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Abstract

The rise of multi- and many-core architectures also
gave birth to a plethora of new parallel program-
ming models. Among these, the open industry
standard OpenCL addresses this heterogeneity of
programming environments by providing a unified
programming framework. The price to pay, how-
ever, is that OpenCL requires additional low-level
boilerplate code, when compared to vendor-specific
solutions, even if only simple operations are to be
performed. Also, the unified programming frame-
work does not automatically provide any guaran-
tees on performance portability of a particular im-
plementation. Thus, device-specific compute ker-
nels are still required for obtaining good perfor-
mance across different hardware architectures.

We address both, the issue of programmability
and portable performance, in this work: On the one
hand, a high-level programming interface for linear
algebra routines allows for the convenient specifica-
tion of the operations of interest without having to
go into the details of the underlying hardware. On
the other hand, we discuss the underlying genera-
tor for device-specific OpenCL kernels at runtime,
which is supplemented by an auto-tuning frame-
work for portable performance as well as with work
partitioning and task scheduling for multiple de-
vices.

Our benchmark results show portable perfor-
mance across hardware from major vendors. In all
cases, at least 75 percent of the respective vendor-
tuned library was obtained, while in some cases
we even outperformed the reference. We further
demonstrate the convenient and efficient use of our
high-level interface in a multi-device setting with
good scalability.

1 Introduction

In comparison to the optimization of implementa-
tions for traditional single-threaded architectures,
the introduction of multi- and many-core architec-
tures has lead to additional degrees of freedom
in optimizing implementations for the underlying
hardware platforms. In addition, various program-
ming models explicitly targeting many-core archi-
tectures such as CUDA, OpenCL, and OpenACC
were introduced. This plethora of choices, how-
ever, hampers the portability of codes as well as the
portability of performance to a much larger degree
than with traditional single-threaded architectures.

To address the portability of code, the Open Com-
puting Language (OpenCL) [1, 2] was introduced as
an open standard and is intended to provide a com-
mon programming model for devices from all major
vendors. In general, however, the performance of
a particular OpenCL code varies significantly, both
between hardware from different vendors as well
as between different hardware generations of the
same vendor. Since optimizing a compute kernel
for a specific architecture requires a thorough un-
derstanding of the underlying hardware, a system-
atic common tuning approach is clearly preferable
over manual tuning, both from a productivity and
from a maintainability point of view.

Our approach for addressing performance porta-
bility is based on an automatic generation of
compute kernels from common code templates
equipped with several parameters. Such an ap-
proach was successfully used in other application
domains such as signal processing [3] and is also
central in the linear algebra library ATLAS [4],
which is restricted to CPUs. Auto-tuning for GPUs
has been applied in previous work for a given GPU
architecture. Examples are optimizations of matrix-
matrix multiplications on NVIDIA GPUs [5] and



AMD GPUs [6]. We extend the techniques used
therein to obtain portable performance on multiple,
possibly heterogeneous devices for a large set of
linear algebra operations. This includes common
vector operations such as addition and dot prod-
ucts (level 1), matrix-vector products (level 2) and
matrix-matrix products (level 3) as defined in the
Basic Linear Algebra Subprogram (BLAS) standard.
Composite operations involving a split of workload
and communication between host and device such
as triangular solves are not explicitly considered in
this work, because they merely rely on calling opti-
mized kernels for matrix-vector and matrix-matrix
products internally.

The execution of one or more linear algebra ker-
nels involves the following steps: In the case of
multiple compute devices, the operations are de-
composed into device-specific tasks. These tasks
are managed by a centralized dynamic scheduler
described in further detail in Sec. 2, whose role is to
balance the workload among a user-provided set of
OpenCL devices, possibly from different vendors.
A similar scheduling framework, StarPU, was re-
cently incorporated into single- and multi-device
operations by other authors [7]. Optimized kernels
are generated for each device by a template-based
kernel generator described in Sec. 3 and then passed
to the OpenCL just-in-time compiler in order to pro-
duce an optimized executable. The respective pa-
rameters for the kernel generation are queried from
a built-in device database, which provides reason-
able default values for the particular architecture ob-
tained from the auto-tuning environment described
in Sec. 4. If desired, the library user can run the auto-
tuning process manually to obtain best performance
on the target device.

