
Challenges in Getting Flash Drives Closer to CPU
Myoungsoo Jung and Mahmut Kandemir

Department of CSE, The Pennsylvania State University
{mj@cse.psu.edu, kandemir@cse.psu.edu}

Abstract
The PCI Express Solid State Disks (PCIe SSDs) blur the
difference between block and memory access semantic
devices. Since these SSDs leverage PCIe bus as stor-
age interface, their interfaces are different from conven-
tional memory system interconnects as well as thin stor-
age interfaces. This leads to a new SSD architecture
and storage software stack design. Unfortunately, there
are not many studies focusing on the system character-
istics of these emerging PCIe SSD platforms. In this
paper, we quantitatively analyze the challenges faced by
PCIe SSDs in getting flash memory closer to CPU and
study two representative PCIe SSD architectures (from-
scratch SSD and bridge-based SSD) using state-of-the-art
real SSDs from two different vendors. Our experimental
analysis reveals that 1) while the from-scratch SSD ap-
proach offers remarkable performance improvements, it
requires enormous host-side memory and computation re-
sources which may not be acceptable in many comput-
ing systems; 2) the performance of the from-scratch SSD
significantly degrades in a multi-core system; 3) redun-
dant flash software and controllers should be eliminated
from the bridge-based SSD architecture; and 4) latency of
PCIe SSDs significantly degrade with their storage-level
queueing mechanism. Finally, we discuss system impli-
cations including potential PCIe SSD applications such as
all-flash array.

1 Introduction
Over the past few years, NAND Flash-based Solid State
Disks (SSDs) are widely employed in various computing
systems ranging from embedded systems to enterprise-
scale servers to high-performance computing systems,
thanks to their high performance and low power consump-
tion. Even though SSDs were originally meant to be a
block device replacement or a storage cache that works
along with slow spinning disks, their performance has
bumped to standard thin storage interfaces such as SATA
6Gpbs, which, at this point, blurs the difference between
block and memory access semantic devices. Figure 1a
plots the bandwidth trends for the thin interfaces versus
various SSDs in real world. While the bandwidth of SATA
interface has increased from 150MB/s to 600MB/s over
a decade, SSDs have improved their bandwidth by four
times during the same period. As a result of this re-
markable performance improvement, both industry and
academia started to consider taking SSDs out from the I/O
controller hub (i.e., Southbridge) and locate them as close
to the CPU side as possible (see Figure 1b). Clearly, PCIe
SSDs are by far one of the easiest ways to integrate flash
memory into the processor-memory complex (i.e., North-
bridge), which requires no cabling or connections to other
I/O devices involved in handling flash memory. By ex-
ploiting the benefits of the PCIe interface, latencies are
expected to be kept as close to DRAM levels as possible.
However, since these SSD technologies consider the PCIe
bus as a storage interface, their interfaces are different

1998 2001 2004 2007 2010 2013 2016

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00
Future PCIe SSD (expectation)

FusionIO ioDrive Octal
 ioDrive2

Z-Drive R4
FusionIO ioDrive

SF-1000
Intel-X25

ST-Zeus
A25FBWinchester

B
an

dw
id

th
 (G

B
/s

ec
)

Year

 SATA
 PATA
 SSD

(a)

Northbridge

IDE
SATA

USB

Southbridge

I/O controller hub

Memory controller hub

core core core

Flash Flash Flash

core

Flash

High-speed
I/O slots

(PCI Express)

PCI Slots

Memory Slots

Cables and ports leading off-board

30 GIPS/core

400 MHz/flash chip

600MB/s
physical limit

(b)

Figure 1: Bandwidth trends over time for the thin inter-
faces versus SSDs (a), and flash storage integration into a
place closer to CPU (b).

from conventional memory interconnects at Northbridge
as well as thin storage interfaces at Southbridge. The data
movement management and underlying flash storage man-
agement under this new SSD interface makes PCIe SSDs
a pivotal milestone in the evolution of SSD architectures
and accompanying software stack designs. Unfortunately,
the system characteristics of these new emerging PCIe
SSD platforms has received, so far, little attention in the
literature, and challenges behind these SSDs and software
technologies remain largely unexplored. Further, the pub-
lic datasheets of SSDs give very little information.

