SA cache for fast access.
A slightly more involved method is to prioritize meta-
data in the cache, avoiding interference between data
and meta-data workloads within a single VM or between
multiple VMs by applying intelligent eviction policies.

In hybrid and multitiered storage, efficient data relo-
cation and migration is critical. For example, in non-
virtual workloads, it is possible to place small and hot
files on fast storage while large streams are redirected to
large capacity storage. Technologies such as VMware
vFlash are available for virtualized workloads, but it can
be hard to know what to cache. Using introspection we
can place data blocks on the correct tier by understand-
ing their semantics. For example, in meta-data-intensive
workloads, writes to meta-data and the file system jour-
nal can be redirected to SSD drives.

Guest file systems contain different meta-data types,
such as journals, directory entries, inode tables, etc.
Fine-grained meta-data classification allows sophisti-
cated per-type optimizations. For example, the SA can
maintain efficient file name indexes to speed lookups.
Per-directory meta-data and inodes can be dynamically
prefetched when a directory is accessed. Predicting
cross-file access is also possible [9].

Guest file systems fragment as they age, but even in
an unfragmented file system the SA’s prefetching algo-
rithms may not be optimal without an understanding of
the complex structure of the VMDI. Sequential access
in the guest may appear as random to the SA, and stan-
dard SA read-ahead algorithms may disable themselves
or cache data that may never be accessed. Introspection
can correct this problem by providing information about
the location of virtually consecutive blocks in the VMDI.

Like meta-data, data comes in many flavors. Fine-
grained data classification allows intelligent prefetch-
ing and eviction policies for data blocks. For exam-

ple, during VM boot storms, the corresponding kernel
image, initial RAM disk image, and init scripts can be
prefetched to reduce boot times. These objects can be
identified by file names (e.g., /boot/vmlinuz-* and
/boot/initrd-*). Specific requests can indicate an
upcoming VM start, e.g., VMware writes to a VMDI’s
lock file before starting a VM. After a VM is up, blocks
required only for the boot can be evicted to save memory
and eviction time later. If the SA implements deduplica-
tion and compression, it could decide how to compress
certain data blocks based on their file type.

Introspection can also increase space efficiency. By
recognizing which VMDI blocks are unused (such as
those that have been deallocated by the guest), the SA
could free those blocks in the back-end file system.

Introspection-based optimizations scale well to multi-
ple identical or similar VMs, which often occur in real
deployments. If a VM is a clone, the corresponding
VMDI’s internal structure is repeated and efficient shar-
ing of introspection information is possible.

4 Implementation
Our prototype is implemented as an independent, flex-
ible C library. For this prototype, we linked our li-
brary with the NFS-GANESHA user-space NFS server
(git-commit-041e4e) [4]. We modified only 30 LoC in
NFS-GANESHA’s code to support our library. Our in-
trospection library itself contains about 1,000 LoC. Our
prototype introspects only ext2 and ext3.

The library provides three basic capabilities. (1) It
can scan a VMDI file and create an internal representa-
tion of the file system’s meta-data. This is usually used
prior to the boot of a VM; if an inconsistency is detected
between the VMDI and its in-memory state, the VMDI
can be rescanned. (2) The library provides functions that
allow the meta-data representation of a VMDI to be dy-
namically updated. These functions are invoked on the
write path. (3) The library contains an API for discov-
ering what objects exist in a region of a VMDI and for
finding related file system information. This is used in
both read and write path optimizations.

5 Evaluation
We used our new library to implement two introspection-
based optimizations: (1) meta-data caching (2) redirect-
ing meta-data writes to an SSD.

Experimental setup. We performed our experiments
on two Dell PowerEdge R710 nodes, each with an Intel
Xeon E5530 2.4GHz 4-core CPU and 24GB of RAM.
We installed VMware ESXi 5.1.0 build 799733 on the
hypervisor node. The NAS-based SA ran CentOS 6.3
and Linux kernel 3.7.3. A 250GB Fujitsu MHZ2250B
hard drive and an 80GB Intel SSDSA2MH08 solid-
state drive, both connected through a PERC 6/i Inte-
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grated controller, were used as storage. We formatted
both drives with ext3 and used the SSD only to redirect
writes. We used the NFS-GANESHA NFS server with
the VFS File System Abstraction Layer.

Our experimental VMs were set up with a single CPU,
2GB of RAM, and an emulated LSI Logic Parallel con-
troller. The guest OS was CentOS 6.3. Each VM had
two VMDIs: one with a root file system created dur-
ing guest OS installation (OS VMDI) and another used
to conduct experiments with controlled directory trees
(data VMDI). Both were 16GB VMDK flat files stored
on an NFSv3 datastore hosted by the SA. The machines
were connected using a 1Gb Ethernet.

The OS VMDI contained a 40MB boot and a 1.7GB
root partitions. The data VMDI contained a file system
generated by Filebench using the “file-server” personal-
ity with 90,000 files [3] (about 10GB of data in total).

