
Runtime I/O Re-Routing + Throttling on HPC Storage
Qing Liu, Norbert Podhorszki, Jeremy Logan, Scott Klasky

Computer Science and Mathematics Division, Oak Ridge National Laboratory
Abstract

Massively parallel storage systems are becoming more and more prevalent on HPC systems due to the emergence of
a new generation of data-intensive applications. To achieve the level of I/O throughput and capacity that is demand-
ed by data intensive applications, storage systems typically deploy a large number of storage devices (also known as
LUNs or data stores). In doing so, parallel applications are allowed to access storage concurrently, and as a result,
the aggregate I/O throughput can be linearly increased with the number of storage devices, reducing the applica-
tion’s end-to-end time. For a production system where storage devices are shared between multiple applications,
contention is often a major problem leading to a significant reduction in I/O throughput. In this paper, we describe
our efforts to resolve this issue in the context of HPC using a balanced re-routing + throttling approach. The pro-
posed scheme re-routes I/O requests to a less congested storage location in a controlled manner so that write perfor-
mance is improved while limiting the impact on read.

1. Introduction
The computational capabilities of high performance
computing (HPC) machines are continuing to increase,
which is driving the accelerating pace of scientific dis-
covery. The Titan Cray XK7 supercomputer, the
world’s fastest machine as of November 2012, hosted at
Oak Ridge National Laboratory has 299,008 processing
cores and 18,688 GPUs, with a peak performance of
approximately 20 petaflops. For HPC data-intensive
applications, the volume of data generated per run is
projected to grow quickly and the question of how to
efficiently manage such large quantities of data be-
comes increasingly difficult.
 Parallel storage systems have recently become a via-
ble solution for today’s scientific applications and are
widely deployed on many of today’s Top500 systems
such as Titan, Hopper and Intrepid. These systems typi-
cally use large numbers of storage devices (e.g., 100s)
to achieve the throughput and capacity demanded by
large scientific applications. A recent test on Ti-
tan/Jaguar demonstrated an impressive 240 GB/sec I/O
throughput over 672 storage devices [1]. Despite these
strong benchmark results, we have seen significant I/O
fluctuations in real production environments, observing
as much as an order of magnitude variation in through-
put per storage device. A root cause of such I/O varia-
tions is the interference posed by other applications
running simultaneously and sharing either network or
storage resources. Compared to cloud storage conten-
tion discussed in previous work [2], the interference can
be at a whole different level due to the sheer amount of
concurrency present in an HPC system. This can pose
disastrous effect to the performance of an HPC system
if left unchecked. In the worst case, for instance on Ti-
tan, one single storage device could possibly be ren-
dered useless by an O(100,000)-core job attempting to
perform I/O in a naïve manner using a single target.

Using a log-structured file system (LFS) [3] can allevi-
ate this symptom to some extent but does not complete-
ly resolve the issue for a large HPC system, as even
with solid-state drive (SSD), the disk cache has difficul-
ty accommodating data dumped from O(100,000) cores.
Caching is not deemed to be the clear path forward for
future HPC systems as projections indicate that the
number of cores will continue to grow while
memory/cache per core is expected to decrease [10]. On
the other hand, I/O concurrency is critical for applica-
tion performance. Although the chaining logging tech-
nique [2], which is based on LFS works extremely well
in the context of cloud storage, it suffers from serializa-
tion of I/O tasks caused by controlling the sequence of
logging to avoid collision between garbage collection
and application output. As such, this approach inevita-
bly reduces disk concurrency and, despite alleviating
contention, it lowers overall throughput and is not a
promising solution for HPC.
 Meanwhile, previous work [4] tackles the contention
issue by isolating applications through explicit QoS
support. The devised pClock algorithm captures the
bandwidth and burst requirements based upon arrival
curves. This scheme attains the isolation goal very well.
However, in the HPC world, it is hard to stipulate fine-
grained QoS parameters for a particular application
since most, if not all, applications have equal service
level requirements which are “as fast as possible”.
 Hotspots caused by I/O contention are detrimental to
parallel application performance as they lead to varia-
tions in completion times across processes. Typically
parallel application processes are forced to operate in a
tightly synchronized manner, which means even a pro-
cess that finishes its I/O earlier is still forced to wait for
its slower peers. Multiplying this variance by the num-
ber of cores, the wasted computational capacity can be
far too costly to ignore, particularly for the future HPC