In this paper, we quantitatively analyze the challenges
PCIe SSDs face in getting flash memory closer to the CPU
side and study two representative PCIe SSD architectures
and flash software stacks therein: 1) from-scratch PCIe
SSD architecture and 2) bridge-based PCIe SSD archi-
tecture. The from-scratch PCIe SSD is built from bot-
tom to top by employing FPGA- or ASIC-based native
PCIe controller(s). In contrast, the bridge-based PCIe
SSD leverages the conventional high-performance SSD
controller(s) by employing an on-board PCIe-to-SAS (or
-SATA) bridge controller. Unlike the latter, the from-
scratch SSD further optimizes the flash software stack in
order to maximize the storage and data processing effi-
ciency. To characterize these two different architectures,
we performed a comprehensive set of experiments using
two state-of-the-art PCIe SSDs from two different ven-
dors. To the best of our knowledge, our data analysis and
presented resource management characteristics on PCIe
SSDs are not reported in the literature so far and not stud-
ied well in the past. Our main contributions can be sum-
marized as follows:
• Characterizing the performance of the emerging PCIe
SSD architectures. We observe that the latency and
throughput of the from-scratch PCIe SSD outperforms the
bridge-based PCIe SSD, which is opposite to the impres-
sion one could get from the datasheets of these SSDs.
Specifically, the from-scratch SSD offers on average 29%
and 39% shorter latency, and provides 21% and 81% bet-

ter throughput on reads and writes, respectively. In ad-
dition, the from-scratch SSD offers stable write perfor-
mance in terms of both latency and throughput under
heavy write-intensive workloads, while the bridge-based
SSD exhibits some sort of write cliff [12], which is a sig-
nificant performance drop caused by garbage collections.
• Analyzing host-side resource usages on different flash
memory storage stacks. Even though the from-scratch
SSD offers better and sustained performance, it overly
consumes host-side resources in terms of memory and
computational power, which might be unacceptable in
many cases. Specifically, the from-scratch SSD needs
about 10 GB host-side memory space for I/O services,
whereas the bridge-based PCIe SSD requires only 0.6 GB
at most. In addition, it consumes 80% of CPU cycles
in completing I/O requests, whereas the latter only needs
23% computation power for the same I/O services.
• Addressing the challenges brought by PCIe SSDs as
shared resources. We observed that the performance of
both bridged-based SSD and from-scratch SSD signifi-
cantly degrades as we increase the number of I/O process-
ing workers. While the host-side resource consumption
of the bridge-based SSD is not impacted by the number
of workers, the from-scratch SSD requires more host-side
memory space and more CPU cycles (32% and 160%, re-
spectively). We also found that these emerging SSDs ex-
hibit about 100 times longer latency with a device-level
queue method compared to the one with the legacy mode.

2 Bringing SSDs Closer to CPU
To bring flash drivers closer to the process-memory com-
plex, one needs to achieve shorter latency values with
higher throughput than conventional SSD devices. Be-
cause of the adapter form-factor of PCIe SSD platforms,
which allows them to allocate more space in employing
multiple flash packages and SSD controllers, PCIe SSDs
are in the much better position to reap the benefits of
higher parallelism compared to conventional SAS/SATA
SSDs. In addition to high PCIe bus capacity, this ad-
vantage of parallelism enables PCIe SSDs reduce la-
tency while increasing throughput, as compared to single
SAS/SATA SSDs. Further, they also improve the perfor-
mance of the flash software stack. In this section, we ex-
plain two representative PCIe SSD architectures and cor-
responding flash software stacks.

2.1 PCIe Architecture
Bridge-based PCIe SSD. As shown on the left side of
Figure 2a, the bridge-based SSD employs multiple tradi-
tional SSD controllers, each of which handling the under-
lying flash packages like a single SAS/SATA SSD. These
SSD controllers are also connected to a PCIe-to-SAS (and
-SATA) bridge controller, which interconnects upper ex-
ternal PCIe link and under internal SAS link. The bridge
controller internally converts the PCIe protocol to the SAS
protocol (or vice versa) so that it can leverage existing
SSD technologies and offer high compatibility. In ad-
dition, the bridge controller stripes the incoming I/O re-
quests over multiple SSD controllers, which is similar to
what RAID controllers do to improve storage-level paral-
lelism. Consequently, the bridge-based SSD architecture
can expose an aggregated SAS/SATA SSD performance
to the PCIe root complex (RC) device, which connects the
internal PCIe fabric, composed of one or multiple bridge
controllers, to the processor-memory complex.

