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Abstract
Mobile applications are becoming increasingly data-
centric – often relying on cloud services to store, share,
and analyze data. App developers have to frequently
manage the local storage on the device (e.g., SQLite
databases, file systems), as well as data synchronization
with cloud services. Developers have to address com-
mon issues such as data packaging, handling network
failures, supporting disconnected operations, propagat-
ing changes, and detecting and resolving conflicts. To
free mobile developers from this burden, we are building
Simba, a platform to rapidly develop and deploy data-
centric mobile apps. Simba provides a unified storage and
synchronization API for both structured data and unstruc-
tured objects. Apps can specify a data model spanning ta-
bles and objects, and atomically sync such data with the
cloud without worrying about network disruptions. Simba
is also frugal in consuming network resources.

1 Introduction

Mobile devices are fast becoming the predominant means
of accessing the Internet. For a growing user popula-
tion, wired desktops are giving way to smartphones and
tablets using wireless mobile networks. A recent report
by Cisco [1] forecasts 66% annual growth of mobile data
traffic over the next 4 years. Mobile platforms such as
iOS, Android, and Windows Phone are built upon a model
of local apps that work with web content. While web apps
exist, a majority of smartphone usage is driven through
native apps made available through their respective mar-
ketplaces. Google and Apple’s marketplaces each have
around 700,000 apps available [3].

A large number of mobile apps rely on cloud infras-
tructure for data storage and sharing. At the same time,
apps need to use local storage to deal with intermittent
connectivity and high latency of network access. Local
storage is frequently used as a cache for cloud data, or as a
staging area for locally generated data. Traditionally, mo-
bile app developers requiring such synchronization have
to roll out their own implementations, which often have
similar requirements across apps: managing data trans-
fers, handling network failures, propagating changes to
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the cloud and to other devices, and detecting and resolv-
ing conflicts. In a mobile marketplace targeted towards a
large developer community, expecting every developer to
be an expert at building infrastructure for data syncing is
not ideal. Mobile developers should be able to focus on
implementing the core functionality of apps.

App SDKs for both Android and iOS provide two kinds
of data storage abstractions to developers: table storage
for small, structured data, and file systems for larger, un-
structured objects such as images and documents.

For some mobile apps it is sufficient to synchronize
only structured data; for example, RSS and News Read-
ers (FeedGoal), simple note sharing (SimpleNote), and
some location-based services (Foursquare). Recent sys-
tems provide synchronized table stores [2, 4, 11] to aid
such apps; iOS also provides synchronization of applica-
tion’s structuredCore Datausing iCloud.

For other apps, synchronization of file data alone is suf-
ficient; for example, SugarSync, Dropbox, and Box. Ser-
vices such as Google Drive and iCloud simplify data man-
agement for mobile apps requiring file synchronization.

However, of the apps that require data sync, the ma-
jority use both structuredandobject data, typically with
app data (in SQLite tables) and object data such as files,
cache objects, and logs (in the file system). Table 1 lists a
few popular categories of such apps. As an example, apps
for collaborative document editing have multiple readers
and writers simultaneously editing and synchronizing the
same document. Such apps require the documents and
their metadata, both to be synchronized frequently and
consistently; in current mobile systems, the app developer
is responsible for manually handling such dependencies,
making the app prone to partial data unavailability and an
inefficient usage of the network.

Existing approaches to synchronization thus have sev-
eral shortcomings. First, it is onerous for the app develop-
ers to maintain data in two separate services, possibly with
different sync semantics. Second, even if they do, apps
cannot easily build a data model that requires the table
data to rely on the object data and vice versa. For example,
any dependency between table and file system data will
have to be handled by the app. Third, by having two sep-
arate conduits for data transfer over a wireless network,
apps do not benefit from coalescing and compression to
the extent possible by combining the data. To address
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Application Type Structured Data Object Data Example Apps

Photo Sharing Album info, location Images Instagram, Gallery, Picasa
Voice Recording Tags, timestamps Audio files iTalk, VoiceRecorder HD, Smart Voice
EBook Reading Bookmarks, catalog info MOBI, PUB files Google Play Books, Kindle Mobile, iBooks
Video Editing Tags, location Raw and edited video Magisto, iMovie, Vimeo
Music Player Gracenote db, album info, ratings Music files Amazon MP3, iTunes, NPR
Document Manager Notes, keywords, permissions Documents, web pages Quickoffice, Evernote, OneNote
Social Networking News feeds, friend lists Photos, videos Google+, Facebook, Badoo
Continuous Sensing Checkpoint info, sensor data Sensor logs, snapshots Torque, SportsTracker, Endomondo
Email Emails, message headers, labels Attachments Mailbox, Outlook, Gmail

Table 1:Synchronization of Structured and Object Data by Mobile Apps. Table lists categories (along with examples) of

popular free and paid apps that require cloud synchronization, along with the components of the apps that require structured vs. object data

these shortcomings we propose Simba, a unified table and
object synchronization platform specific for mobile app
development; Simba applies several optimizations to effi-
ciently sync data over scarce network resources.