system where a billion-way concurrency is planned. In
contrast to cloud storage, the scale of HPC storage can
push the performance even closer to the edge. As an
example, even averaging just one second of idle time
for a billion core job would lead to O(100,000) CPU
hours wasted, which is extremely costly. Furthermore,
the variability in I/O time makes job time less predicta-
ble. If a job doesn’t finish on schedule due to interfer-
ence caused by a competing job, the entire run or the
portion of the run starting from the most recent check-
point has to be re-done. The remainder of the paper is
organized as follows. Section 2 makes observations on
I/O fluctuations on production systems. Section 3 dis-
cusses the design and implementation details of I/O re-
routing with throttling. Section 4 presents performance
evaluations along with conclusions in Section 5.

2. Observations and Motivation
In this section we present measurements collected on
two high-end machines and demonstrate that I/O
hotspots do exist on production storage systems. The
discussion in this paper specifically targets the shared
storage system, in which users share the storage re-
sources, as contrasted with other strategies such as ded-
icated storage or storage with QoS guaranteed using
scheduler [4][5]. We argue that the case we target is
prevalent for HPC systems and the scheduling is often
not a viable solution as an I/O scheduler dealing with a
billion-way currency is not efficient if even possible.
 The experiments were done on Titan at Oak Ridge
National Laboratory and Hopper at National Energy
Research Scientific Computing Center (NERSC). Each
machine deploys a massively parallel storage system,
which consists on the order of O(100) storage devices
for a given file system scratch space. For the first ex-
periment, we continuously write (and flush) 16 MB
block to the first storage device in the system to test the
perceived speed of an individual storage device. The
results were collected over 100 iterations to show the
severity of the throughput fluctuation over time. This
fluctuation is particularly apparent on Hopper, as seen
in Figure 1(b), where the peak is more than ten times
higher than the lowest performance. More importantly
the results indicate that the performance of the storage
system is in fact bursty and instable. Therefore any of-
fline approach that tries to use mining technique over
the storage logs is likely to be quite ineffective in deal-
ing with hotspot problems. Figure 2 shows the perfor-
mance snapshot of writes to 100 storage devices on
both Titan (a) and Hopper (b). It is interesting to notice
that although most of the storage devices offer similar
throughput, there are a few outliers that are significant-
ly slower.

0 20 40 60 80 100
Runs

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

B/
se

c)

0 20 40 60 80 100
Runs

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
se

c)

Figure 1: Performance of storage device #0 (a) Titan (b) Hopper

0 20 40 60 80 100
Storage Device ID

60

80

100

120

140

160

180

Th
ro

ug
hp

ut
 (M

B/
se

c)

0 20 40 60 80 100
Storage Device ID

40
60

80
100
120

140
160
180

200

Th
ro

ug
hp

ut
 (M

B/
se

c)

Figure 2: Snapshot of 100 storage devices #0–#99 (a) Titan (b) Hopper

2.1. Impact of I/O Imbalance to Parallel
Applications
Hotspots in the storage system are much more harmful
to parallel applications than serial applications. The
reason is that many large-scale parallel scientific codes
today use message passing interface (MPI) collectives
to exchange the state between processes. For example
in QLG2Q [6], a quantum lattice gas code, each process
needs to disseminate values of ghost cells to adjacent
processes before the calculation for next iteration be-
gins. These ghost cells then provide boundary condi-
tions for solving the objective partial differential equa-
tion (PDE). With hotspots in the storage system, each
process progresses differently in time and, at some
point during the run, a fast process has to sync with
other processes and wait for ghost cells data. For high-
end machines where there are more than hundreds of
thousand cores available to applications, the speed gap
between the fastest and slowest device can be disas-
trous. For example in the test run in Figure 2(b), the
speed of storage device #98 on Hopper is five times as
fast as that of storage device #48, with the difference
caused by the heavy I/O activities of other users. The
consequence is that CPU cycles are wasted on fast pro-
cesses, which leads to overall application inefficiency.

