Fault Isolation and Quick Recovery in Isolation File Systems

Lanyue Lu, Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Bass
Computer Sciences Department, University of Wisconsinjddad

Abstract Finally, they areresilient faulty units can be identified

File systems do not properly isolate faults that occ@d repaired quickly. . .

within them. As a result, a single fault may affect multiple N this paper, we begin by analyzing the failure causes
clients adversely, making the entire file system unava@nd global failure policies of existing file systems. Moti-
able. We introduce a new file system abstraction, calléat€d by this data, we propose a new file system abstrac-
file pod to allow applications to manage failure and recoflon known as dile podwhich allows applications to man-
ery polices explicitly for a group of files. Based on thi§9e failure policies and recovery polices for their data. We
abstraction, we propose the isolation file system, whi€hen briefly sketch an implementation of isolation file sys-
provides fine-grained fault isolation and quick recovery.lem based on the existing Ext3 file system.

1 Introduction 2 Failure Policies in File Systems

High availability is critical for file systems. For desktopgmcore describing the isolation approach, we first analyze

. ; existing file systems and their reaction to various faults.
and laptops, local file systems directly affect data acc 9 y

for the user; for mobile devices [2, 9], user data is also 's section presents our initial results.

stored in a local file system; for file and storage servers,1 Global Fault-Handling Policies

a shared cluster file system may be used to store virtggha) fault-handling policies are used to react to serious

maghme disks from multiple cllgnts [13, 3]. -errors within a file system. Such serious errors include
File systems must handle a wide range of faults [15], ifjetadata corruption, 1/0 failures, and incorrect system

cluding resource allocation failures, metadata corruptiosiates caused by software bugs. We focus on three ma-

failed 1/O operations, and incorrect system state. Thegefjle systems in this section: Ext3 (Linux 2.6.32), Ext4

faults are caused by both hardware defects [4] and SQTI‘rnux 2.6.32) and Btrfs (Linux 3.8).

ware bugs [8]. From our analysis of the code, we have found that there
Unfortunately, the effect of a single fault can have e two types of global reactions in modern file systems:

large-scale impact on the operation of the entire file Sy&mount read-onlyand crash For example, when Ext3

tem. Suchglobal failures are prevalent in file systemsgetects a block bitmap is corrupted, it may remount the

For example, when Ext3 detects a corruption in the dafgole file system as read-only to prevent further corrup-

block bitmap of a block group, it will re-mount the wholgjon. |n contrast, the Ext3 journaling layer, JBD, may trig-

file system as read-only or calkni c() to crash the op- ger aBUG.ON statement to crash when it finds the journal
erating system. There are also numerous assertions (§an unexpected state.

Assert, BUGQN) in file system code, which will crash \ve analyze the file system code to identify the error
the file system when only a small piece of system stateyigndling functions that cause these reactions; for exam-
not as expected. ple, Btrfs callsbt r f s_handl e_error () to force the
Global failures severely harm the availability of file sysile system read-only. Then, we count how many times
tems in various scenarios. For example, in server virtuglese basic error functions are called in different places.
ization environments, multiple virtual machines share thhgte that we also count wrapper functions which directly
same underlying host file system; a fault that arises withig| these basic error handling functions.
a single VM image file may lead to a crash or read-only Figure 1 shows the total number and breakdown of
remount, and thus affect all running VMs. Isolation, a keylobal failure types in Ext3, Ext4, and Btrfs. We find that
property of virtualized systems, is not preserved. global failure reactions are common in both young and
To prevent global failures, we propose isolation file sygature file systems. Over two thirds of these global be-

tems, which provide fine-grained fault isolation and quidkaviors will directly crash the whole file system, greatly
recovery. Isolation file systems have the following majeeducing availability.

characteristics. First, they atieoroughly partitionedfile

system resources are broken down into many independ2r® ~ Global Failure Causes

units. Second, they aiadependentany individual fault To understand if these global failures are warranted, we
within defective units will not affect other healthy unitsidentify the root cause of each global failure statement in

