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Abstract the cloud and to other devices, and detecting and resolv-

Mobile applications are becoming increasingly dat?ipg conflicts. In a mobile marketplace targeted towards a

centric — often relying on cloud services to store, sha arge developer community, expecting every developer to

an expert at building infrastructure for data syncing is
;n:n;;giﬁg E)it;' Stﬁfgg:egfl?ﬁjrzebivf (té).;r’eqsu(gﬂﬂ t ideal. Mobile developer; shquld be able to focus on
databases, file systems), as well as data synchronizaﬂi'@r‘?lemem'ng the core funcponaht_y of apps. )
with cloud services. Developers have to address com#PP SDKs for both Android and iOS provide two kinds
mon issues such as data packaging, handling netwékdata storage abstractions to developers: table storage
failures, supporting disconnected operations, propagdf! small, structured data, and file systems for larger, un-
ing changes, and detecting and resolving conflicts. fguctured objects such as images and documents.
free mobile developers from this burden, we are building FOr some mobile apps it is sufficient to synchronize
Simba a platform to rapidly develop and deploy dataonly structured da‘Fa; for example, _RSS qnd News Read-
centric mobile apps. Simba provides a unified storage afitf (FeedGoal), simple note sharing (SimpleNote), and
synchronization API for both structured data and unstru€9me location-based services (Foursquare). Recent sys-
tured objects. Apps can specify a data model spanning #Ms provide synchronized table stores [2, 4, 11] to aid
bles and objects, and atomically sync such data with tAch apps; iOS also provides synchronization of applica-
cloud without worrying about network disruptions. Simb#on’s structuredCore Datausing iCloud.

is also frugal in consuming network resources. For other apps, synchronization of file data alone is suf-
ficient; for example, SugarSync, Dropbox, and Box. Ser-
1 Introduction vices such as Google Drive and iCloud simplify data man-

agement for mobile apps requiring file synchronization.

Mobile devices are fast becoming the predominant meanglowever, of the apps that require data sync, the ma-
of accessing the Internet. For a growing user popul@!ity use both structurednd object data, typically with
tion, wired desktops are giving way to smartphones afp data (in SQLite tables) and object data such as files,
tablets using wireless mobile networks. A recent rep&@che objects, and logs (in the file system). Table 1 lists a
by Cisco [1] forecasts 66% annual growth of mobile dafgw popular categories of such apps. As an example, apps
traffic over the next 4 years. Mobile platforms such 48r collaborative document editing have multiple readers
iOS, Android, and Windows Phone are built upon a mod@nd writers simultaneously editing and synchronizing the
of local apps that work with web content. While web apgme document. Such apps require the documents and
exist, a majority of smartphone usage is driven throudfteir metadata, both to be synchronized frequently and
native apps made available through their respective mg@nsistently; in current mobile systems, the app developer
ketplaces. Google and Apple’'s marketplaces each hévéesponsible for manually handling such dependencies,
around 700,000 apps available [3]. making the app prone to partial data unavailability and an
A large number of mobile apps rely on cloud infradnefficient usage of the network.

tructure for data storage and sharing. At the same timeEXisting approaches to synchronization thus have sev-
apps need to use local storage to deal with intermitteigl shortcomings. First, it is onerous for the app develop-
connectivity and high latency of network access. LocfIS to maintain datain two separate services, possibly with
storage is frequently used as a cache for cloud data, or §&ffgrent sync semantics. Second, even if they do, apps
staging area for locally generated data. Traditionally; m@annot easily build a data model that requires the table
bile app developers requiring such synchronization ha#f@ta to rely onthe object data and vice versa. For example,
to roll out their own implementations, which often havany dependency between table and file system data will
similar requirements across apps: managing data trafgve to be handled by the app. Third, by having two sep-

fers, handling network failures, propagating changes &ate conduits for data transfer over a wireless network,
apps do not benefit from coalescing and compression to

* Author names in alphabetical order the extent possible by combining the data. To address




Application Type | Structured Data | Object Data | Example Apps |

Photo Sharing Album info, location Images Instagram, Gallery, Picasa

\oice Recording Tags, timestamps Audio files iTalk, VoiceRecorder HD, Smart Voice
EBook Reading Bookmarks, catalog info MOBI, PUB files Google Play Books, Kindle Mobile, iBook
Video Editing Tags, location Raw and edited video Magisto, iMovie, Vimeo

Music Player Gracenote db, album info, ratings Music files Amazon MP3, iTunes, NPR
Document Manager| Notes, keywords, permissions| Documents, web pages Quickoffice, Evernote, OneNote
Social Networking News feeds, friend lists Photos, videos Google+, Facebook, Badoo
Continuous Sensing  Checkpoint info, sensor data | Sensor logs, snapshots Torque, SportsTracker, Endomondo
Email Emails, message headers, labels Attachments Mailbox, Outlook, Gmail