PCIe RC

PCIe EP

S
A

S
 C

T
R

L

corecore

PCIe HOST

F
la

sh
F

la
sh

F
la

sh
F

la
sh

F
la

sh
S

A
S

 C
T

R
L

S
A

S
 C

T
R

L
S

A
S

 C
T

R
L

S
A

S
 C

T
R

L

DRAM

BRIDGE

Bridged SSD architecture

Hardware Abstract Layer

Flash Software

Host Interface Layer

HBA Device Driver

Block Storage Layer

File System Database

PCI Express Lane(s)

1
6

G
T

/
s

Storage-side Flash
Software Approach

RC = Root Complex, CTRL = Controller
EP = Endpoint, HPA = Host Block Adapter

(a) Bridge-based SSD

PCIe RC

Switch

P
C

Ie
 E

P
-C

T
R

L
F

la
sh

F
la

sh
F

la
sh

F
la

sh

F
la

sh
P

C
Ie

 E
P

-C
T

R
L

P
C

Ie
 E

P
-C

T
R

L
P

C
Ie

 E
P

-C
T

R
L

P
C

Ie
 E

P
-C

T
R

L

corecore

PCIe HOST

DRAM

From-scratch SSD architecture

Hardware Abstract Layer

Flash Software

Host Interface Layer

HBA Device Driver

Block Storage Layer

File System Database

PCI Express Lane(s)

1
6

G
T

/s

Host-side Flash
Software Approach

RC = Root Complex, CTRL = Controller
EP = Endpoint, HPA = Host Block Adapter

(b) From-scratch SSD

Figure 2: High-level views of our PCIe SSD architectures
and their software stacks.

From-scratch PCIe SSD. One of challenges behind the
bridge-based SSD architecture is the high performance
overheads in internally converting different protocols and
in processing I/Os, using the indirect control logic, from
CPU to flash memory. Motivated by this, the from-scratch
PCIe SSDs have been built from bottom to top by directly
interconnecting the NAND flash interface and the exter-
nal PCIe link, as shown in Figure 2b. Since PCIe is a set
of point-to-point links, the connection between the PCIe
RC and the flash interface is implemented by one or more
switch devices, each internally handling multiple PCIe
endpoints (EPs). The PCIe EP has independent upstream
and downstream buffers, which control the in-bound or
out-bound I/O requests in front of the flash memory. This
scalable architecture can easily expand the storage capac-
ity by putting more flash chips into its PCIe network topol-
ogy and straightforwardly expose true NAND flash mem-
ory performance to the upper processor-memory subsys-
tem. These PCIe EPs and switches are typically imple-
mented by FPGA or ASIC as a form of native PCIe con-
troller, and the flash software can be optimized to reduce
latency and offer better throughput, as discussed below.

2.2 Flash Software Stack
Storage-side Flash Firmware. Typically, the flash con-
trol modules are implemented in the storage side for
most conventional SSDs and bridge-based PCIe SSDs
as “flash firmware”. In this storage-side flash software
stack, a hardware abstraction layer (HAL) handles low-
level NAND flash commands and manages the I/O bus for
moving data between SSD controller and internal regis-
ters of individual flash memories, as depicted on the right
side of Figure 2a. On top of the HAL, the main flash soft-
ware modules are built, which include the flash transla-
tion layer (FTL), buffer cache, wear-leveler and garbage
collector. Among the flash software modules, the FTL is
the core logic in managing flash memory, and translates
addresses from virtual to physical. Finally, there is a host
interface logic atop the flash software, which is mainly
responsible for the protocol conversion, parsing requests,
and scheduling them. This conventional flash software
stack lets SSDs expose the underlying flash memory to the
processor-memory complex without any host-side storage
stack modification.
Host-side Flash Software Module. Flash software could
manage the underlying flash memory more efficiently if
it is possible to access the host-level resources such as
file system and incoming I/O request information. Con-

From-scratch SSD Bridge-based SSD
Code-name (FSSD) (BSSD)

Interface PCIe 2.0 x4 PCIe 2.0 x4
Flash Software Module Host-side kernel driver Storage-side firmware

Price $2490 $2152
Controller Type Xilinx FPGA SAS-to-PCIe Bridge
Storage capacity 430GB 400GB
Write Bandwidth 700MB/sec 750MB/sec
Read Bandwidth 1GB/sec 1.4GB/sec