Data Structure | MC IOF SB Shared
10001 [Readonly Crash b-bitmap| 2 2 Yes
829 i-bitmap | 1 1 Yes
8 800 inode| 1 2 2 Yes
2 super| 1 Yes
2 500 direntry| 4 4 3 Yes
= gdt| 3 2 Yes
kS 409 indir-blk | 1 1 No
© 400+ xattr| 5 2 1 No
£ block 5 Yes/No
2 200- 193 journal 3 27 Yes
journalhead 31 Yes
L N O but head 16 Yes
Ext3 Ext4 Brfs handle 2 9 Yes
transaction 28 Yes
revoke 2 Yes
Figure 1:Failure Types. This figure shows the failure types other| 1 11 Yes/No
for each file system. The total number of global failure instances Total | 19 37 137 =193

is on top of each bar.

each file system. We have found that there are three majgple 1:Global Failure Causes of Ext3.This table shows
root causes for each failure case: metadata corruption, ® failure causes for Ext3, in terms of data structures, failure
failure, and software bugs. causes and their related numbeidC: Metadata Corruption,

Table 1 shows our analysis for the Ext3 file systed?F: /O Failures; SB: Software Bugs;Share whether this
Specifically, the table shows the interplay between eatffcture is shared by multiple files or directories.

major data structure of the file SyStem (e.g., bitmaps, in'A namespace holds a |ogica| group of files or direc-
odes, superblock, directory entries) and the root cause@iies. To protect files in a shared environment, differ-
a global failure involving that data structure. ent applications are isolated within separated namespaces

Ext3 explicitly validates the integrity of metadata imypical examples includehr oot , BSDj ai |, Solaris
many places, especially at the I/O boundary when reg&bnes, and virtual machines.
ing from disk. For example, Ext3 validates a directory en- However, these abstractions do not provide any fault
try before traversing that directory and Ext3 checks thigblation within a file system. Files and directories
the inode bitmap is in a correct state before allocatingo@ly represent and isolate data logically for applications
new inode. Unfortunately, as indicated by the Metadagithin a file system, different files and directories share
Corruption column, if Ext3 detects a corruption in any ghetadata and system state; when faults are related to these
these structures, it causes a global failure. The I/O Failghared metadata, global failure policies are triggered.
column similarly shows that Ext3 causes global failures one might think using multiple physical partitions to
when an individual I/0O request fails. Fina”y, the SOftwargeparate file Systems would provide equiva|ent fault toler-
Bugs column shows that there are a significant numbergfce and protection to a file pod. For example, corrupted
internal assertions (such BEG.ON), which are utilized to data are isolated to a single partition. However, a single
validate file system state at runtime, and these also CagaRi c() on one file system may crash the whole oper-
a global failure when invoked. We observe that all of th@ing system, affecting all partitions. Furthermore, istat
global failures in Ext3 are due to problems with metadafmysical partitions are not elastic; thus the storage space
and other file system internal state, and not user data. is not efficiently utilized.

For each data structure, we also check whether it isTherefore, file system abstractions lack a fine-grained
shared across different files. As shown in the last cahult isolation mechanism. Current file systems implicitly
umn of Table 1, most metadata structures are organizeqige a single fault domain; a fault in one file may cause a
a shared manner and thus can cause global failures. Hgwbal reaction, thus affecting all clients of the file syste
ever, even for local structures, such as indirect blocks, a

global failure can still occur. 3 New Abstraction: File Pod
.) To address the problem of inadequate fault isolation in file
2.3 Discussion systems, we propose a new abstraction, callékaod

A file is the basic file system abstraction used to store tfa fine-grained fault isolation in file systems.