Limitations. The first limitation of our evaluation is
that we used simple workloads to stress our system, so
evaluation of more complex workloads is useful. Sec-
ond, we flushed the Linux page cache on the SA prior
to every experiment. Consequently, with longer experi-
ments the LRU policy used by the page cache may pro-
vide better results than what we observed in our experi-
ments. Third, all experiments used a single VM. We be-
lieve that introspection can improve performance even
more for multi-VM workloads, but the corresponding
overheads need to be evaluated. We plan to address these
limitations in the future.

Initial scanning. Before a SA can perform introspec-
tion, it must scan the VMDIs to collect mapping infor-
mation. The initial scan of the OS VMDI took 60 sec-
onds; for the data VMDI it took 260 seconds. When the
VMDIs were stored in RAM, the time fell below 1 sec-
ond for both images; clearly, I/O is the bottleneck for the
scanning phase. The scans experienced an unusually low
disk throughput of 4–6MB/s because our scanner per-
forms single-threaded, non-sequential 4KB reads from
the disk. Optimizing the scanning process through par-
allelization and by using better-suited I/O sizes is future
work. Notice also that scanning can run as a background
task and is not required for cloned VMs.

Our introspection library uses 24 bytes per 4KB
block; so the maximum RAM usage is about 0.6% size
of a VMDI file. In the future we plan to use extents in-
stead of a block map to reduce memory consumption. In
our experiments we cached all meta-data, so the map-
ping covered the whole VMDI. More sophisticated so-
lutions can prioritize which regions to introspect based
on access frequency. To reduce memory requirements
when multiple VMs are introspected, mappings can be
partially shared.
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Figure 2: The impact of introspection-based optimizations on
the runtime of several workloads. The Y axis represents the
runtime reduction after enabling the optimizations.

Runtime. We first measured the runtime of several
meta-data intensive workloads on a non-optimized SA.
Then we measured the same workloads on the SA
with both introspection optimizations enabled: in-RAM
VMDI meta-data caching and meta-data write redirec-
tion to SSD. We did not migrate meta-data to SSD in
advance; it was performed automatically as the writes
were coming in. We experimented with the following
workloads: (1) VM reboot; (2) disk usage as reported by
du; (3) stat of every file in the file system; (4) find
of a nonexistent file; (5) rm of all files; (6) multiple file
creations; (7) Filebench Web server. For all experiments
except VM reboot we introspected the data VMDI; for
the reboot we introspected the OS VMDI.

Figure 2 depicts that the relative reduction in runtime
for different workloads ranged from 11% to 95%. The
reboot time of a single VM was reduced by 14%, which
could be even better if several VMs are rebooted con-
currently. Concurrent accesses to a disk drive can cre-
ate seek storms, which greatly increase the service time.
Concurrent accesses to cache, however, do not slow each
other beyond queuing costs.

For du, stat, and find, the improvements were
close (about 50%) because these workloads are similar:
iterate over inodes. The rm workload was improved by
over 20 times because it reads indirect blocks. Ext3 al-
locates indirect blocks dynamically, so they are spread
randomly across the VMDI. By eliminating random ac-
cesses to the disk, meta-data caching significantly in-
creases SA performance. In addition, rm benefits from
both read and write optimizations. The file creation
workload demonstrated an 11% improvement—modest
but appreciable in large-scale deployments. The limited
improvement is because writing to SSD was not signif-
icantly faster than to disk. Finally, the read-intensive
Web-server workload improved by 40%, thanks to meta-
data caching for many small files.

6 Related Work
Introspection was earlier applied by block-level storage
arrays to implement effective exclusive caches [1], iden-
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tify disk block liveness [13], perform graceful RAID
degradation and quick recovery [14]. Semantically-
smart Disk Systems (SDS) proposed fingerprint-based
introspection mechanism for FFS-like file systems [15].

Using introspection for VMDIs instead of physical
disks can be fairly useful. Several earlier studies ex-
plored VMDI introspection for intrusion detection [5, 7,
18], discovering VMs with buggy, infected, unlicensed,
or outdated software [11], and locating the latest work-
ing VM snapshot [12]. Geiger applies introspection at
the VMM level to identify live blocks, estimate working
set size, and build a unified cache [8]. We use VMDI
introspection at the NAS for general performance opti-
mizations: data and meta-data prefetching, data place-
ment, and storage tiering decisions.

7 Conclusions
VMDI introspection is a promising technique that allows
SAs to improve performance by understanding the in-
ternal structure of virtual disk image files. Our proto-
type implementation of several introspection-based op-
timizations demonstrates up to 20× improvement for
some common workloads. With emerging APIs to ac-
cess file system formats, and the ease of implementation
that we have demonstrated, we believe that using intro-
spection to improve I/O performance in virtual environ-
ments shows promise.
Future Work. In addition to addressing the limita-
tions of our current evaluation methodology, we plan to
integrate our introspection module with the back-end file
system of an SA; operating at this layer allows some op-
timizations to be developed more easily and efficiently
than at the NFS level. We also plan to evaluate intro-
spection for non-FFS file systems, specifically ext4 and
NTFS—both popular as guest file systems. Eventually
we plan to investigate complex formats nested inside a
file system, such as docx, archives, and ISO files.
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