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Abstract 

Massively parallel storage systems are becoming more and more prevalent on HPC systems due to the emergence of 
a new generation of data-intensive applications. To achieve the level of I/O throughput and capacity that is demand-
ed by data intensive applications, storage systems typically deploy a large number of storage devices (also known as 
LUNs or data stores). In doing so, parallel applications are allowed to access storage concurrently, and as a result, 
the aggregate I/O throughput can be linearly increased with the number of storage devices, reducing the applica-
tion’s end-to-end time.  For a production system where storage devices are shared between multiple applications, 
contention is often a major problem leading to a significant reduction in I/O throughput. In this paper, we describe 
our efforts to resolve this issue in the context of HPC using a balanced re-routing + throttling approach. The pro-
posed scheme re-routes I/O requests to a less congested storage location in a controlled manner so that write perfor-
mance is improved while limiting the impact on read. 

1. Introduction 
The computational capabilities of high performance 
computing (HPC) machines are continuing to increase, 
which is driving the accelerating pace of scientific dis-
covery. The Titan Cray XK7 supercomputer, the 
world’s fastest machine as of November 2012, hosted at 
Oak Ridge National Laboratory has 299,008 processing 
cores and 18,688 GPUs, with a peak performance of 
approximately 20 petaflops. For HPC data-intensive 
applications, the volume of data generated per run is 
projected to grow quickly and the question of how to 
efficiently manage such large quantities of data be-
comes increasingly difficult.  
    Parallel storage systems have recently become a via-
ble solution for today’s scientific applications and are 
widely deployed on many of today’s Top500 systems 
such as Titan, Hopper and Intrepid. These systems typi-
cally use large numbers of storage devices (e.g., 100s) 
to achieve the throughput and capacity demanded by 
large scientific applications. A recent test on Ti-
tan/Jaguar demonstrated an impressive 240 GB/sec I/O 
throughput over 672 storage devices [1]. Despite these 
strong benchmark results, we have seen significant I/O 
fluctuations in real production environments, observing 
as much as an order of magnitude variation in through-
put per storage device. A root cause of such I/O varia-
tions is the interference posed by other applications 
running simultaneously and sharing either network or 
storage resources. Compared to cloud storage conten-
tion discussed in previous work [2], the interference can 
be at a whole different level due to the sheer amount of 
concurrency present in an HPC system.  This can pose 
disastrous effect to the performance of an HPC system 
if left unchecked. In the worst case, for instance on Ti-
tan, one single storage device could possibly be ren-
dered useless by an O(100,000)-core job attempting to 
perform I/O in a naïve manner using a single target. 

Using a log-structured file system (LFS) [3] can allevi-
ate this symptom to some extent but does not complete-
ly resolve the issue for a large HPC system, as even 
with solid-state drive (SSD), the disk cache has difficul-
ty accommodating data dumped from O(100,000) cores. 
Caching is not deemed to be the clear path forward for 
future HPC systems as projections indicate that the 
number of cores will continue to grow while 
memory/cache per core is expected to decrease [10]. On 
the other hand, I/O concurrency is critical for applica-
tion performance. Although the chaining logging tech-
nique [2], which is based on LFS works extremely well 
in the context of cloud storage, it suffers from serializa-
tion of I/O tasks caused by controlling the sequence of 
logging to avoid collision between garbage collection 
and application output. As such, this approach inevita-
bly reduces disk concurrency and, despite alleviating 
contention, it lowers overall throughput and is not a 
promising solution for HPC.  
    Meanwhile, previous work [4] tackles the contention 
issue by isolating applications through explicit QoS 
support. The devised pClock algorithm captures the 
bandwidth and burst requirements based upon arrival 
curves. This scheme attains the isolation goal very well. 
However, in the HPC world, it is hard to stipulate fine-
grained QoS parameters for a particular application 
since most, if not all, applications have equal service 
level requirements which are “as fast as possible”.  
    Hotspots caused by I/O contention are detrimental to 
parallel application performance as they lead to varia-
tions in completion times across processes. Typically 
parallel application processes are forced to operate in a 
tightly synchronized manner, which means even a pro-
cess that finishes its I/O earlier is still forced to wait for 
its slower peers. Multiplying this variance by the num-
ber of cores, the wasted computational capacity can be 
far too costly to ignore, particularly for the future HPC 