In addition to the auto-tuning capabilities, this
work extends a template-based compute kernel gen-
erator [8] to provide a convenient application pro-
gramming interface. It also includes fast OpenCL
compute kernels for CPUs, for which previous op-
timized implementations even got down to the as-
sembly level [9]. All implementations presented
here are freely available as open source in the Vi-
enna Computing Library (ViennaCL) [10].

2 The Scheduler

Even though modern GPUs provide high FLOP/s,
a frequent limitation often encountered in practice
is the relatively small amount of GPU RAM. More-
over, additional factors such as driver limitations
may reduce the maximum size of a single buffer to a
fraction of the GPU RAM only. On the other hand,
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Figure 1: Global execution model employed in this
work. In a multi-device setting, memory buffers are
split into sub-buffers in the main RAM. The sched-
uler splits operations on the full objects into oper-
ations on smaller objects and forwards these to the
device-specific kernel generators.

clever manual memory management is required for
the use of multiple GPUs in a single machine. To
tackle both difficulties, we employ a centralized, dy-
namic scheduler which receives the operation speci-
fied by the library user and then ensures the efficient
execution across multiple devices without exceed-
ing the available memory of each device.

Due to the limited bandwidth of the PCI-Express
bus, we impose the commonly used assumption of
a compute-limited setting for multiple compute de-
vices in the following. Even though this excludes
most sparse linear algebra operations, many popu-
lar algorithms such as eigenvalue computations or
LU factorizations are covered. In the case that the
whole buffer fits into the memory of a single device,
it can be directly allocated there and the operations
are not further decomposed.

As sketched in Fig. 1, we divide memory buffers
which are too large for a single device into chunks
stored in the main RAM. Matrices are decomposed
into smaller blocks, while vectors are decomposed
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Figure 2: General execution model of the kernel
generator. Static optimizations are first applied to
the arithmetic operations, and then device-specific
optimizations are applied. An optional auto-tuning
process can be triggered for each kernel.

into contiguous chunks. As an example, the data
in Fig. 1 is partitioned such that the addition of two
vectors and the multiplication of two matrices is
carried out by three devices. Since these two op-
erations are independent, the scheduler dispatches
them such that they are computed concurrently by
the three devices.

To achieve a high load on all available devices, we
convert each BLAS operation to a task graph [11]
acting on the various sub-buffers. The execution
and dynamic load balancing [12] is then carried out
by the scheduler by forwarding each task to the
kernel generator. The kernel generator discussed in
the next section ensures that optimized kernels are
used on each device, cf. Fig. 2.

3 A Template-Based Kernel Generator

We now turn to the description of the kernel gener-
ator API and consider as an introductory example
the matrix operations

U = A + B, V = A−B (1)

for matrices A, B, U, and V for execution on a certain
compute device. We note that A, B, and U can also
be non-overlapping submatrices of larger, not nec-
essarily distinct matrices A′, B′, and U′. Using C++
operator overloading, these operations translate to
code using the kernel generator facility as:

1 viennac l : : generator : : custom operation op ;
op . add (U = A + B ) ;

3 op . add (V = A − B ) ;

Lines 2 and 3 register the operations at the gener-
ator, but do not yet lead to a generation of kernel
source code. Instead, the operations are stored in
their symbolic form using expression trees in or-
der to allow for the reuse of kernels. Thus, when
the execution of an operation set is triggered via
op.execute(), a look-up is performed in the OpenCL
backend first. If suitable kernels have already been
compiled previously, they are retrieved and directly
executed. Otherwise, the source code generation
process is triggered.

The first step in the kernel generation process is a
kernel segmentation step. Here, the data dependen-
cies are scanned and operations possibly reordered
without changing the results of the operations This
enables maximizing the number of consecutive op-
erations using the same kernel template. For mem-
ory bandwidth-limited operations, operations are
fused together into a single kernel in order to min-
imize memory transfers by enabling data reuse.
Since such a packing of operands also increases the
register pressure and local memory usage on the de-
vice, the fusing of multiple statements into a single
kernel is not performed for compute-bound opera-
tions such as matrix-matrix multiplications. In such
a setting, the costs of temporaries is relatively low
and usually compensated by the higher occupancy
and thus performance of the device for the compute-
bound kernel.

Then, the sources for each kernel are generated
from the symbolic representation based on kernel
templates and their optimization parameters. The
latter may be loaded from a user-provided XML file,
which can be generated through an auto-tuning pro-
cedure and easily shared amongst different users. If
no such file is provided, our backend uses a fall-
back to a built-in, vendor-specific database using
reasonable default parameters for each of the differ-
ent computing architectures.