Table 1: Synchronization of Structured and Object Data by Mobile Apps. Table lists categories (along with examples) of
popular free and paid apps that require cloud synchronizatilong with the components of the apps that require stredtvs. object data

these shortcomings we propose Simba, a unified table sadoly, there have been several attempts to unify file sys-
object synchronization platform specific for mobile apfems and databases, albeit with different goals. One of
development; Simba applies several optimizations to effie earlier works, the Inversion File System [9], uses a

ciently sync data over scarce network resources. transactional database, Postgres, to implement a file sys-
tem which provides transactional guarantees, rich queries

2 Background and fine-grained versioning. Amino [18] provides ACID
semantics to a file system by using BerkeleyDB internally.

2.1 Mobile Data Sync Services TableFS [13] is a file system that internally uses separate

Data synchronization for mobile devices has been Stusé(_)rage pools for metadata (an LSM tree) and files (the lo-

ied in the past [5,7]. Coda [7] was one of the earliec?l file system). It; intent is to provide petter overalllpgr—
ormance by making metadata operations more efficient

syste_ms to motlva_\te the problt?‘m Of. nlalntalmng CONSIS the disk. Recently, KVFS [14] was proposed as a file
tent file data for disconnected “mobile” users. Other re- ! .
. ; I ' System that stores file data and file-system metadata both
search, particularly in the context of distributed file sys- . .
. . . in a single key—value store built on top of VT-Trees, a
tems, has looked at several issues in handling data access : -
. . . . . variant of LSM trees. VT-Tree by itself enables efficient
for mobile clients, including caching [16], and weakly- . . .
. o storage for objects of various sizes.
consistent replication [12, 15].
A few systems provide a CRUD (Create, Read, Up-
date, Delete) API to a synchronized table store for mobge3  Requirements for Mobile Data Sync
apps. Mobius [4] and Parse [11] provide a generic table _ _ o
interface for single applications, while 1zzy [2] (devetap While systems discussed above provide helpful insights
by us) works along multiple apps reaping additional népto data sync, and in using database techniques for de-
work benefits through delay-tolerant data transfer. Nosigning file systems, building a storage system for mo-
of these systems support large object synchronization.bile platforms introduces new requirements. First, mo-
One option could be to embed large objects inside thée data storage needs to &nc friendly Since frequent
tables of these systems. Even though such systems §l@id sync is necessary, and disconnected operation is of-
port binary objects (BLOBs), there is an upper limit t&n the norm, the system must support efficient means to
the size of the object that can be stored efficiently. Alsdgtermine changes to app data between synchronization
BLOBs cannot be modified in-place; objects would thitempts. Second, traditional file systems are not designed
need to be split into smaller chunks and stored in mulith mobile-specific requirements. Features such as hi-
ple rows, requiring further logic to map large objects t@rarchical layout and access control are less relevant for
multiple rows and manage their synchronization. mobile usage since data typically exists in application si-
Services such as Google Drive, Box, and Dropbox dg$ (both in iOS and Android); data sharing across apps is
primarily intended for backup and sharing oser file made possible through well-defined channelg{ Con-
data. Even though they provide an API for third-parfgnt Providers in Android), and not via a file system.
apps (not just users), it only provides file sync. iCloud Since the majority of user data is accessed through
provides both file and key-value sync APIs, but the a@®ps, a mobile OS needs a storage system that is more
still has to manage them separately. developer-friendlyhan user, with APIs that ease app de-

velopment; we thus have the following design goals:

2.2 Unifying File Systems and Databases * Easy application development:provide app develop-
ers with a simple API for storing, sharing, and synchro-

Simba builds upon ideas from prior work to provide aizing all application data, structured or unstructured.
unified storage API for structured and object data. Ndhe synchronization semantics should be well-defined,



Mobile App | | Mobile App CRUD (on tables and objects)
- createTable(table, schema, properties)
/ [ Notifications/Conflicts updateTable(table, properties)
i Simba Client dropTable(table)
Simba Client .
API la-- SimbaSync V.o, . . )
"] W Manager writeData(table, tabledata, objectdata, atomicsync)
.......... T T updateData(table, tablelata, objectdata, selection,
E Table Store Object Store E Data ._._..i Noti . at_omlcsync)_
: : Shared TCP readData(table, projection, selection)
Simba Client Data Store : Comnection | > deleteData(table, selection)