512B I/O Latency 45µsec 65µsec
Flash Type QDP MLC eMLC

Internal DRAM Publicly N/A 2GB
Debut 2012 Q2 2012 Q3

Table 1: Important characteristics of the tested PCIe
SSDs.
sequently, there exist several prior proposals that try to
migrate the flash software to the host-side, as illustrated
on the right side of Figure 2b. In addition, by implement-
ing the flash software modules on the host side, we can 1)
unify indirect flash software logic [1, 15, 7] and 2) overlap
storage and data processing times by exploiting abundant
host-side computation and memory resources [13, 10].
Specifically, [7] proposes virtual storage layer (VSL) and
direct file system (DFS) by migrating the flash software
module from the storage side to the host side (especially
FTL), so that it can optimize data accesses as well as offer
extensive OS support. [15] unifies FTL and the host-side
file system to remove indirect address mapping, and [13]
moved the internal buffer cache to the host-side to im-
prove performance when targeting write-intensive work-
loads. [10] migrates garbage collector and page allocator
[11] from SSD to the host-side software stack. Thanks to
this flash software module migration, a from-scratch SSD
can maximize throughput while reducing latency.

3 Experimental Setup
PCIe SSDs. We chose two most-recently-released, cut-
ting edge PCIe SSDs from two different vendors. Since
our goal is not to perform reverse engineering of these
commercial products, we refer to each of them using
a code-name – FSSD refers the from-scratch SSD, and
BSSD refers to the bridge-based SSD. Our SSDs and their
important characteristics are listed in Table 1. It should be
noted that, even though these two architectures have been
built based on very different deign concepts, both PCIe
SSDs are geared toward offering shorter latency and bet-
ter throughput, and are designed mainly for workstations.
System Configuration. Our experimental system is
equipped with an Intel Quad Core i7 Sandy Bridge
2600 3.4 GHz processor and “16GB” memory (four 4GB
DDR3-1333Mhz memory). In this system, all of the func-
tions of the Northbridge reside on the CPU, and all SSDs
we tested are connected to Sandy Bridge through the PCIe
2.0 interface. We executed all our tests in NTFS, and
stored logs and output results into separate block devices
in a full asynchronous fashion; neither a system partition
nor a file system is created on our SSD test-beds. Note that
this configuration allows each SSD test-bed to be com-
pletely separated from the evaluation scenarios and tools.
Measurement Tool. We modified an Intel open source
storage tool, called Iometer [4], to capture time series of
performance characteristics and host-side memory usage.
To measure accurate memory usage at a given time, we
added a module in calling GlobalMemoryStatusEx into
Iomoter, which is an Window system function that allows
users to retrieve the current state of both physical and vir-
tual memory. In addition, in order to minimize interfer-

512B 4KB 16KB 128KB 1MB
0

1

2

3

6
7
8
9
10

M
em

or
y

U
sa

ge
 (G

B)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(a) Write

512B 4KB 16KB 128KB 1MB

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
em

or
y

U
sa

ge
 (G

B)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(b) Read

Figure 3: Memory usage.

0 2500 5000 7500 10000 12500
0.63
0.64
0.65
0.66
0.67 BSSD-Legacy BSSD-Queue

Time Flow (Second)

0.00

2.00

4.00

6.00

8.00

10.00

 FSSD-Legacy FSSD-Queue

M
em

or
y

U
sa

ge
 (G

B
)

(a) Memory usage comparison

0 400 800 1200 1600 2000 2400 2800 3200
15
30
45
60
75
90

Time Flow (Second)

 BSSD-Legacy BSSD-Queue
0 400 800 1200 1600 2000 2400 2800 3200

15
30
45
60
75
90

 FSSD-Legacy FSSD-Queue

C
PU

 U
sa

ge
 (%

)

(b) CPU usage comparison

Figure 4: Time series comparison for host resources usage
between FSSD (top) and BSSD (bottom) with the default
512B block-size access operation.
ence between successive evaluations, our modified Iome-
ter physically erases whole region of the underlying de-
vice through secure erase command in SMART, in every
evaluation step for writes.