2.2. Contributions
Our previous work on the I/O variability issue [7] tack-
led the problem by first looking at write optimization
only, using a somewhat simplistic approach. The pro-
posed adaptive I/O technique uses a single execution
thread for both write and communication on coordina-
tor and sub-coordinator processes. This design limits
how quickly a coordinator can respond to storage load
dynamics, and for small request workload, e.g., Pixie3D
small (section 4(b)), I/O requests cannot be processed
responsively, thus adaptive I/O performance in this case
is on par with non-adaptive I/O. This lowers the adapt-

ability of the system in general when I/O hotspots are
present. The major contributions in this paper are:
• The impact of I/O re-routing to read performance is
thoroughly investigated. Due to the re-routing, each
storage device receives a varying amount of data de-
pending on how heavily it is loaded. The more congest-
ed a particular storage location is, the less likely the
data will be written to that location as the result of re-
routing. This has the effect of creating secondary
hotspots for later reading, as some storage devices will
have more of the data than others. Ultimately the effects
on both write/read performance need to be addressed.
• We present the design of a new virtual messaging
layer, which places the communication tasks in a sepa-
rate standalone layer, thereby minimizing the impact of
messaging on the application. More importantly, this
design makes I/O throttling possible, which was shown
to be difficult [7].
• We propose the idea of I/O throttling to achieve a
compromise between write and read. This technique
effectively limits the degree of I/O re-routing so that
write performance can still be improved while limiting
the impact on read performance.

3. I/O Re-Routing Scheme
The idea behind I/O re-routing is based upon the ob-
served imbalance in parallel storage systems that often
result in a subset of devices being more highly loaded
than the others. Our proposed I/O re-routing scheme
attempts to mitigate this imbalance by re-directing I/O
traffic to less loaded storage locations, thereby reducing
the amount of data being written to congested devices.
This work is implemented as an I/O method under the
ADIOS umbrella [8]. The core component of our I/O
re-routing scheme is a virtual messaging layer that
serves to disseminate storage state to each process that
participates in I/O. Each process is attached to this mes-
saging layer and is notified and re-directed to a new
target if its current target becomes heavily congested.

3.1. Virtual Messaging Layer (VML)
The VML provides the necessary messaging capabili-
ties to the client processes. It receives incoming I/O
requests from client processes, grants permission to do
I/O, or re-directs a request to a more desirable storage
location. It internally uses short messages to dissemi-
nate storage state to each participating group so that the
occurrence of congestion can be notified quickly and
acted upon. The messages are exchanged in a quite re-
active fashion, i.e., only when a storage device becomes
idle, its controller initiates appropriate re-routing mes-
sages. The incurred messaging overhead is quite mini-
mal as the high-speed interconnects today, for instance,
the Cray Gemini network on Titan poses extremely low

latency (~2.5μs), which is negligible compared to disk
I/O fluctuations.
 Figure 3 illustrates the overall architecture of I/O re-
routing framework. Here a group represents a set of
processes that share a common initial storage target
location to write. This target may change when the en-
suing I/O re-routing happens. In this case, the re-routed
process will leave its original group and join a new
group where I/O load is expected to be lighter. VML
uses a group-based two-level control framework to fa-
cilitate message passing. To enable the message passing
between groups, a global coordinator (GC) is selected
for all groups and a sub-coordinator (SC) is selected to
arbitrate the messaging between the SC and the indi-
vidual processes (P). The reason for the two-level de-
sign is to make communication more scalable so that
the GC is not required to handle messages from every
process, which would greatly limit scalability. Imple-
mentation wise, SC/GC can be either an in-kernel de-
vice driver or a thread launched alongside applications.
In this work, the latter scheme is used and VML is at-
tached to each process as a separate pthread, which
allows an application and VML to run in parallel so that
the execution of one doesn’t block the other.
 Before diving into details, we briefly introduce the
notations used in this paper. A process is denoted as Pi
where 10 −≤≤ Ni and N is the total number of process-
es. The number of storage devices is M and, without
loss of generality, we also assume N is multiple of M.
Therefore the number of processes that each group has
is N/M and hence, for group Gi, the initial process set it
contains is [PN/M * i, PN/M * (i+1)-1]. The SCi is the sub-
coordinator for group Gi, which writes exclusively to
the i-th storage device SDi. Note SCi can be attached to
one of the processes in the group, e.g., PN/M * i.