Table and Object Synchronization
registerWriteSync(table, tahleeriod, tablesyncpref,

objectperiod, objectsyncpref)
even under disconnection, and if desired, should preserve unregisterwriteSync(table)

Figure 1:Simba Client Architecture.

atomicity of updates. writeSyncNow(table)
° Sync_—friendly da.ta |a.-y.0Ut store app data in a man- registerReadSync(table, tabfeeriod, tablesyncpref,
ner which makes it efficient to read, query, and identify objectperiod, objectsyncpref)
changes for synchronization with the cloud. unregisterReadSync(table)

readSyncNow(table)

o Efficient network data transfer: use as little network ) .
resources as possib]e for transferring data as well as C&ble 2:Simba Client API. Operations available to mobile apps
trol messagese(g, notifications). for managing table and object data.

ally control the maximum delay on a per-table basis; for
3 Simba Design example, apps with latency sensitive data may choose to
specify a low or no delay value for certain data.

Simba consists of two components: a client app provid-
ing a data API to other mobile apps, and a scalable clogq_l_ Data Model
store. Figure 1 shows the simplified architecture of the
client, called Simba Client; it provides apps with acce&mba has a data model that unifies structured table stor-
to their table and object data, manages a local repl@ge and object storage; we chose this model to address
of the data on the mobile device to enable disconnectbe needs of typical cloud-dependent mobile apps. The
operation, and communicates with the cloud to push I8imba Client API allows the app to write object data and
cal changes and receive remote changes. The server-agiociated table data at the same time. When reading data,
component, called Simba Cloud, provides a storage strse app can look up objects based on queries. While per-
tem used by the different mobile users, devices, and appdted, objects are not required; Simba can be used for
Simba Cloud mirrors most of the client functionality anchanaging traditional tabular data.
additionally provides versioning, snapshots, and dedupli Table 2 lists the Simba Client API pertaining to table
cation. In this paper we focus on the design of the cliemanagement, data operations, and synchronization. For
and only discuss the server as it pertains to the client dpe sake of brevity, we do not discuss notifications and
eration (Figure 1 omits the server architecture). conflict resolution any further. There are two major goals
Simba Client is a daemon accessed by mobile apps faa the API: 1) relieve the app developer from the bur-
a local RPC mechanism. We use this approach insteadiefi of network management and data transfer 2) provide
linking directly with the app to be able to manage dataunified logical namespace over tables and objects with-
for all Simba-enabled apps in one central store and to usé the app developer having to deal with table and object
a single TCP connection to the cloud. The local storag®rage. Note that the described API providesreason-
is split into a table store and an object store (describable way to express the relationship between unstructured
later). SimbaSync implements the data sync logic; it us&sd structured data but is not the only possible represen-
the two stores together to determine the changes that niegidn; the important aspect is to provide the desired 1/0
to be synced to the server. For downstream sync, Siamd sync semantics, which it does.
baSync is responsible for storing changes obtained fronThe first set of methods, label&@RUD, are database-
the server into the local stores. SimbaSync also handike operations that are popular among Android and iOS
conflicts and generates notifications through API upcaltievelopers. In our design, we extend these calls to in-
The Network Manager handles the network connectivitjude object data. In our implementation, object data
and implements the network protocol required for synis accessed through the Java stream abstraction. For in-
ing; it also uses coalescing and delay-tolerant schedulstgnce, when new rows are inserted, the app needs to
to judiciously use the cellular radio. Apps can individuprovide anlnputStreamfor each contained object from



Table Store Table
Version

Rowld | Name Photo
! Simba | ablfd 1] simba |21 1] simba |21 1] simba |21
2 Nala teze 2 | Naa 22 2 | Naa 22 2 | <peleted> | 23
3 Kopa 20 3 Kopa 20 3 Kiara 24
Row Value Version 4 Kovu 25
i id
<1fc2e,0> |<1fc2e,1> |<1fc2e,2> |<ablfd,0> <abifd,1> ‘ Client/Server Client Server
Object Store (@) (b)