system where a billion-way concurrency is planned. In 
contrast to cloud storage, the scale of HPC storage can 
push the performance even closer to the edge. As an 
example, even averaging just one second of idle time 
for a billion core job would lead to O(100,000) CPU 
hours wasted, which is extremely costly. Furthermore, 
the variability in I/O time makes job time less predicta-
ble. If a job doesn’t finish on schedule due to interfer-
ence caused by a competing job, the entire run or the 
portion of the run starting from the most recent check-
point has to be re-done. The remainder of the paper is 
organized as follows. Section 2 makes observations on 
I/O fluctuations on production systems. Section 3 dis-
cusses the design and implementation details of I/O re-
routing with throttling. Section 4 presents performance 
evaluations along with conclusions in Section 5. 

2. Observations and Motivation 
In this section we present measurements collected on 
two high-end machines and demonstrate that I/O 
hotspots do exist on production storage systems. The 
discussion in this paper specifically targets the shared 
storage system, in which users share the storage re-
sources, as contrasted with other strategies such as ded-
icated storage or storage with QoS guaranteed using 
scheduler [4][5]. We argue that the case we target is 
prevalent for HPC systems and the scheduling is often 
not a viable solution as an I/O scheduler dealing with a 
billion-way currency is not efficient if even possible.  
    The experiments were done on Titan at Oak Ridge 
National Laboratory and Hopper at National Energy 
Research Scientific Computing Center (NERSC). Each 
machine deploys a massively parallel storage system, 
which consists on the order of O(100) storage devices 
for a given file system scratch space. For the first ex-
periment, we continuously write (and flush) 16 MB 
block to the first storage device in the system to test the 
perceived speed of an individual storage device. The 
results were collected over 100 iterations to show the 
severity of the throughput fluctuation over time. This 
fluctuation is particularly apparent on Hopper, as seen 
in Figure 1(b), where the peak is more than ten times 
higher than the lowest performance. More importantly 
the results indicate that the performance of the storage 
system is in fact bursty and instable. Therefore any of-
fline approach that tries to use mining technique over 
the storage logs is likely to be quite ineffective in deal-
ing with hotspot problems. Figure 2 shows the perfor-
mance snapshot of writes to 100 storage devices on 
both Titan (a) and Hopper (b). It is interesting to notice 
that although most of the storage devices offer similar 
throughput, there are a few outliers that are significant-
ly slower.  
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Figure 1: Performance of storage device #0 (a) Titan (b) Hopper 
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Figure 2: Snapshot of 100 storage devices #0–#99 (a) Titan (b) Hopper 

2.1. Impact of I/O Imbalance to Parallel 
Applications 
Hotspots in the storage system are much more harmful 
to parallel applications than serial applications. The 
reason is that many large-scale parallel scientific codes 
today use message passing interface (MPI) collectives 
to exchange the state between processes. For example 
in QLG2Q [6], a quantum lattice gas code, each process 
needs to disseminate values of ghost cells to adjacent 
processes before the calculation for next iteration be-
gins. These ghost cells then provide boundary condi-
tions for solving the objective partial differential equa-
tion (PDE). With hotspots in the storage system, each 
process progresses differently in time and, at some 
point during the run, a fast process has to sync with 
other processes and wait for ghost cells data. For high-
end machines where there are more than hundreds of 
thousand cores available to applications, the speed gap 
between the fastest and slowest device can be disas-
trous. For example in the test run in Figure 2(b), the 
speed of storage device #98 on Hopper is five times as 
fast as that of storage device #48, with the difference 
caused by the heavy I/O activities of other users. The 
consequence is that CPU cycles are wasted on fast pro-
cesses, which leads to overall application inefficiency.  