user’s data in a logically isolated unit. Users can readA file pod is an abstract file system partition that con-
from and write to a file. Another basic abstraction is f&ins a group of files and their related metadata. Each file
directory, which maps a file name to the file itself. Filegod is isolated as an independent fault domain within the
and directories are usually organized as a directory tredile system, with its own failure policy. Any failure related

to a file pod only affects itself, not the whole file system. Running untrusted applications. Each untrusted ap-
For example, if metadata corruption is detected withingdication runs within a separate file pod with its files. The
file pod and the failure policy is to remount as read-onlfailure policy of this file pod can be set as killing all the
then an isolation file system marks only that pod as readfated processes and removing the file pod namespace.
only, without affecting other consistent file pods. Intermediate data. Big data applications may gener-
File pods allow applications to control the failure policate a large amount of intermediate data. A useful fail-
of their own files and related metadata, instead of lettinge policy is marking the file pod as erroneous to prevent
the file system manage the failures globally. Furthermoresw processes from accessing it, but to allow running pro-
this new abstraction supports flexible bindings betweesasses to finish. After that, we can riiack or applica-
namespaces and fault domains; thus it can be used itioas can check their data integrity directly.
wide range of environments, such as server virtualizatig .
(a primary target of ours), security isolation, and per:i;on41 Fault Isolation
computer scenarios. This section describes how an isolation file system could
)) provide fine-grained fault isolation for file systems. The
3.1 Operations on File Pods goal of fault isolation is to allow each file pod to handle
The file pod abstraction supports following operations. jts own failures. Our solution consists of two components:

Create a file pod An application can create a file podnetadata isolation and local failure polices.
when needed. A file pod has a unique ID and attributes.

A default global file pod is assigned when creating a neéfvl Metadata Isolation
file system usingrkf s. Modern file systems manage metadata in a shared man-
File pod’s attributes: Each file pod has attributes inner. For example, an inode block may contain multiple
addition to its ID. An application can get and set a fil@odes. A single failure that occurs with an inode block
pod’s attributes. Attributes can include: failure poliiemay impact multiple files. We argue that shared metadata
(e.g., read-only, pure crash, on-going accesses are alloweganization is harmful for fine-grained fault isolation.
but new accesses are rejected), file characteristics hint®ur idea is to isolate metadata for each file pod. As we
(e.g., large virtual disk files, small configuration files)da described before, a file pod contains all its files and related
recovery policies (e.g., onlinesck, offline f sck). metadata. Because we organize each file pod’'s metadata
Set a file’s pod An application can assign a file podndependently without any sharing, then any metadata re-
for a file or a directory. If the file or directory has a fildated failure can be narrowed down to a specific file pod.
pod previously, then its file pod will be changed to thi . .
new file pod. For a directory, the file pod is inherited k;i'z Localize Failures

default for all files and directories created later undes tHi*S We showed earlier, current file systems handle serious
directory. failures by remounting as read-only or crashing the whole

Remove a file's pod An application can remove a fileSystem. These global actions need to be changed to local-

pod for a file or a directory. If the file or directory only hadz¢ failures within erroneous file pods. Our goal is not to
one file pod previously, then its file pod will be changegfange the failure polices in file systems, but adapt them
to the global file pod. to local file pods.

Share a file between podsAn application can share a_ HOW can we handle a read-only remount locally? If a
file or a directory between several different file pods. file p_Od’S failure pOII(':y iS remounting as .read-only, then
special API is provided for applications to add a file t SIMPly mark the file pod as read-only instead of mark-
other file pods in addition to the file's own file pod. 1i"9 the whole file system as read-only. We need to prevent
faults are related to a shared file or directory, then diffdi"ther updates for both file system structures and the on-
ent failure policies will be triggered for different file psd diSk journal for a faulty pod. In this manner, only files
containing the faulty file or directory. Thus, application@"th'n this file pod will be affected, while other consistent

should be aware of all pods for their files and corresponidl€S are still available for normal accesses.

ing failure policies. .How can we handle a pure crash locally? If a file pod’s
_ failure policy is to crash, then we need to provide the same
3.2 Typical Usage Cases states and behaviors for a file pod as for whole file system

