Efficiently Storing Virtual Machine Backups

Stephen Smaldone, Grant Wallace, and Windsor Hsu
Backup Recovery Systems Division

EMC Corporation
Abstract M| File1 [M File 2 M File 3 M| Fileda | M
D | Data | D Data D Data D | Data | D

Physical level backups offer increased performance in
terms of throughput and scalability as compared to log-
ical backup models, while still maintaining logical con-
sistency [2]. As the trend toward virtualization grows,
virtual machine backups (a form of physical backup) are
even more important, while becoming easier to perform.
The downside is that physical backup generally requires
more storage, because of file system meta-data and un-
allocated blocks. Deduplication is becoming widely ac-
cepted and many believe that it will favor logical backup,
but this has not been well studied and the relative cost
of physical vs. logical on deduplicating storage is not
known. In this paper, we take a data-driven approach
using user data to quantify the storage costs and con-
tributing factors of physical backups over numerous gen-
erations. Based on our analysis, we show how physical
backups can be as storage efficient as logical backups,
while also giving good backup performance.

1 Introduction

Today, physical backups are becoming even more impor-
tant and easier to perform as virtualization technologies
are more broadly adopted. The main advantage of phys-
ical (block-based backups) is that a file system directory
traversal is not required; one can just copy the virtual
disk files (e.g., via the VMware backup API). This al-
most completely removes the need to perform any ran-
dom seeks, dramatically increasing the speed in which
backups can be completed [2]. However, even with
the emergence of efficient deduplicating storage systems
such as the Data Domain backup appliance [10], there is
a larger storage cost associated with physical backups as
compared to logical backups of the same data. Aside
from the larger amounts of meta-data and unallocated
blocks that must be stored, file system churn can also
introduce additional storage overhead. How these effect
deduplication is not well understood.

In this paper, we analyze user data to quantify the stor-
age costs and contributing factors across generations of
physical backup. The data we utilize is a set of back-
ups collected from user workstations. We use this data to
evaluate the backup storage efficiency through simula-
tion, comparing physical and logical backups. We iden-
tify key factors that can make physical backup storage
efficiency comparable to logical, in the context of virtual
machine (VM) data protection. We show that in a steady
state of multiple backup generations, deduplication and
compression can push the storage efficiency of physical
backup beyond that of logical.

Figure 1: Logical Backup Layout

tadat

Virtual Disk Master File Data |Metadata| Data | Data [Metadata
MBR Table ($MFT) |Blocks | Blocks | Blocks | Blocks | Blocks

Virtual Disk Partition

Figure 2: Physical Backup Layout
2 Background and Methodology

2.1 Physical vs. Logical Backup

There are two general approaches for backing up a vir-
tual machine. The logical backup approach relies on
the existence of client backup software executing within
each VM. This approach copies the individual files stored
within the VM’s file systems and sends them in a logi-
cal backup layout to an external backup storage system.
In this (Figure 1) individual files are concatenated with
each other in a deterministic order, determined by direc-
tory tree traversal. Relevant meta-data (MD in the fig-
ure) is inserted between each file. As time passes, new
files are added, others are deleted, and some are modi-
fied. However, large portions of each subsequent backup
generation remain similar and this locality property has
been leveraged by deduplicating storage systems [10].
The physical backup approach relies on backup soft-
ware at the virtual machine monitor (VMM) level. Under
this model, copies of the VM disks (virtual disks) are sent
to an external backup storage system. Figure 2 shows a
simplified view of a virtual disk formatted with NTFS.
In the figure, the low order blocks are the MBR (par-
tition table and boot sector), and are followed by disk
partitions. Three important components in the NTFS
physical layout are shown: the (i) Master File Table
($MFT) (inodes), (ii) meta-data blocks (meta-data exter-
nal to $MFT), and (iii) data blocks (logical data). Typi-
cally, the size of an $MFT record is 1 KB, and the size of
a file system block is 4 KB. We note that files larger than
the size of a block will not necessarily be stored con-
tiguously on the virtual disk. In fact, it is quite possible
for meta-data and data blocks to be interleaved and small
files may be stored within their respective $MFT records.