2.2. Contributions 
Our previous work on the I/O variability issue [7] tack-
led the problem by first looking at write optimization 
only, using a somewhat simplistic approach. The pro-
posed adaptive I/O technique uses a single execution 
thread for both write and communication on coordina-
tor and sub-coordinator processes. This design limits 
how quickly a coordinator can respond to storage load 
dynamics, and for small request workload, e.g., Pixie3D 
small (section 4(b)), I/O requests cannot be processed 
responsively, thus adaptive I/O performance in this case 
is on par with non-adaptive I/O. This lowers the adapt-



ability of the system in general when I/O hotspots are 
present. The major contributions in this paper are:  
•  The impact of I/O re-routing to read performance is 
thoroughly investigated. Due to the re-routing, each 
storage device receives a varying amount of data de-
pending on how heavily it is loaded. The more congest-
ed a particular storage location is, the less likely the 
data will be written to that location as the result of re-
routing. This has the effect of creating secondary 
hotspots for later reading, as some storage devices will 
have more of the data than others. Ultimately the effects 
on both write/read performance need to be addressed. 
•  We present the design of a new virtual messaging 
layer, which places the communication tasks in a sepa-
rate standalone layer, thereby minimizing the impact of 
messaging on the application. More importantly, this 
design makes I/O throttling possible, which was shown 
to be difficult [7].  
•  We propose the idea of I/O throttling to achieve a 
compromise between write and read.  This technique 
effectively limits the degree of I/O re-routing so that 
write performance can still be improved while limiting 
the impact on read performance. 

3. I/O Re-Routing Scheme 
The idea behind I/O re-routing is based upon the ob-
served imbalance in parallel storage systems that often 
result in a subset of devices being more highly loaded 
than the others. Our proposed I/O re-routing scheme 
attempts to mitigate this imbalance by re-directing I/O 
traffic to less loaded storage locations, thereby reducing 
the amount of data being written to congested devices. 
This work is implemented as an I/O method under the 
ADIOS umbrella [8]. The core component of our I/O 
re-routing scheme is a virtual messaging layer that 
serves to disseminate storage state to each process that 
participates in I/O. Each process is attached to this mes-
saging layer and is notified and re-directed to a new 
target if its current target becomes heavily congested.  

3.1. Virtual Messaging Layer (VML) 
The VML provides the necessary messaging capabili-
ties to the client processes. It receives incoming I/O 
requests from client processes, grants permission to do 
I/O, or re-directs a request to a more desirable storage 
location. It internally uses short messages to dissemi-
nate storage state to each participating group so that the 
occurrence of congestion can be notified quickly and 
acted upon. The messages are exchanged in a quite re-
active fashion, i.e., only when a storage device becomes 
idle, its controller initiates appropriate re-routing mes-
sages. The incurred messaging overhead is quite mini-
mal as the high-speed interconnects today, for instance, 
the Cray Gemini network on Titan poses extremely low 

latency (~2.5μs), which is negligible compared to disk 
I/O fluctuations.  
    Figure 3 illustrates the overall architecture of I/O re-
routing framework. Here a group represents a set of 
processes that share a common initial storage target 
location to write. This target may change when the en-
suing I/O re-routing happens. In this case, the re-routed 
process will leave its original group and join a new 
group where I/O load is expected to be lighter. VML 
uses a group-based two-level control framework to fa-
cilitate message passing. To enable the message passing 
between groups, a global coordinator (GC) is selected 
for all groups and a sub-coordinator (SC) is selected to 
arbitrate the messaging between the SC and the indi-
vidual processes (P). The reason for the two-level de-
sign is to make communication more scalable so that 
the GC is not required to handle messages from every 
process, which would greatly limit scalability. Imple-
mentation wise, SC/GC can be either an in-kernel de-
vice driver or a thread launched alongside applications. 
In this work, the latter scheme is used and VML is at-
tached to each process as a separate pthread, which 
allows an application and VML to run in parallel so that 
the execution of one doesn’t block the other.  
    Before diving into details, we briefly introduce the 
notations used in this paper. A process is denoted as Pi 
where 10 −≤≤ Ni  and N is the total number of process-
es. The number of storage devices is M and, without 
loss of generality, we also assume N is multiple of M. 
Therefore the number of processes that each group has 
is N/M and hence, for group Gi, the initial process set it 
contains is [PN/M * i, PN/M * (i+1)-1]. The SCi is the sub-
coordinator for group Gi, which writes exclusively to 
the i-th storage device SDi. Note SCi can be attached to 
one of the processes in the group, e.g., PN/M * i.  
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Figure 3: I/O Re-Routing framework 
3.2. I/O Re-Routing 
The I/O re-routing phase is jumpstarted by SCi issuing 
WRITE_IDLE message to GC, indicating group Gi (and 
hence SDi) has finished all its I/O tasks and is in idle 
state. This only occurs when all pending processes 
within Gi finish writing. GC is a central controller 