GC

SC0

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

SD0$ SD1$ SD2$ SD3$

I/O Re-routing Framework

Interconnec(on)network)

File)0) File)1) File)2) File)3)

Re-routing Virtual
Messaging Layer

SCi – Sub-coordinator for group i
GC – Global coordinator
Pi – Processor i
SDi – Storage device i

SC1 SC2 SC3

1

4

2

3

5

1 WRITE_IDLE

RE-ROUTE REQ

RE-ROUE ACK

WRITE_MORE

WRITE_REROUTE

2

3

4

5

Figure 3: I/O Re-Routing framework
3.2. I/O Re-Routing
The I/O re-routing phase is jumpstarted by SCi issuing
WRITE_IDLE message to GC, indicating group Gi (and
hence SDi) has finished all its I/O tasks and is in idle
state. This only occurs when all pending processes
within Gi finish writing. GC is a central controller

which keeps track of the state of all storage locations
and upon receiving a WRITE_IDLE message, GC up-
dates the state of Gi to idle and searches for a group that
is in busy state. If group Gj is found, GC then initiates
re-routing process via sending RE-ROUTE REQ to SCj
to request offloading portion of its I/O load. When this
request is acknowledged by RE-ROUTE ACK, GC
constructs a WRITE_MORE message with its payload
carrying re-routed process rank, Pk, and re-directs pro-
cess Pk to write to the new storage device (via WRITE
RE-ROUTE). An example of the messaging flow is
illustrated in Figure 3. The re-routing phase is ended
when no group is in busy state, and when all I/O re-
quests are finished (i.e., when file is closed) VML will
be de-attached from each process and then released.

3.3. I/O Re-Routing + Throttling
The I/O re-routing technique can maximize write per-
formance on a busy system and effectively avoid stor-
age hotspots. As a result, the degree of I/O variability
perceived by applications can be mitigated. However,
this scheme is aggressive in the sense that it places a
larger burden on a fast storage device, and the result is
that a varying amount of data is written to each storage
device, depending on the degree of imbalance experi-
enced. This is usually acceptable for checkpoint output
because this type of I/O operation is write-dominated
and most checkpoint files are unlikely to be read back
in the future. However, for the diagnostic data which
will be read multiple times, the overly aggressive nature
of re-routing write operations can cause a secondary
load imbalance for reading in terms of data size, i.e.,
some storage devices have significantly more data to
read than the others. To address this, we apply a throt-
tling technique that limits how much data may be re-
routed during writing, thus avoiding hotspots while
lessening the effect of re-routing on read performance.
To achieve this, we introduce the concept of throttling
factor (TF) for each SC, which is defined as the ratio of
the amount of data re-routed to the associated group
versus the amount of data that originally belonged to
the group and has been written (i.e., local data). For
each storage device, TF essentially limits the size of
new I/O requests that can be accepted inbound by an
SC. If the current ratio is no greater than TF, the re-
routed request will be granted. Otherwise, the storage
device has accommodated too many re-routed requests
and the new request will be rejected. In that case GC
will try the next available idle storage location. Overall,
this scheme limits how much data a fast location can
take and balance the data across storage locations. Note
that a slow storage device will offload a portion of its
I/O requests, and the resulting data written to that loca-
tion is therefore reduced. As such it will allow fewer
requests to be accepted inbound, as compared to a fast
storage location. We argue that this is a reasonable

strategy as a slow storage is likely to continue to be
slow for a short period of time (at least for the duration
of the run) and, therefore, less re-routing should be al-
lowed. This assumption fits particularly well to HPC
applications as they follow the pattern of:

ComputationSynchronizationI/OSynchronization
Computation SynchronizationI/O ……

This suggests that a storage location undergoing heavy
I/O traffic is likely to be hit by a similar burst of traffic
in the next cycle as well (also shown in Figure 1).