2.2 Experimental Methodology

Backup Dataset. For our experiments we use back-
ups taken from five software engineering workstations.
This logical dataset consists of approximately 2.25 TB
of backup data stored in 1800 large logical backup files.
Depending on the user, the time span covered is roughly

W Physical OLogical

B Phy-fix BPhy-var OLog-fix OLog-var

B Phy-fix BPhy-var @Log-fix OLog-var

1.2

Relative Size Ratio
Relative Size Ratio
(Post Deduplication)

0.8
0.6

0.4+
0.2
0+ T T

Relative Size Ratio
(Post Compression)

user1 user2 user3 user4 user5 average

Backup Layout Type

(a) Base

Chunk Size (KB)

(b) Post Deduplication

8 16 4 8 16
Chunk Size (KB)

(c) Post Deduplication and Compression

Figure 3: Relative Size Ratios - First Generation

B Physical OLogical
3 0.1

B Phy-fix BPhy-var OLog-fix OLog-var
0.19 0.

B Phy-fix BPhy-var OLog-fix OLog-var
0.30

25 0.08

0.1
0.08 . —

0.06

1.5+

0.5+

Relative Size Ratio
Relative Size Ratio
(Post Deduplication)

& e

0.06 —
0.04

il __CEN SR OH

Relative Size Ratio
(Post Compression)

user1 user2 user3 user4 user5 average 4

Backup Layout Type

(a) Base

Chunk Size (KB)

(b) Post Deduplication

8 16 4 8 16
Chunk Size (KB)

(c) Post Deduplication and Compression

Figure 4: Relative Size Ratios - Late Generation

25 to 40 weeks of full backups. This dataset was in
turn converted into over 90 TB of virtual disk images for
the various experimental cases we studied, representing
a non-trival amount of data to be processed. Finally, the
logical data (among others) was previously studied w.r.t.
deduplication [1, 4, 7] but none of these studies consid-
ered physical vs. logical backup.
Virtual Disk Generation. Starting from the original
logical backup files, we created a set of virtual disks
(specifically VMware VMDKSs) in the following way. To
create the zeroth generation physical backup (denoted as
geng), we create a blank virtual disk, which is loopback
mounted to our host computer, then create a single NTFS
file system partition, and extract (restore) the first full
logical backup into the file system. Since virtual disk
sizing can affect the results of deduplication across gen-
erations, we address this by normalizing the results pre-
sented in this paper (discussed further in Section 3.2).
To create the n/" physical backup (denoted as gen,)
from the respective full logical backup, we clone the
gen,_ virtual disk as its basis. Then, we extract the
n'" full backup into a temporary storage area, and apply
the updates to gen, using rsync' to preserve meta-data
attributes and perform in-place data file updates. This
maintains the file system block allocations between gen-
erations for file overwrites, appends, creations, and dele-
tions. However it does not capture all of the churn since
we only have backups at 1 week intervals.
Deduplication Simulation. We utilize an in-house
deduplication simulator to read in a set of backup files
(logical or physical), divide them into chunks (either
fixed or variable-sized), calculate the fingerprints of each
chunk, and store the fingerprints in an in-memory index.
In addition to deduplication, the simulator can also per-
form GZ compression (which is Lempel-Ziv with Huff-

Irsync —times —hard-links —executability —acls —xattrs —perms —
links —stats —inplace —delete -r source dest

man coding) on each unique chunk it finds, as well as
delta encoding. As output it reports the backup size re-
sulting from any combination of the three forms of com-
pression. Although our simulator supports other com-
pression types, we only report GZ due to space and time
constraints. Differences in compression algorithms typi-
cally amount to a trade-off between resulting compressed
size and time to compress. Since we are not examining
performance in this study, we chose the algorithm that
resulted in the best data reduction ratio.

3 Evaluation

This section presents the results of our data-driven sim-
ulation. For each experiment, we report the ratio of the
physical size that would be stored on disk vs. the log-
ical data size. For all results, shorter bars indicate bet-
ter compression. The goal of our evaluation is to an-
swer the following questions w.r.t. physical backup stor-
age efficiency: (i) How efficient is it compared to logical
backup? (ii) How much is it affected by file system meta-
data? (iii) How does file system churn affect it over time?
(iv) What optimizations can be employed to improve it?