which keeps track of the state of all storage locations 
and upon receiving a WRITE_IDLE message, GC up-
dates the state of Gi to idle and searches for a group that 
is in busy state. If group Gj is found, GC then initiates 
re-routing process via sending RE-ROUTE REQ to SCj 
to request offloading portion of its I/O load. When this 
request is acknowledged by RE-ROUTE ACK, GC 
constructs a WRITE_MORE message with its payload 
carrying re-routed process rank, Pk, and re-directs pro-
cess Pk to write to the new storage device (via WRITE 
RE-ROUTE). An example of the messaging flow is 
illustrated in Figure 3. The re-routing phase is ended 
when no group is in busy state, and when all I/O re-
quests are finished (i.e., when file is closed) VML will 
be de-attached from each process and then released.  

3.3. I/O Re-Routing + Throttling 
The I/O re-routing technique can maximize write per-
formance on a busy system and effectively avoid stor-
age hotspots. As a result, the degree of I/O variability 
perceived by applications can be mitigated. However, 
this scheme is aggressive in the sense that it places a 
larger burden on a fast storage device, and the result is 
that a varying amount of data is written to each storage 
device, depending on the degree of imbalance experi-
enced. This is usually acceptable for checkpoint output 
because this type of I/O operation is write-dominated 
and most checkpoint files are unlikely to be read back 
in the future. However, for the diagnostic data which 
will be read multiple times, the overly aggressive nature 
of re-routing write operations can cause a secondary 
load imbalance for reading in terms of data size, i.e., 
some storage devices have significantly more data to 
read than the others. To address this, we apply a throt-
tling technique that limits how much data may be re-
routed during writing, thus avoiding hotspots while 
lessening the effect of re-routing on read performance. 
To achieve this, we introduce the concept of throttling 
factor (TF) for each SC, which is defined as the ratio of 
the amount of data re-routed to the associated group 
versus the amount of data that originally belonged to 
the group and has been written (i.e., local data). For 
each storage device, TF essentially limits the size of 
new I/O requests that can be accepted inbound by an 
SC.  If the current ratio is no greater than TF, the re-
routed request will be granted. Otherwise, the storage 
device has accommodated too many re-routed requests 
and the new request will be rejected. In that case GC 
will try the next available idle storage location. Overall, 
this scheme limits how much data a fast location can 
take and balance the data across storage locations. Note 
that a slow storage device will offload a portion of its 
I/O requests, and the resulting data written to that loca-
tion is therefore reduced. As such it will allow fewer 
requests to be accepted inbound, as compared to a fast 
storage location. We argue that this is a reasonable 

strategy as a slow storage is likely to continue to be 
slow for a short period of time (at least for the duration 
of the run) and, therefore, less re-routing should be al-
lowed. This assumption fits particularly well to HPC 
applications as they follow the pattern of:  

ComputationSynchronizationI/OSynchronization 
Computation SynchronizationI/O …… 

This suggests that a storage location undergoing heavy 
I/O traffic is likely to be hit by a similar burst of traffic 
in the next cycle as well (also shown in Figure 1).  