4. Performance Evaluation
To gauge the effectiveness of the I/O re-routing frame-
work, we ran a synthetic benchmark and Pixie3D I/O
kernel on both Titan and Hopper. Titan is a Cray XK7
machine and has 18,688 compute nodes in addition to
dedicated login/service nodes. Each compute node con-
tains a sixteen core 2.2GHz AMD Opteron processors
with 2GB DDR3 memory/core, and a Gemini intercon-
nect. The work was performed during the final phase of
Titan acceptance test and 9718 compute nodes were
available when the experiments were conducted. We
ran the benchmark and Pixie3D on Titan Lustre file
system widow1, which has 336 storage devices [1].
Hopper is a Cray XE6 machine and has 6,384 compute
nodes each consisting of two 12-core AMD Mag-
nyCours 2.1 GHz processors, with 2GB DDR3 memory
per core. We conducted the Hopper runs on the Lustre
SCRATCH space, with a total of 156 storage devices.
 The majority of the runs are done with artificial noise
injected into the system in order to mimic the random
effect of I/O interference from other users. This noise is
generated by a parallel program that continually writes
a 16MB block to selected storage locations. Here we
experimented with two noise setups: light interference
and heavy interference, to see how the I/O re-routing
scheme adapts to the external noise. In light interfer-
ence, 16 processes write to storage device 0 whereas in
heavy interference 64 processes write to storage 0-3
with 4 processes/storage. Light interference was inject-
ed for each test run unless otherwise noted.
A. Synthetic Benchmark
Our synthetic benchmark is a simple parallel code that
writes and reads a configurable size chunk of data. Fig-
ure 4 shows the total I/O time for writing a 2 MB chunk
from 64 to 4096 processes on Titan and Hopper. Each
data point in the plot is the average result of 20 consec-
utive runs. Clearly, I/O re-routing results in a much
improved write performance compared to static I/O
(i.e., re-routing is not used). The gain is particularly
noticeable at higher core counts, providing a 67% re-
duction of write time on Titan and 33% on Hopper at
4,096 cores. Figure 5 further evaluates the sensitivity of
the performance to TF value under light and heavy in-
terference using 1024-cores. An interesting insight is

that a relatively small TF is sufficient to achieve a large
margin. Enlarging TF beyond a certain point doesn’t
seem to provide further performance improvement.
However, as interference gets heavier, enlarging TF is
necessary to further lower the I/O time. One caveat is
that a larger TF will result in a higher degree of data
imbalance, and is therefore less efficient for reading.
Figure 6 shows the read time of 20 runs from the data
generated previously under heavy interference in Figure
5. Clearly, although static I/O is bad for write perfor-
mance, it does yield the best performance for reading,
as data is evenly distributed across storage devices. For
example, in Figure 6, static I/O is 52% better than re-
routing with TF set to 0.1. As TF increases, the read
time also increases. In reality, to achieve a balance be-
tween write and read, one needs to set a relatively small
TF, whose optimal value depends on the degree of in-
terferences in the system and is left for future study.

100 1000
Number of processes

0

20

40

60

80

100

120

140

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing

100 1000
Number of processes

0

10

20

30

40

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing

Figure 4: Write performance of static vs. I/O re-routing (a) Titan (b) Hopper

0 5 10 15
Run

2

3

4

5

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing (TF=0.1)
I/O Re-routing (TF=0.2)
I/O Re-routing (TF=0.4)

Figure 5: Sensitivity of TF Figure 6: Read performance

 Figure 7 shows the write performance observed
during a 2-hour window on Titan and Hopper, without
any artificial noise being injected. This gives an
indication of how I/O re-routing works in a production
settings where interferences are from random users. The
static I/O and I/O re-routing runs were interleaved to
achieve maximum fairness. Here I/O re-routing shows
stabler as well as lower I/O times than static I/O. Note
that HDF5 file format is used here due to its wide
adoption to science community, and the self-describing
format makes writing much more costly than reading.