4 Challenges in Resource Management
4.1 Memory Usage
Overall memory usage evaluation. One can see from
Figure 3 that FSSD needs at least 2GB memory for writes
and 1.5GB memory space for reads while BSSD requires
only 0.6GB memory space regardless of the I/O type and
size. As a result of flash software migration, the host
side kernel drivers require memory space in loading their
image and containing their in-memory structures. In ad-
dition, we believe that there are two main reasons why
FSSD consumes on average sixteen times more memory
space than BSSD. First, the direct file system [7] and mi-
grated flash software [1, 15, 10] require host-side memory
to maintain huge mapping tables. Second, the host-side
write buffer cache consumes memory space in hiding the
underlying flash memory complexity, such as garbage col-
lections, endurance [2] and intrinsic latency variation [12].
For instance, as shown in Figure 3, FSSD’s memory usage
varies based on access granularity and pattern, whereas
the BSSD’s memory usage is not different by them. This
is because, in the bridge-based SSD architecture, the table
is implemented in the SSD, and data processing is only
performed at the storage side.
Time series analysis. Figure 4a plots memory usage of
FSSD (top) and BSSD (bottom) over time. In this test,
we evaluated them with a 512B block access granular-
ity since all the system-level operations are block-based,
and the default block-size is 512B. In addition, we per-
formed the memory usage test based on two different I/O
access scenarios: 1) queue mode operation (using 128
queue entries) and legacy mode operation (submitting the
request whenever the device is available to serve an I/O
request). One can see from the figure that FSSD requires

512B 4KB 16KB 128KB 1MB
0
10
20
30
40
50
60
70
80
90
100

C
PU

 U
sa

ge
 (%

)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(a) Write

512B 4KB 16KB 128KB 1MB
0

10

20

30

40

50

60

C
PU

 U
sa

ge
 (%

)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(b) Read

Figure 5: CPU usage.

about 2GB memory space at the very beginning of the I/O
process for both queue and legacy mode operations. In-
terestingly, as the I/O process progresses, the amount of
memory usage keeps increasing in a logarithmic fashion
and reaches about 10GB. It should be noted that, consid-
ering that the target system is a workstation, we believe
that 10GB memory usage to manage only the underlying
SSDs may not be acceptable in many applications. In con-
trast, as shown in the bottom part of the figure, BSSD
keeps memory usage around 0.6GB over time. We be-
lieve that the reason why the memory usage of FSSD keep
increasing over time is because of the host-side address
mapping and caching. In particular, DFS/VFS [7] uses
a B-tree structure to map addresses between the physical
and virtual spaces, which tends to increase the memory
requirements of the mapping information by adding more
node entries to serve incoming I/O requests. We also be-
lieve that the huge memory usage is primarily caused by
host-side buffer caching.

4.2 CPU Usage
Overall CPU usage evaluation. Figures 5a and 5b give
CPU usage on the host-side in serving reads and writes,
respectively. Similar to memory usage analysis, FSSD
requires computation power about three times more than
BSSD, except for cases where access granularity is larger
than 16KB. We conjecture that one of main reasons why
FSSD requires higher CPU usage (52%∼87%) for finer
granular I/O accesses is that smaller size I/O requests
leads to an increase in the size of the address mapping ta-
ble lookup and update (or cache lines of host-side buffer).
In contrast, BSSD only consumes 20%∼30% for the same
I/O services. This is because the mapping table lookup
and update processing are performed on the storage-side.
Time series analysis. Figure 4b compares the CPU usage
of FSSD (top) and BSSD (bottom) under the workloads
that exhibit high number of default block size accesses.
As before, we evaluated our PCIe SSD test-beds with both
legacy and queue mode operations. FSSD consistently
consumes 60% of the cycles on the host-side CPU with
legacy mode operations, and I/O service with queue mode
operation requires 50% more CPU cycles than the legacy
mode. We believe that a CPU usage over 60% for just
I/O processing can degrade overall system performance.
In contrast, BSSD only uses about 20% CPU cycles irre-
spective of the I/O operation mode.

4.3 Challenges in System Performance
Overall performance comparison. It is hard to di-
rectly compare the microscopic performance character-
istics on the two different SSD architectures since their
flash software and platforms have different optimization

512B 4KB 16KB 128KB 1MB
0.0

0.6

1.2

1.8

N
or

m
al

iz
ed

 L
at

en
cy

 Write Seq. Write Rand.
 Read Seq. Read Rand.

(a) Latency

512B 4KB 16KB 128KB 1MB
0.0
0.6
1.2
1.8
2.4
3.0
3.6

N
or

m
al

iz
ed

 IO
PS

 Write Seq. Write Rand.
 Read Seq. Read Rand.