2 Background

2.1 Mobile Data Sync Services

Data synchronization for mobile devices has been stud-
ied in the past [5, 7]. Coda [7] was one of the earliest
systems to motivate the problem of maintaining consis-
tent file data for disconnected “mobile” users. Other re-
search, particularly in the context of distributed file sys-
tems, has looked at several issues in handling data access
for mobile clients, including caching [16], and weakly-
consistent replication [12,15].

A few systems provide a CRUD (Create, Read, Up-
date, Delete) API to a synchronized table store for mobile
apps. Mobius [4] and Parse [11] provide a generic table
interface for single applications, while Izzy [2] (developed
by us) works along multiple apps reaping additional net-
work benefits through delay-tolerant data transfer. None
of these systems support large object synchronization.

One option could be to embed large objects inside the
tables of these systems. Even though such systems sup-
port binary objects (BLOBs), there is an upper limit to
the size of the object that can be stored efficiently. Also,
BLOBs cannot be modified in-place; objects would thus
need to be split into smaller chunks and stored in multi-
ple rows, requiring further logic to map large objects to
multiple rows and manage their synchronization.

Services such as Google Drive, Box, and Dropbox are
primarily intended for backup and sharing ofuser file
data. Even though they provide an API for third-party
apps (not just users), it only provides file sync. iCloud
provides both file and key-value sync APIs, but the app
still has to manage them separately.

2.2 Unifying File Systems and Databases

Simba builds upon ideas from prior work to provide a
unified storage API for structured and object data. No-

tably, there have been several attempts to unify file sys-
tems and databases, albeit with different goals. One of
the earlier works, the Inversion File System [9], uses a
transactional database, Postgres, to implement a file sys-
tem which provides transactional guarantees, rich queries,
and fine-grained versioning. Amino [18] provides ACID
semantics to a file system by using BerkeleyDB internally.
TableFS [13] is a file system that internally uses separate
storage pools for metadata (an LSM tree) and files (the lo-
cal file system). Its intent is to provide better overall per-
formance by making metadata operations more efficient
on the disk. Recently, KVFS [14] was proposed as a file
system that stores file data and file-system metadata both
in a single key–value store built on top of VT-Trees, a
variant of LSM trees. VT-Tree by itself enables efficient
storage for objects of various sizes.

2.3 Requirements for Mobile Data Sync

While systems discussed above provide helpful insights
into data sync, and in using database techniques for de-
signing file systems, building a storage system for mo-
bile platforms introduces new requirements. First, mo-
bile data storage needs to besync friendly. Since frequent
cloud sync is necessary, and disconnected operation is of-
ten the norm, the system must support efficient means to
determine changes to app data between synchronization
attempts. Second, traditional file systems are not designed
with mobile-specific requirements. Features such as hi-
erarchical layout and access control are less relevant for
mobile usage since data typically exists in application si-
los (both in iOS and Android); data sharing across apps is
made possible through well-defined channels (e.g., Con-
tent Providers in Android), and not via a file system.

Since the majority of user data is accessed through
apps, a mobile OS needs a storage system that is more
developer-friendlythan user, with APIs that ease app de-
velopment; we thus have the following design goals:

• Easy application development:provide app develop-
ers with a simple API for storing, sharing, and synchro-
nizing all application data, structured or unstructured.
The synchronization semantics should be well-defined,
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Figure 1:Simba Client Architecture.

even under disconnection, and if desired, should preserve
atomicity of updates.

• Sync-friendly data layout: store app data in a man-
ner which makes it efficient to read, query, and identify
changes for synchronization with the cloud.

• Efficient network data transfer: use as little network
resources as possible for transferring data as well as con-
trol messages (e.g., notifications).

3 Simba Design

Simba consists of two components: a client app provid-
ing a data API to other mobile apps, and a scalable cloud
store. Figure 1 shows the simplified architecture of the
client, called Simba Client; it provides apps with access
to their table and object data, manages a local replica
of the data on the mobile device to enable disconnected
operation, and communicates with the cloud to push lo-
cal changes and receive remote changes. The server-side
component, called Simba Cloud, provides a storage sys-
tem used by the different mobile users, devices, and apps.
Simba Cloud mirrors most of the client functionality and
additionally provides versioning, snapshots, and dedupli-
cation. In this paper we focus on the design of the client
and only discuss the server as it pertains to the client op-
eration (Figure 1 omits the server architecture).