3.1 Efficiency of Physical Backup

To examine the efficiency of physical backup over time,
we start with two cases: early and late generation. For
early, we consider the results of storing the first backup
generation, while for late we consider at least 25 (up to
40 for some users) in order to approximate the steady-
state in a backup system which has a multi-week rolling
backup window. We compare the results of simulation
for the logical backup layout vs. physical. To explore a
reasonable range of possibilities, we vary two deduplica-
tion parameters: (i) chunk size (4, 8, and 16 KB) and (ii)
chunk type (fixed and variable-sized). When referring to
the size of variable chunks, we mean the average.
Figures 3 (a), (b), and (c) report the early generation
results, while Figures 4 (a), (b), and (c) report the late

ESMFT EBlocks OLogical

0.25
0.2
0.15 7
0.1 —
o M
o [

var fix

Deduplication Ratio

Chunk Type
(a) Post Deduplication

ESMFT EBlocks OLogical

0.5
kel
T 04 L
x
S - 0.3 —
‘& N
20 02 —
8=
CoEE me
5]
o 0 .
var fix
Chunk Type

(b) Post Deduplication and Compression

Figure 5: The Compressibility of Physical vs. Logical - Late Generation

generation results. The height of each bar reports the av-
erage size normalized to the logical backup size, and all
standard deviations are less than 2%. Figures 3a and 4a
present the relative backup data size, for each user. By
looking at the right-most pair of bars, we observe that the
average physical backup size across the five users is be-
tween 2 and 2.5 times that of the logical backup average.
Some of this overhead is due to the fact that the virtual
disks are not 100% utilized. We expect this to be the
common case, since running nearly full disks has many
downsides, including performance degradation.

Figures 3b and 4b report the effects of deduplication
for both early and late generations. The bars are grouped
by chunk size, and present the results from fixed and
variable-sized chunking for both physical and logical
backups. Early generations do not deduplicate well, and
physical backups do worse than logical. This is largely
due to the limited opportunity for deduplication in a sin-
gle backup generation. This also shows the additional file
system meta-data overhead in physical vs. logical. Late
generations physical backup always does better than log-
ical (Figure 4b). Logical deduplicates almost as well for
variable-sized chunking, but does poorly for fixed-sized
(exceeds chart scale). Physical does best when the block
alignment matches the chunking (i.e., fixed 4 KB). The
transition point when physical backup does better than
logical occurs after 5 generations, on average.

From Figures 3c and 4c, we observe that including GZ
compression halves the utilized storage, as expected. In-
terestingly, the best results are now given by physical
backup variable-chunking across the three chunk sizes.
This finding is somewhat counter-intuitive and we ex-
plore the reasons for this in the next section.

Although matching the file system block size can seem
important for deduplication, using larger variable-sized
blocks does as well by getting better GZ compression.
Most importantly, physical backup does as well or bet-
ter than logical backup, giving the combined benefits of
faster backup and good storage savings.

3.2 Effects of File System Meta-Data

To understand how physical backup can be more storage
efficient than logical, given enough generations, we di-
vide an NTFS file system into two separate regions (i)

$MFT and (ii) external block regions, and pass them into
our simulator using 4 KB chunking. By doing so, we
can examine the relative compressibility of each region
in isolation of the other.

Figures 5 (a) and (b) report the results of the simu-
lations, and they present the average deduplication and
GZ compression ratios as % All standard devia-
tions are less than 1%. In each figure, we group by chunk
type and include bars for the $MFT, external blocks, and
logical backup. For the physical cases, input_size can
be made arbitrarily large by simply creating overly large
VMDK:s. To avoid these effects, we normalize by using
the size of the logical backups for all cases.

From the figures, we observe first that the SMFT does
not deduplicate as well as either blocks or logical, but is
more compressible. The SMFT will experience more fre-
quent small changes (e.g., timestamps) making dedupli-
cation less effective, but has a lot of repetition of headers
and other data structures, making it highly compressible.

We also observe that the external blocks region dedu-
plicates better than the logical backup, while achiev-
ing slightly better compression as well. In the logical
backup, meta-data is interleaved with data. This has
two effects. First, since meta-data is more frequently
updated, it reduces the deduplication. Second, without
grouping the meta-data together in a contiguous region,
it doesn’t get the full benefit of GZ compression.

3.3 Effects of File System Churn

A distinguishing characteristic of physical backup is that
it experiences file system churn. That is, as a file system
ages it accumulates dirty blocks (blocks that once held
live data, but have now been de-allocated). These dirty
blocks are never present in a logical backup. Also, over
time as a file system fills up, external fragmentation will
occur, causing the data to become non-contiguous. In
logical backups, all files are presented contiguously.