Figure 2: Simba Client Data Store. Table Store is imple- Figure 3: Simba synchronization. (a) Initial synchronized
mented using a SQL database and Object Store with a key-stdue State. (b) Changes on the server are assigned sequensimngebased
based on LSM tree. Objects are split into fixed-size chunks on table version. During synchronization, table versiaescampared to
determine which changes need to be sent to client (showrirnbrgd).
which the data store can obtain the object data. Using
streams is important for memory management; it is imbject’s data is accessed by looking up the first chunk of
practical to keep entire objects in memory. A stream alfie object and iterating the key-value store in key order.
straction for objects also allows seeking and partial rea@litting objects into chunks allows Simba to do network-
and writes. ThevriteData()andupdateData(plways up- efficient, fine-grained sync.
date the local store atomically, but they have an additionalAn LSM tree-based data structure [10] is suitable for
atomicsyncflag, which indicates whether the entire rowbject data because it provides log-structured writes, re-
set (including their objects) should be atomically syncesilting in good throughput for both appends and over-
to the cloud; we discuss this further in Section 3.3. Cumrites; optimizing for random writes is important for mo-
rently, our design allows one or more object data to be dnile apps [6]. The log of the LSM tree structure is used to
sociated with each row of structured data (one-to-onedgtermine changes that need to be synced. VT-Tree [14]
one-to-many mapping). Our current implementation doissa variation of LSM trees that can be more efficient; we
not support sharing of objects across rows (many-to-ona)sh to consider it in the future.
we will revisit this requirement in the future.

The second set of methods is used for specifying tt\g}e3
sync policies for read (downstream) and write (upstream)
sync; Simba syncs data periodically. In the downstrearch row in Simba is a single unit of syncing. As shown
direction, the server uses push notifications to indicaterigure 3, every table has an associated version number.
availability of new data and Simba Client is responsibi§henever a row is modified, added, or removed on the
for pulling data from the cloud; if there are no changesrver, the current version of the table is incremented and
to be synced, no notifications are sent. Table data and gsigned to the row. Thus, the table version is the high-
ject data can be synced with different policies. We discusst version among all of its rows and no two rows have
this further in Section 3.3writeSyncNow(andreadSync- the same version (this scheme is similar to the one pro-

SimbaSync

Now()allow an app to sync data on-demand. posed by Renessa al.[17] in the context of gossip pro-
tocols). During sync, the table versions of the client and
3.2 Simba Client Data Store the server are compared, and only rows having a higher

version than the client’s table version need to be sent to
The Simba Client Data Store (SDS) is responsible ftire client. Whenever a row is modified or added on the
storing app data on the mobile device’s persistent stelient, it is assigned a special version (-1), which marks
age. SDS needs to be efficient for storing objects of véiras a dirty row that hasn’t been assigned a version yet.
ied sizes and needs to provide primitives that are requi@dce a row is synced with the server, it is assigned a real
for efficient syncing. In particular, we need to be able tersion and the client’s table version is also updated to
quickly determine sub-object changes and sync them. indicate that the client and the server are synced up to a

Figure 2 shows the SDS data layout. Table storagep@rticular table version.

implemented using SQLite with an additional data type Atomicity and sync policies: Simba supports atomic
representing an object identifier, which is used as a key fymncing of an entire row (both table and object data) over
the object storage. Object storage is implemented usthg network; this is a stronger guarantee than provided
splitting objects into chunks and storing them in a keysy existing sync services. We are currently investigating
value store that supports range queries, for example, Lether forms of atomic updates, but in our prototype we do
elDB [8]. Each chunk is stored as a KV—pair, with thaot yet provide multi-row or multi-table atomicity.
key being a< object_id, chunk_number > tuple. An In practice, for network efficiency, mobile apps may



give up on atomic row sync. For example, a photo-sharifly Conclusions
app that uses Simba may want to sync album metadata
(e.g, photo name and location) more frequently than ph&s mobile apps become more cloud-connected, app de-
tos, restrict photo transfer over 3G, or fetch photos onfglopers frequently need to synchronize data between mo-
on-demand. Simba allows table and object data to hdule devices and the cloud. Existing solutions provide
separate sync policies. A sync policy specifies the fi@eans to sync either structured or object data separately,
quency of sync and the “minimum” choice of network tdut require the app to be responsible for consistency dur-
use. Simba also supports local-only tables (no sync), dR@l sync, and for judiciously using the mobile network.
sync-on-demand. We present Simba, a platform to rapidly develop and de-
For downstream sync, even when different table aRépy data-centric mobile apps, providing a unified table
object sync policies are used, Simba Client can providgd object API to ease app development. Simba pro-
a consistent view of data to the app. If the object data\§les background data synchronization with flexible poli-
still unavailable or stale by the time a client app readsCies that suit a large class of mobile apps while allowing
row, the call will block until the object is fetched from theefficient utilization of scarce network resources. We are
cloud. Similar semantics are infeasible for upstream sy@ié'rently developing a Simba Client Android prototype, a
since the server cannot assume client availability. Ho@oud storage system, and the network data transfer proto-
ever, some apps may still prefer to do non-atomic uBOI for efficient SynChronization; in this paper we present
dates in the upstream direction for the sake of netwd?Kr €arly work on the Simba Client.
efficiency/expediency; this choice is left to the app via the
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