We envision a number of typical usage scenarios for podsstarts. When such a pure crash is triggered, an isolation
Server virtualization environment. Each virtual ma- file system immediately stops any file access for this file
chine has its own file pod with its virtual disk files angbod. It may also need to return error codes to all the pro-
configuration files. The failure policy can be set specitesses which have opened files of this file pod. Further-
ically per pod, and thus true isolation is enforced acros®re, an isolation file system needs to clean the file pod’s
VM domains. Once failures happehsck can be run related system states and free resources (such as buffers in
immediately to recovery corrupted files. the page cache and metadata in the journal). Note that an

isolation file system does not preserve or unwind file sy§- Implementation

tem states for transparent recovery, but instead proviqgg sketch out our initial ideas for a standard journaling
the same semantics of system crashes for afile pod locajlg system, Ext3. Major changes are described in the fol-
To warrant a continuous execution while a pure crash|j§,\,mg categories.

triggered, we need to isolate or even re-design a file pqd’s,:”e system layout. Each block group only belongs to
in-memory and on-disk states very carefully, preventingsingle file pod, while a file pod may have multiple block
@ncorrect system sFates t_o propagate to other pods. WegV@ups. With this new layout, any metadata corruption
in progress of solving this problem. can be narrowed down to a single file pod. Block groups

An isolation file system may also support other usefif gxt style file systems provide a good model for data
failure policies. For example, we may allow process@scality. Our file pod is built on top of block groups to
with opened files of a target file pod to finish their datgyaintain the performance benefits and provide extra fault
accesses even when failures are detected. Until then,j¥8ation. For other file systems, such as log-structured
mark the file pod as read-only or pure crash the file pogle system, we will need a new way to map a file pod to
Otherwise, immediately remounting a faulty file pod a$nderlying disk structures.
read-only or crashing it may cause data loss for applicapata structures. The file pod structure for a block
tions. group is stored in the group descriptor of that block group

. in Ext3. We do not maintain extra mapping structures for
S QUICk Recovery file pods. When mounting an Ext3 file system, all group
Recovering a whole file system is time consuming, edescriptors will be loaded into memory by default. Since
pecially runningf sck. With the increased capacity ofall group descriptors are replicated in multiple locations
disks, users'’ file systems also easily scale to multiple TBge can retrieve other replicas if needed. To get a file pod
Even wherf sck can run at peak disk speed, it still takefhformation for a file, we can easily map the file’s inode
along time to finish checking. For example, it takes neay a block group, and then retrieve its file pod information
seven hours to read a 2 TB disk sequentially. from the corresponding group descriptor.

Since we isolate faults for each file pod, this provides Algorithms. Data, inode, and directory block alloca-
great opportunities to recover corrupted file pods effion / de-allocation algorithms need to be changed to be
ciently. Instead of checking the whole disk, we can ndile pod based. Isolation file systems still preserve the lo-
row down our target to certain file pods which triggeredality property of default allocation algorithms of Ext3.
their failure policies. But when the allocation moves across block group bound-

When should we run online recovery? We utilize aries, Isolation file systems make sure that the target block
file system’s own internal detection mechanism to idegroup belongs to the same pod or it is an empty block
tify various failures. For example, when an isolation filgroup. Readers may be concerned about the internal frag-
system finds a file pod’s block bitmap is corrupted, it willnentation within a file pod. A possible solution is to pro-
first trigger the file pod’s failure policy, such as remountside a de-fragmentation tool for pods. Similar solution
ing as read-only. Then, custom recovery policies are exxists in Ext4 (online de-fragmentation).
ecuted for this file pod. An isolation file system can run Journaling. Ext3 consolidates multiple atomic updates
checking immediately after such failures are detected.fidm different files into a single transaction. To isolate
may also run checking when the file pod is idle withoutpdates from different file pods, we change the journaling
any failure detected. Or it can periodically run checkingechanisms for both better reliability and performance.
for some important file pods, such as file pods storing sy® provide reliability isolation, each transaction conai
tem configuration files. updates only from a single file pod. When an isolation