We estimate the amount of churn between generations
in our data set by measuring the number of unique blocks
added. This is an indicator of the level of unique chunks
that must be stored after deduplication, and the results
are shown in Figure 6a. The height of each bar in the
chart reports the average churn rate, which is the ratio of
unique changed blocks over the total number of blocks

H Average Churn @O Max Churn

14%
12%
10%
8%
6%
4%
2%

]
o _m_,__l_\J ‘

T
userl user2 user3 userd user5 average

Churn Rate
(% blocks changed by gen)

(a) Estimate of churn in data set

HLive-Block mPhysical @Zero-Dirty TLogical

0.1
oT
T<o 0.08
14
o ® 0.06
N g
7]
P E 004
20
el Dm0
o O
e oA

var fix
Chunk Type

(b) Potential optimizations to counter churn

Figure 6: Churn Effects - Late Generation

in a virtual disk. The first five groups of bars are the in-
dividual results for each of the five user data sets used in
the study and the sixth pair reports the average. For each
pair of bars, the left-most bar is the average churn be-
tween all subsequent pairs of backup generations, while
the right-most bar is the maximum. From the figure, we
observe that on average the rate of churn is low related
to the size of the virtual disks, but the maximum across
generations can be large.

To examine the effects of file system churn, we per-
form two modifications to the virtual disks. First, we
identify and zero out all dirty blocks. Second, we coa-
lesce all live file system blocks from the external block
region, maintaining their original order. We also copy
the $MFT and concatenate it to the live blocks. This
excludes all non-essential portions of a file system (i.e.
unallocated blocks, dirty or not). We perform these op-
erations by comparing meta-data from two subsequent
physical backup generations. We perform this compari-
son utilizing the block allocation bitmaps from physical
backups to identify dirty and live blocks.

Figure 6b presents the combined results after simu-
lation for both dirty block zeroing (bars labeled Zero-
Dirty) and external live block coalescing (bars labeled
Live-Block), along with the results for the base physical
and logical backup. Again, we use 4 KB chunking for all
the results and the height of each bar reports the relative
size ratio after GZ compression.

From the figure, we observe that Zero-Dirty exhibits
slightly worse storage efficiency than the base physical
backup case. We speculate that this is because the aver-
age churn rates are low and most dirty blocks, once cre-
ated, will remain unchanged through many backup gen-
erations. By modifying them, we introduce a higher rate
of change (i.e. more non-duplicate blocks) than would
otherwise exist, reducing storage efficiency.

Alternatively, we observe that Live-Block is more ef-
fective than the base physical and logical backup cases.
We believe that this is because it fully segregates data and
meta-data, which may be updated at different frequen-
cies. This eliminates scenarios where small meta-data
updates (such as resulting from file reads) can actually
affect the chunking of data sections. Also, live block coa-
lescing removes dirty blocks by excluding them (and not

introducing zero-filled blocks), further reducing churn.
3.4 Potential Optimizations

We now explore two possible optimization techniques to
improve physical backup storage efficiency. Within the
$MFT, the record size is fixed when the file system is first
formatted (default 1 KB). In a typical file system, every
block within the $MFT contains four records (with de-
fault 4 KB block). A small number of frequently updated
records affect a larger number of records due to colloca-
tion within the same block. We want to evaluate different
chunking sizes. Additionally, applying similarity-based
compression (i.e. delta encoding) may be able to take
advantage of similarity across records. The key to this is
the fact that SMFT records and attributes are very sim-
ilar in terms of field types and locations (e.g., standard
headers, limited number of record types, pervasive use
of timestamps, etc.) such that there is likely to be a lot of
redundancy, even when they are not identical.

Figure 7a shows the $MFT post compression ratio
grouped by chunk size with bars representing variable
and fixed-chunking with and without delta encoding.
From the figure, we observe that delta encoding im-
proves efficiency when applied to the $MFT, and that
it is better to use the larger chunk size (4 KB) even
though smaller chunk sizes are generally associated with
increased deduplication. In this case, the gain in GZ
compression from larger chunks outweighs the loss in
deduplication. Although delta encoding can have a pos-
itive impact on the storage efficiency of the $MFT, the
$MFT is only a portion of the file system. As Figure 7b
suggests, the gains from delta encoding only apply to the
$MFT and may not translate to overall improvements in
storage efficiency when the $MFT is a relatively small.

4 Related Work

The areas of backup storage, deduplication, and virtual-
ization have been covered within the literature, for exam-
plein [5, 6, 9]. There are also studies that examine vari-
ous combinations of these areas. Several papers have ex-
plored deduplication for backup storage systems [10, 4].
Jin et al. [3] investigates deduplication of virtual images
within primary workload environments, while Hutchin-
son et al. [2] looks at backups of physical disks. How-
ever, the convergence of all three areas, that is backing

Hvar Bvar-delta Efix Ofix-delta

=
o
]

o
o
=

Relative Size Ratio
(Post Compression)

Chunk Size (KB)
(a) SMFT only

Hvar Bvar-delta @fix Ofix-delta

=
o
N

=
[S)
=

Relative Size Ratio
(Post Compression)

Chunk Size (KB)
(b) $MFT and live blocks

Figure 7: Potential Optimizations - Small Chunks and Delta Encoding

up virtual disk images to deduplicated storage has, to the
best of our knowledge, not been studied. Finally, Tarasov
et al. [8] utilizes virtual disk introspection to offer possi-
ble I/O performance enhancements.