Simba Client is a daemon accessed by mobile apps via
a local RPC mechanism. We use this approach instead of
linking directly with the app to be able to manage data
for all Simba-enabled apps in one central store and to use
a single TCP connection to the cloud. The local storage
is split into a table store and an object store (described
later). SimbaSync implements the data sync logic; it uses
the two stores together to determine the changes that need
to be synced to the server. For downstream sync, Sim-
baSync is responsible for storing changes obtained from
the server into the local stores. SimbaSync also handles
conflicts and generates notifications through API upcalls.
The Network Manager handles the network connectivity
and implements the network protocol required for sync-
ing; it also uses coalescing and delay-tolerant scheduling
to judiciously use the cellular radio. Apps can individu-

CRUD (on tables and objects)
createTable(table, schema, properties)
updateTable(table, properties)
dropTable(table)

writeData(table, tabledata, objectdata, atomicsync)
updateData(table, tabledata, objectdata, selection,

atomic sync)
readData(table, projection, selection)
deleteData(table, selection)

Table and Object Synchronization
registerWriteSync(table, tableperiod, tablesyncpref,

object period, objectsyncpref)
unregisterWriteSync(table)
writeSyncNow(table)

registerReadSync(table, tableperiod, tablesyncpref,
object period, objectsyncpref)

unregisterReadSync(table)
readSyncNow(table)

Table 2:Simba Client API. Operations available to mobile apps

for managing table and object data.

ally control the maximum delay on a per-table basis; for
example, apps with latency sensitive data may choose to
specify a low or no delay value for certain data.

3.1 Data Model

Simba has a data model that unifies structured table stor-
age and object storage; we chose this model to address
the needs of typical cloud-dependent mobile apps. The
Simba Client API allows the app to write object data and
associated table data at the same time. When reading data,
the app can look up objects based on queries. While per-
mitted, objects are not required; Simba can be used for
managing traditional tabular data.

Table 2 lists the Simba Client API pertaining to table
management, data operations, and synchronization. For
the sake of brevity, we do not discuss notifications and
conflict resolution any further. There are two major goals
for the API: 1) relieve the app developer from the bur-
den of network management and data transfer 2) provide
a unified logical namespace over tables and objects with-
out the app developer having to deal with table and object
storage. Note that the described API providesonereason-
able way to express the relationship between unstructured
and structured data but is not the only possible represen-
tation; the important aspect is to provide the desired I/O
and sync semantics, which it does.

The first set of methods, labeledCRUD, are database-
like operations that are popular among Android and iOS
developers. In our design, we extend these calls to in-
clude object data. In our implementation, object data
is accessed through the Java stream abstraction. For in-
stance, when new rows are inserted, the app needs to
provide anInputStreamfor each contained object from
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RowId Name Photo

Simba1 ab1fd

2 Nala 1fc2e

....

Table Store

<1fc2e,0> <1fc2e,1> <1fc2e,2> <ab1fd,0> <ab1fd,1> ....

Object Store

Figure 2: Simba Client Data Store. Table Store is imple-

mented using a SQL database and Object Store with a key-valuestore

based on LSM tree. Objects are split into fixed-size chunks

which the data store can obtain the object data. Using
streams is important for memory management; it is im-
practical to keep entire objects in memory. A stream ab-
straction for objects also allows seeking and partial reads
and writes. ThewriteData()andupdateData()always up-
date the local store atomically, but they have an additional
atomicsyncflag, which indicates whether the entire row
set (including their objects) should be atomically synced
to the cloud; we discuss this further in Section 3.3. Cur-
rently, our design allows one or more object data to be as-
sociated with each row of structured data (one-to-one or
one-to-many mapping). Our current implementation does
not support sharing of objects across rows (many-to-one);
we will revisit this requirement in the future.

The second set of methods is used for specifying the
sync policies for read (downstream) and write (upstream)
sync; Simba syncs data periodically. In the downstream
direction, the server uses push notifications to indicate
availability of new data and Simba Client is responsible
for pulling data from the cloud; if there are no changes
to be synced, no notifications are sent. Table data and ob-
ject data can be synced with different policies. We discuss
this further in Section 3.3.writeSyncNow()andreadSync-
Now()allow an app to sync data on-demand.

3.2 Simba Client Data Store

The Simba Client Data Store (SDS) is responsible for
storing app data on the mobile device’s persistent stor-
age. SDS needs to be efficient for storing objects of var-
ied sizes and needs to provide primitives that are required
for efficient syncing. In particular, we need to be able to
quickly determine sub-object changes and sync them.

Figure 2 shows the SDS data layout. Table storage is
implemented using SQLite with an additional data type
representing an object identifier, which is used as a key for
the object storage. Object storage is implemented using
splitting objects into chunks and storing them in a key–
value store that supports range queries, for example, Lev-
elDB [8]. Each chunk is stored as a KV–pair, with the
key being a< object id, chunk number > tuple. An
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Figure 3: Simba synchronization. (a) Initial synchronized

state. (b) Changes on the server are assigned sequential versions based

on table version. During synchronization, table versions are compared to

determine which changes need to be sent to client (shown herein bold).

object’s data is accessed by looking up the first chunk of
the object and iterating the key-value store in key order.
Splitting objects into chunks allows Simba to do network-
efficient, fine-grained sync.