(b) IOPS

Figure 6: Latency and throughput comparison. Note that
all the latency and throughput of BSSD values are normal-
ized to corresponding values of FSSD.

0
1
2
3
4
5

0 250 500 750 1000
0

200000

400000

La
te

nc
y

(m
s)

 1 worker 4 workers 8 workers

IO
PS

Time Flow (Second)

(a) Performance

0.0
0.8
1.6
2.4
3.2
4.0

0 250 500 750 10000
20
40
60
80

100

M
em

or
y

(G
B)

 1 worker 4 workers 8 workers

C
PU

 U
sa

ge
 (%

)

Time Flow (Second)

(b) Resource

Figure 7: FSSD performance characteristics on the multi-
core environment.

2
8
32
128
512

0 250 500 750 1000
0

7000
14000
21000
28000
35000

La
te

nc
y

(m
s)

 1 worker 4 workers 8 workers

IO
PS

Time Flow (Second)

(a) Performance

600
620
640
660
680
700

0 250 500 750 10000
20
40
60
80
100

M
em

or
y

(M
B)

 1 worker 4 workers 8 workers

C
PU

 U
sa

ge
 (%

)

Time Flow (Second)

(b) Resource

Figure 8: BSSD performance characteristics on the multi-
core environment.

techniques. For example, we observed that BSSD’s ran-
dom writes with default block-size accesses exhibit 7.2
times better performance compared to sequential writes,
which is opposite to common expectation on most modern
SSDs. We believe that this is because BSSD puts incom-
ing default-block size I/O requests into its internal 2GB
DRAM buffer and additional non-volatile SRAM [3], but
forwards the large sized I/O requests to the underlying
flash memory, which in turn shows the unexpected per-
formance. Consequently, we compare the overall perfor-
mances of BSSD and FSSD. Figures 6a and 6b compare
the latency and IOPS between FSSD and BSSD. We see
that most latency values observed with BSSD are on av-
erage 39% worse than FSSD, which is opposite to the in-
formation one could obtain from the datasheets of these
SSDs (see Table 1). We believe multiple controllers, in-
direct address mapping modules, and protocol conversion
overheads of BSSD on data path from CPU to flash mem-
ory collectively contribute to this longer latency.
Multi-core system environment. To evaluate the perfor-
mance impact in a multi-core system environment, we ex-
ecuted different number of I/O processing workers (rang-
ing between 1 and 8) on FSSD and BSSD in parallel (with
512B granularity random access upon 128 queue entries).
The results considering FSSD and BSSD as shared re-
sources are plotted in Figures 7 and 8. The latency of both
FSSD and BSSD increases as we increase the number of

0.03
2.4
3.2
4.0

0 200 400 600 800 1000
0.00
0.07
1.6
2.4
3.2
4.0 Sequential

Queue Legacy
Random

La
te

nc
y

(m
s)

Time Flow (Second)

(a) FSSD

01
2
20
40
60
80

0 250 500 750 1000
0
6

200
400
600
800
1000

Sequential

Random
Queue Legacy

La
te

nc
y

(m
s)

Time Flow (Second)

(b) BSSD

Figure 9: Queueing latency comparison observed by
FSSD (a) and BSSD (b).
workers. Specifically, latency values with eight workers
on FSSD and BSSD are worse than four workers by 118
% and 108%, respectively and worse than single worker
by 289% and 704%, respectively. Throughput trends are a
bit different compared to latency trends. While BSSD has
no IOPS benefits by increasing the number of workers, the
IOPS of FSSD increases. The IOPS of four workers are
2.2 times better than single worker evaluation. However,
the advantage of many workers decreases because of the
higher memory and CPU usages. In contrast, BSSD shows
similar IOPS and host-side resource usages irrespective of
the number of workers employed.
Queuing latency. Device-level queueing mechanisms are
one of the crucial components, which can improve storage
throughput. For example, NVMe offers 64K queue en-
tries [5]. SAS/SATA [14, 6] also provides a device-driven
queue mechanism, which allows the storage devices to de-
termine the order of I/O request executions without any
host-side software interrupts. However, we observed that
the latency values with a queuing method significantly
drop irrespective of the SSD architecture. As shown in
Figure 9, the random and sequential write latencies of
FSSD are longer than legacy mode latencies by about 106
times. Similarly, BSSD resulted in 99 times worse latency
with the queue mode operation than the one with legacy
mode. We believe that these significant latency drops with
the queue mode operation would be a problematic obsta-
cle to bring flash memory closer to the memory-processor
subsystem.
Garbage collections. Figures 7a and 8a (with the default
block size random accesses upon 128 queue entries) also
reveal the difference between FSSD and BSSD regard-
ing the management of the underlying garbage collections
(GCs). While FSSD offers very sustained performance,
the latency and throughput values of BSSD drop starting
with the half of I/O execution. This is mainly because of
GCs, which are a series of SSD internal tasks reading data
from old flash block(s), writing them to new block(s), and
erasing the old block(s). This performance drop caused
by GCs is also referred to as write cliff [12]. One of
the reasons behind the sustained performance of FSSD is
the ample host-side buffer and the optimized flash soft-
ware stack. It should be noted that BSSD also employs a
2GB internal memory as buffer, but it cannot hide the GC
overheads, which means that the sustained performance of
FSSD does not solely come from the available buffer.