How can we improve checking efficiency? Since dile system updates its metadata, it will pass the file pod
isolation file system can only check a small part of theformation to its journaling layer. The journaling layer
whole file system, it can provide quick checking bothmaintains a separate transaction for each active file pod.
online and offline. Metadata of isolation file systems iBhus, once any failure happens in the journaling layer,
isolated in such a manner that checking can be done\e can relate the failure to a single transaction of a spe-
dependently for each file pod, avoiding expensive globdfic file pod. During the commit phase, three ordering
cross checking. Furthermore, an isolation file system upieints are enforced for data blocks, metadata blocks and
lizes the file system’s fault detection mechanism to prtite commit block respectively. To improve journaling per-
vide hints for integrity checking, such as a corrupted blod&rmance, an isolation file system commits multiple trans-
bitmap. This can even narrow down the checking to cexetions from different file pods in parallel by using multi-
tain data structures. For online checking, when failurpte committing threads. In this manner, we hope to get
happen, the metadata of the target file pod may be alre&eyter 1/0 scheduling for submitted blocks and overlap
in memory, thus avoiding slow disk reads. waiting time from different transactions.

Failure Policy Support. For read-only, we can markabstraction was proposed to allow applications to manage
all the block groups in the file pod as read-only and stdailure policies and recovery polices explicitly. Finally
journaling updates for the file pod. For pure crash, wee briefly discussed the design and implementation of an
need to clean the file pod’s system states, by doingsalation file system. What we present here is just a first
lightweight restart. This includes returning an error codstep towards a resilient file system.
to processes which are opening files in this file pod, free-
ing all cached memory objects, and marking errors on diACknOWIedgmem:S
for later recovery. We thank Ed Nightingale (our shepherd) and the anonymous re-

Recovery Policy Support. We can utilize existing viewers for their excellent feedback and suggestions. This ma-
f sck code to conduct checking for a file pod. We need térial is based upon work supported by the National Science
instrument all the global failure polices in Ext3 to use otroundation under the following grants: CNS-1218405, CCF-

failure and recovery framework. 0937959, CSR-1017518, CCF-1016924, as well as generous
support from EMC, Facebook, Fusion-io, Google, Huawei, Mi-
7 Related Work crosoft, NetApp, Samsung and VMware. Any opinions, find-

Security / Namespace Isolation. Previous file system ings, and conclusions or recommendations expressed in this ma-
isolation mechanisms focus purely on the namespaf,eéi.al are those of the authors and do not necessarily reflect the
chr oot [1] confines a process to a portion of a file sysiews of the NSF or other institutions.

tem. The namespace is limited to a single directory surafarences

tree. _B_SI_DJ ail [7] is based Om_hr oot mec_hamsm' 1] Change Root Directory. http://linux.die.net/man/2tbt/.
Each jail includes processes, a file system directory ansl rirst Galaxy Nexus Rom Available, Features Extd Sup-

network resources. Solaris zones [11] are basgdeori . |oort_-I bqttg://androidspin-com/2t</3l1/12/06/first-galaWuS-rom-
Each zone is confined to a disjoint portion of a file sys:,, 2valable-features-exta-support.

. . . . ,£3] Oracle Cluster File System (OCFS2).
tem. Hypervisors not only isolate each virtual machine https://oss.oracle.com/projects/ocfs2, 2013.

namespace, they also provide resource and performarige Lakﬁhmi raJ.JBaiSra\r/]asglnda?mAGa}rth R.fcl%_oodsog, Shar;EI;a_l—Pas
H H H H : H H pat y, an Irl Schinaler. n Analysis O atent Sector rm
isolation. Their fault isolation mechamsms still focus on gk Brives. InProceedings of the 2007 ACM SIGMETRICS Con-
process and memory faults. Both Solitude [6] and De- ference on Measurement and Modeling of Computer Syste@s (Sl
nali [14] target on security isolation for untrusted appli-_ METRICS '07)San Diego, California, June 2007.