An LSM tree-based data structure [10] is suitable for
object data because it provides log-structured writes, re-
sulting in good throughput for both appends and over-
writes; optimizing for random writes is important for mo-
bile apps [6]. The log of the LSM tree structure is used to
determine changes that need to be synced. VT-Tree [14]
is a variation of LSM trees that can be more efficient; we
wish to consider it in the future.

3.3 SimbaSync

Each row in Simba is a single unit of syncing. As shown
in Figure 3, every table has an associated version number.
Whenever a row is modified, added, or removed on the
server, the current version of the table is incremented and
assigned to the row. Thus, the table version is the high-
est version among all of its rows and no two rows have
the same version (this scheme is similar to the one pro-
posed by Renesseet al. [17] in the context of gossip pro-
tocols). During sync, the table versions of the client and
the server are compared, and only rows having a higher
version than the client’s table version need to be sent to
the client. Whenever a row is modified or added on the
client, it is assigned a special version (-1), which marks
it as a dirty row that hasn’t been assigned a version yet.
Once a row is synced with the server, it is assigned a real
version and the client’s table version is also updated to
indicate that the client and the server are synced up to a
particular table version.

Atomicity and sync policies: Simba supports atomic
syncing of an entire row (both table and object data) over
the network; this is a stronger guarantee than provided
by existing sync services. We are currently investigating
other forms of atomic updates, but in our prototype we do
not yet provide multi-row or multi-table atomicity.

In practice, for network efficiency, mobile apps may
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give up on atomic row sync. For example, a photo-sharing
app that uses Simba may want to sync album metadata
(e.g., photo name and location) more frequently than pho-
tos, restrict photo transfer over 3G, or fetch photos only
on-demand. Simba allows table and object data to have
separate sync policies. A sync policy specifies the fre-
quency of sync and the “minimum” choice of network to
use. Simba also supports local-only tables (no sync), and
sync-on-demand.

For downstream sync, even when different table and
object sync policies are used, Simba Client can provide
a consistent view of data to the app. If the object data is
still unavailable or stale by the time a client app reads a
row, the call will block until the object is fetched from the
cloud. Similar semantics are infeasible for upstream sync
since the server cannot assume client availability. How-
ever, some apps may still prefer to do non-atomic up-
dates in the upstream direction for the sake of network
efficiency/expediency; this choice is left to the app via the
atomicsyncflag.

3.4 Writing a Simba App

We now present an example of how one would write a
Simba app for Android, to show the ease of mobile app
development. We take the example of a photo-sharing
app that maintains name, date, and location for the pho-
tos. The app would first create the table by specifying its
schema (refer to the API in Table 2).

client.createTable("photos", "name VARCHAR,
date INTEGER, location FLOAT, photo OBJECT"
, Props.FULL_SYNC);

The next step is to register read and write sync with ap-
propriate parameters. In this example, the app wants to
sync photo metadata every 2 minutes over any network,
and photos every 10 minutes over wifi only.

client.registerWriteSync("photos", 120,
ConnState.ANY, 600, ConnState.WIFI);

client.registerReadSync("photos", 120,
ConnState.ANY, 600, ConnState.WIFI);

A photo can be added to the table withwriteData(). We
set atomicsync to false so that photo metadata and the
photo can be synced separately (non-atomically).

// get photo from camera
InputStream istream = getPhoto();
client.writeData("photos", new String[]{"name=

Kopa","date=15611511","location=24.342","
photo=?"},

new InputStream[] {istream}, false);

Finally, a photo can be retrieved using a query:

ResultSet rs = client.readData("photos",
new String[] {"photo"}, "name=Kopa");

// extract object’s stream from result set
InputStream istream = rs.get(0).getColumn(0);

4 Conclusions

As mobile apps become more cloud-connected, app de-
velopers frequently need to synchronize data between mo-
bile devices and the cloud. Existing solutions provide
means to sync either structured or object data separately,
but require the app to be responsible for consistency dur-
ing sync, and for judiciously using the mobile network.
We present Simba, a platform to rapidly develop and de-
ploy data-centric mobile apps, providing a unified table
and object API to ease app development. Simba pro-
vides background data synchronization with flexible poli-
cies that suit a large class of mobile apps while allowing
efficient utilization of scarce network resources. We are
currently developing a Simba Client Android prototype, a
cloud storage system, and the network data transfer proto-
col for efficient synchronization; in this paper we present
our early work on the Simba Client.
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