5 System Implication and Future Work
Co-operative approach. In summary, we observed that,
while the performance of from-scratch SSD is better than
the bridge-based SSD, the former requires huge host-side
resources, which may not be acceptable in many cases.

We believe that an approach that partially migrates flash
software functionalities from SSD to the host-side can be
a promising mid-way option in achieving higher perfor-
mance and lower host-side resource consumption. For ex-
ample, FTL partitioning [8] moves only the address map-
ping module rather than moving the whole FTL cores
(e.g., buffer cache, wear-leveler). Similarly the middle-
ware and firmwmare cooperative approaches [10] only
move the garbage collector, and I/O scheduler [9] is aware
of internal parallelism from the storage-side to the host-
side, which requires less system memory resources.
All-flash storage arrays. PCIe SSD based all-flash arrays
or SSD RAID systems can directly experience the host-
side resource challenges we demonstrated so far. For ex-
ample, if system designers build a 5-RAID system based
on FSSD, it requires approximately 50GB memory space,
and they have to carefully design the processors to man-
age the underlying five FSSDs. If the designers build the
RAID with BSSD and intend to improve performance by
striping all incoming I/O requests over the five BSSDs,
they need to carefully manage GCs globally because the
probability that the system could suffer from a straggler
performing GCs significantly increases.
Future work. One can envision a a variety of flash soft-
ware implementations on the two representative SSD ar-
chitectures studied. In our future work, we want to explore
such implementations. We also plan to analyze the sys-
tem characteristics related to the host-side computational
resources such as interrupt handling methods, buffer man-
agement strategies and zero-copy efficiency upon the PCIe
SSD architectures.

References
[1] ARPACI-DUSSEAU, A. C., ET AL. Removing the costs

of indirection in flash-based ssds with namelesswrites. In
Proc. of HotStorage (2010).

[2] BOBOILA, S., AND DESNOYERS, P. Write endurance in
flash drives: Measurements and analysis. In Proc. of FAST
(2010).

[3] CYPRESS. CY14B256LA nvSRAM. 2012.
[4] INTEL. Iometer User’s Guide. 2003.
[5] INTEL. NVM express revision 1.0.
[6] INTEL, AND SEAGATE. Serial ATA NCQ.
[7] JOSEPHSON, Y., ET AL. DFS: A file system for virtualized

flash storage. In Proc. of FAST (2010).
[8] JUNG, M., ET AL. Cooperative memory management. In

US Patent 2008189485 (2008).
[9] JUNG, M., ET AL. Physically addressed queueing (PAQ):

Improving parallelism in solid state disks. In ISCA (2012).
[10] JUNG, M., AND KANDEMIR, M. Middleware - firmware

cooperation for high-speed solid state drives. In Proc. of
Middleware D&P (201).

[11] JUNG, M., AND KANDEMIR, M. An evaluation of dif-
ferent page allocation strategies on high-speed SSDs. In
HotStorage (2012).

[12] JUNG, M., AND KANDEMIR, M. Revisiting widely held
ssd expectations and rethinking system-level implications.
In Proc. of SIGMETRICS (2013).

[13] KOLLER, R., ET AL. Write policies for host-side flash
caches. In Proc. of FAST (2013).

[14] T10. SCSI storage interfaces.
[15] ZHANG, Y., ET AL. De-indirection for flash-based ssds

with namelesswrites. In Proc. of FAST (2012).