. . . £5] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown.
cations. For all these solutions, they only provide names-" chunkfs: Using divide-and-conquer to improve file systeni rel

pace isolation for file systems. The underlying file-system ?bilit% and aepbali_rt- |r|1_l|EtEDE 2?616W0rl:3h05v onhl_-lott Top'i\?s in SbyS-
failures are still shared across namespaces, jails, zones, 5 Dependability (HotDep ‘06feattle, Washington, November
and virtual machines. [6] Shvetank Jain, Fareha Shafique, Vladan Djeric, and AsBael.
: : Application-Level Isolation and Recovery with Solituden Fro-

File System Checkers.Wmdows ReF.S [12] can de- ceedings of the EuroSys Conference (EuroSys BBsgow, Scot-
tect and recover data corruption at runtime. Its recovery land UK, March 2008.
mechanism depends on metadata checksum and repli€dsPoul-Henning Kamp and Robert N. M. Watson. Jails: Congnin

. . - . the omnipotent root. I'Becond International System Administra-

on multiple disks. Specifically, it can only auto-recover tion and Networking Conference (SANE *OBjay 2000.

corrupted files if the file system is run on mirrored storag¢s] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

; ; _ Dusseau, and Shan Lu. A Study of Linux File System Evolution.
devices. Furthermore, it cannot handle memory corrup In Proceedings of the 11th USENIX Symposium on File and Stor-

tion and software bugs. Wafliron [10] is an online file age Technologies (FAST '13an Jose, California, February 2013.
system checker for WAFL file system. It allows data aci9] Sean MorrisseyiOS Forensic Analysis: for iPhone, iPad, and iPod

. Touch Apress, 2010.
cesses from volumes not belng checked. However, no %- NetApp. Overview of WAFLcheck. http://uadmin.nl/init/?p=900,

tails about how it conducts online checking are available.” sep. 2011.

Chunkfs [5] partitions a file system into fixed size, inddi1] Oracle Inc. ~ Consolidating Applications with Oracle -So

- laris Containers. www.oracle.com/technetwork/server-
pendent chunks, and hopefully can check each chunk in- siorage/solaris/documentation/consolidating-apps183df, Jul

dependently. However, cross-chunk references still gxist 2011. _ o

f | | fil ltipl h kElZ] Steven Sinofsky. Building the Next Gen-
or exampie, a large lile may span on mufliple CUnkS. = eration File ~System for Windows: ReFS.
It is also hard to know when to trigger online checking. http://blogs.msdn.com/b/b8/archive/2012/01/16/bugeine-

- - - . next-generation-file-system-for-windows-refs.aspx, 2812.
Furthermore, its design is only based on Ext2, withoyly o\ o o™\ achani. Virtual Machine File SysteCM SIGOPS

modern journaling features. Operating Systems Revig#d(4):57-70, Dec 2010.
. [14] Andrew Whitaker, Marianne Shaw, and Steven D. Gribbleal&
8 COﬂClUSlon and Performance in the Denali Isolation KernelPioceedings of

the 5th Symposium on Operating Systems Design and Implemen-
Global failures are preva|ent in modern file systems, tation (OSDI '02) Boston, Massachusetts, December 2002.

; Sakhili : ; 15] Junfeng Yang, Paul Twohey, Dawson Engler, and Maddhiedu-
WhICh sever_ely harm the availability of f”_e SyStem_S_m vaFl vathi. Using Model Checking to Find Serious File System Ero
ious scenarios. We analyzed global failure policies and In Proceedings of the 6th Symposium on Operating Systems De-

; iati ; ; sign and Implementation (OSDI '04$an Francisco, California,
failure causes of existing file systems. A new file system December 2004,