0 50 100 150 200 250
Run (21:20PM to 23:30PM, 2/27/2013, no noise injected)

11

12

13

14

15

16

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing (TF=0.1)

0 20 40 60 80 100
Run (21:20PM to 1:20AM, 3/1/2013, no noise injected)

0

200

400

600

800

1000

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing (TF=0.1)

Figure 7: Write performance without interference injected (a) Titan (b) Hopper
B. Pixie3D

Pixie3D [9] is an extended Magneto-Hydro-Dynamic
(MHD) code that solves extended MHD equations us-

ing fully implicit Newton-Krylov algorithms. The out-
put contains eight 3D cubes using 3D domain decom-
position. The size of each 3D array is typically sized
256x256x256 (hero), 128x128x128 (large), 64x64x64
(medium) and 32x32x32 (small). Due to space limits,
this paper only presents the 32x32x32 setup of Pixie3D
at 1024 core run. Similar to previous results, static I/O
exhibits a much longer I/O time, particularly under
heavy interference, 290 secs vs. 125 secs of re-routing,
a 57% improvement, with TF set to 0.2, see Figure 8.

0 5 10 15
Run

1

2

3

4

5

I/O
 T

im
e

(s
ec

)

Static
I/O Re-routing (TF=0.1)
I/O Re-routing (TF=0.2)
I/O Re-routing (TF=0.4)

 Figure 8: Sensitivity of TF Figure 9: Read performance

5. Conclusion
This paper attempts to resolve the I/O contention issue
in the context of HPC storage, where a large number of
cores (i.e., interfering sources) are present. We propose
a balanced re-routing + throttling approach to alleviate
the contention. The performance results indicate that
the scheme works well for both our synthetic bench-
mark and the Pixie3D code.

Acknowledgement
The authors would like to thank our shepherd Nohhyun
Park from Cloud Physics as well as anonymous review-
ers for the valuable suggestions and the Department of
Energy Office of Science for the sponsorship.

REFERENCES
[1] Galen M. Shipman, et al., Lessons Learned in Deploying the

World’s Largest Scale Lustre File System, The 52nd Cray User
Group Conference (CUG '10), May 2010.

[2] Ji Yong Shin, et al., Gecko: A Contention-Oblivious Design for
Cloud Storage, USENIX HotStorage’12, Boston, MA, June 2012.

[3] SENBLUM, M., et al., The design and implementation of a log-
structured file system. ACM Trans. on Comp. Sys. 10 (Feb 1992).

[4] A. Gulati, A. Merchant, P. Varman, P-Clock: An Arrival Curve
Based Approach for QoS Guarantees in Shared Storage Systems,
ACM SIGMETRICS’07, June, 2007.

[5] Xuechen Zhang, et al., “QoS Support for End Users of I/O-
intensive Applications using Shared Storage Systems”, ACM/IEEE
SC’13, Seattle, WA, November 2011.

[6] G. Vahala, et al., “Unitary Qubit Lattice Simulations of Multiscale
Phenomena in Quantum Turbulence”, ACM/IEEE SC’11, Seattle,
WA, November 2011.

[7] Jay Lofstead, et al., “Managing Variability in the IO Performance
of Petascale Storage Systems”. ACM/IEEE SC’10, New Orleans,
LA. November 2010.

[8] ADIOS, https://www.olcf.ornl.gov/center-projects/adios/
[9] L. Chacon. A non-staggered, conservative, VxB = 0, finite-volume

scheme for 3D implicit extended magnetohydrodynamics in curvi-
linear geometries. Computer Physics Communications, 163:143–
171, Nov. 2004

[10] D. Chavarria-Miranda, et al., “Global Futures: A Multithreaded
Execution Model for Global Arrays-based Applications”,
IEEE/ACM CCGrid’12, Ottawa, Canada, May, 2012.