4. Performance Evaluation 
To gauge the effectiveness of the I/O re-routing frame-
work, we ran a synthetic benchmark and Pixie3D I/O 
kernel on both Titan and Hopper. Titan is a Cray XK7 
machine and has 18,688 compute nodes in addition to 
dedicated login/service nodes. Each compute node con-
tains a sixteen core 2.2GHz AMD Opteron processors 
with 2GB DDR3 memory/core, and a Gemini intercon-
nect. The work was performed during the final phase of 
Titan acceptance test and 9718 compute nodes were 
available when the experiments were conducted. We 
ran the benchmark and Pixie3D on Titan Lustre file 
system widow1, which has 336 storage devices [1]. 
Hopper is a Cray XE6 machine and has 6,384 compute 
nodes each consisting of two 12-core AMD Mag-
nyCours 2.1 GHz processors, with 2GB DDR3 memory 
per core. We conducted the Hopper runs on the Lustre 
SCRATCH space, with a total of 156 storage devices. 
    The majority of the runs are done with artificial noise 
injected into the system in order to mimic the random 
effect of I/O interference from other users. This noise is 
generated by a parallel program that continually writes 
a 16MB block to selected storage locations. Here we 
experimented with two noise setups: light interference 
and heavy interference, to see how the I/O re-routing 
scheme adapts to the external noise. In light interfer-
ence, 16 processes write to storage device 0 whereas in 
heavy interference 64 processes write to storage 0-3 
with 4 processes/storage. Light interference was inject-
ed for each test run unless otherwise noted. 
A. Synthetic Benchmark 
Our synthetic benchmark is a simple parallel code that 
writes and reads a configurable size chunk of data. Fig-
ure 4 shows the total I/O time for writing a 2 MB chunk 
from 64 to 4096 processes on Titan and Hopper. Each 
data point in the plot is the average result of 20 consec-
utive runs. Clearly, I/O re-routing results in a much 
improved write performance compared to static I/O 
(i.e., re-routing is not used). The gain is particularly 
noticeable at higher core counts, providing a 67% re-
duction of write time on Titan and 33% on Hopper at 
4,096 cores. Figure 5 further evaluates the sensitivity of 
the performance to TF value under light and heavy in-
terference using 1024-cores. An interesting insight is 



that a relatively small TF is sufficient to achieve a large 
margin. Enlarging TF beyond a certain point doesn’t 
seem to provide further performance improvement. 
However, as interference gets heavier, enlarging TF is 
necessary to further lower the I/O time. One caveat is 
that a larger TF will result in a higher degree of data 
imbalance, and is therefore less efficient for reading. 
Figure 6 shows the read time of 20 runs from the data 
generated previously under heavy interference in Figure 
5. Clearly, although static I/O is bad for write perfor-
mance, it does yield the best performance for reading, 
as data is evenly distributed across storage devices. For 
example, in Figure 6, static I/O is 52% better than re-
routing with TF set to 0.1. As TF increases, the read 
time also increases. In reality, to achieve a balance be-
tween write and read, one needs to set a relatively small 
TF, whose optimal value depends on the degree of in-
terferences in the system and is left for future study. 
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Figure 4: Write performance of static vs. I/O re-routing (a) Titan (b) Hopper 
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Figure 5: Sensitivity of TF            Figure 6: Read performance 

    Figure 7 shows the write performance observed 
during a 2-hour window on Titan and Hopper, without 
any artificial noise being injected. This gives an 
indication of how I/O re-routing works in a production 
settings where interferences are from random users. The 
static I/O and I/O re-routing runs were interleaved to 
achieve maximum fairness. Here I/O re-routing shows 
stabler as well as lower I/O times than static I/O. Note 
that HDF5 file format is used here due to its wide 
adoption to science community, and the self-describing 
format makes writing much more costly than reading.  
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Figure 7: Write performance without interference injected (a) Titan (b) Hopper 
B. Pixie3D 

Pixie3D [9] is an extended Magneto-Hydro-Dynamic 
(MHD) code that solves extended MHD equations us-

ing fully implicit Newton-Krylov algorithms. The out-
put contains eight 3D cubes using 3D domain decom-
position. The size of each 3D array is typically sized 
256x256x256 (hero), 128x128x128 (large), 64x64x64 
(medium) and 32x32x32 (small). Due to space limits, 
this paper only presents the 32x32x32 setup of Pixie3D 
at 1024 core run. Similar to previous results, static I/O 
exhibits a much longer I/O time, particularly under 
heavy interference, 290 secs vs. 125 secs of re-routing, 
a 57% improvement, with TF set to 0.2, see Figure 8.  
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              Figure 8: Sensitivity of TF                     Figure 9: Read performance 

5. Conclusion 
This paper attempts to resolve the I/O contention issue 
in the context of HPC storage, where a large number of 
cores (i.e., interfering sources) are present. We propose 
a balanced re-routing + throttling approach to alleviate 
the contention. The performance results indicate that 
the scheme works well for both our synthetic bench-
mark and the Pixie3D code. 
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