Jin et al. [3] looked at deduplication across static vir-
tual disk images which had different operating system
or package libraries installed. They did not look at vir-
tual disks with user data and how usage and churn can
affect deduplication over time within physical backups.
Our study looks at deduplication efficiency as physical
backups change across up to forty weeks. Their study
also concentrated on the unnormalized deduplication ra-
tio which can be skewed by file system affects such as
zero blocks. Instead we use as a baseline comparison
the size of logical backups thus eliminating any virtual
disk or file system affects which might artificially inflate
deduplication such as unallocated blocks.

5 Conclusion

Optimizing the storage usage of physical (VM) back-
ups is becoming increasingly important as more work-
loads are deployed in VMs. Physical backups are larger
than logical backups but are faster to create because they
avoid file system traversal. Our study on user worksta-
tion data has shown that by using deduplication and com-
pression, physical backups can be compressed smaller
than their logical counter-part. This is largely because
meta-data is grouped in physical backups (i.e. $MFT
area) and achieves greater GZ compression. Addition-
ally, deduplication can be degraded in logical backups
because the meta-data, which has more frequent updates,
is interleaved with the data. Further analysis of $MFT
showed that chunking it at smaller granularity and us-
ing delta compression had less impact than compressing
using larger chunks. As future work, we intend to ex-
tend delta encoding to the entire physical backup, per-
haps varying the parameters based on the region being
encoded. We also intend to explore the differences in
cost (i.e. CPU and memory) between physical vs. logical
backups. Finally, we intend to explore the use of other
file systems (e.g., ext3/4, btrfs, zfs, etc.) to understand if
our current findings are more generally applicable.

6 Acknowledgements

The authors thank Ujwala Tulshigiri for her work on an
early version of the virtual disk generation tool. We also
thank Stephen Manley, Fred Douglis, Philip Shilane, and
Hyong Shim, for helpful comments on earlier drafts, and
the anonymous referees and our shepherd, Binny Gill,
for their valuable comments and suggestions.

References

[1] DONG, W., DOUGLIS, F., L1, K., PATTERSON, H., REDDY, S.,
AND SHILANE, P. Tradeoffs in scalable data routing for dedupli-
cation clusters. In Proceedings of the 9th USENIX Conference on
File and Storage Technologies (2011), FAST 11.

[2] HUTCHINSON, N. C., MANLEY, S., FEDERWISCH, M., HAR-
RIS, G., HITZ, D., KLEIMAN, S., AND O’MALLEY, S. Logical
vs. physical file system backup. In Proceedings of the 3rd Sympo-
sium on Operating Systems Design and Implementation (1999),
OSDI *99.

[3] JIN, K., AND MILLER, E. L. The effectiveness of deduplication
on virtual machine disk images. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference (2009), SYSTOR
’09.

[4] PARK, N., AND LILJA, D. J. Characterizing datasets for data
deduplication in backup applications. In Proceedings of the
IEEE International Symposium on Workload Characterization
(IISWC’10) (2010), ISWC " 10.

[S] QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival data storage. In Proceedings of the 1st USENIX Confer-
ence on File and Storage Technologies (2002), FAST’02.

[6] ROSENBLUM, M., AND GARFINKEL, T. Virtual machine moni-
tors: Current technology and future trends. Computer 38, 5 (May
2005).

[7] SHILANE, P., HUANG, M., WALLACE, G., AND HSU, W. WAN
optimized replication of backup datasets using stream-informed
delta compression. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (2012), FAST’12.

[8] TARASOV, V., JAIN, D., HILDEBRAND, D., TEWARI, R.,
KUENNING, G., AND ZADOK, E. Improving I/O Performance
using Virtual Disk Introspection. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Storage and File Systems
(2013), HotStorage’13.

[9] WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE, P., SMAL-
DONE, S., CHAMNESS, M., AND HSU, W. Characteristics of
backup workloads in production systems. In Proceedings of
the 10th USENIX conference on File and Storage Technologies
(2012), FAST’12.

[10] ZHu, B., L1, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(2008), FAST’08.