For the example in (1), the two operations are
found to be independent and thus reduced to a sin-
gle kernel and computed in parallel. This allows to
execute both operations using only a single load of
the data in A and B from global memory. The ker-
nel is then generated based on the template for the
SAXPY operation defined in BLAS. A sketch of the
code generation step, the structure of which breaks
down to three distinct parts, is as follows:

1. First, optimization directives or preprocessor
information is written. Typical examples are
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OpenCL pragmas for enabling double preci-
sion (if provided by the hardware), or specific
hints about the work group sizes the kernel is
launched with.

2. In the second step, the operation list is parsed
and the kernel function header is created based
on the uniqueness of the associated memory
handles. For the example in (1), a kernel with
four arguments associated with U, A, B and
V is created, rather than a kernel with six pa-
rameters consisting of three arguments for each
individual computation.

3. Finally, the kernel body is generated. Data
from operands on the right hand side of the
expression, i.e. A and B in the example above,
is loaded into private memory first to eliminate
unnecessary global reads. Then, the expres-
sion described by the symbolic representation
is directly translated into operations in private
memory. Suitable tiling as well as vector data
types are used in order to obtain structured
memory accesses with highest bandwidth.

4 The Auto-Tuner

As already indicated in the previous section, the
actual kernel generation is parameterized by vari-
ous hardware-specific parameters. Typical parame-
ters stem from hardware architecture characteristics
such as cache sizes or the layout of memory chan-
nels and are supplemented by the global and local
work sizes for the actual execution. Since an ac-
curate derivation of the best kernel parameters for
each device available on the market is practically in-
feasible, we automize the search for best parameters
by a dedicated tuning facility.

The auto-tuning procedure’s tractability and
performance is largely dependent on the size
and bounds of the parameter space associated
with the corresponding kernel template. We
employ a straight-forward brute-force search
based on essentially empirical parameter sets for
the various operation templates. This typically
leads to total execution times for the tuning pro-
cess ranging from a few seconds for operations
at BLAS level 1 to a few hours in the case of
operations from BLAS level 3. Kernels incom-
patible with constraints given by the maximum
work group size CL KERNEL WORK GROUP SIZE

as well as kernels not compatible with
the preferred work group size multiple
CL KERNEL PREFERRED WORK GROUP SIZE MULTIPLE

are not considered in the tuning process, since they
would either fail or are a-priori known to map
poorly onto the target hardware.

While auto-tuning is clearly impractical if re-
quired to be run by all library users, it gives li-
brary developers valuable insight into the location
of sweet spots for a certain hardware generation.
Consequently, auto-tuning is a vital tool for devel-
opers in order to provide fast default kernels for
each of the available hardware generation so that
almost optimal performance is obtained even if the
library user is not interested in running an auto-
tuner. At the same time, users interested in utmost
performance can still run the auto-tuning environ-
ment to obtain the last few percents of speed. To
do so, auto-tuning executables for BLAS levels 1, 2
and 3 are provided as well as generic functions that
allow to run the auto-tuning process even for ker-
nels involving multiple operations, where the lim-
ited amount of registers and local memory may lead
to different optimal kernels. In this way, also the
data dependency of the optimal kernel parameters
is addressed, as users can run the tuning process for
the particular vector and matrix dimensions used in
their applications.

5 A Case Study : Performance-Portable
Matrix-Matrix-Multiplication Kernels

The parameter space for kernel generation for the
BLAS level 1 operations in (1) is small, because only
a single operation is carried out for each floating
point number and thus no benefit from caching is
possible. In contrast, operations at BLAS level 2
and 3 rely on data reuse for good performance and
thus lead to a much larger set of parameters. The
archetypical example is the GEneralized Matrix-
Matrix multiplication (GEMM)

C← α×A×B +β×C , (2)

with scalars α and β and matrices A, B, and C of di-
mensions M×K, K×N, and M×N, respectively. In
addition to being a fundamental building block in
linear algebra, its compute intensive nature makes it
a popular algorithm for hardware benchmarks. Op-
timization efforts have been spent for decades and
recent performance studies for CPUs [9], NVIDIA
GPUs [5], and AMD GPUs [6] are popular. To
achieve high performance on the target device, these
implementations rely heavily on well known, yet
architecture dependent, blocking optimization tech-
niques. While recent work has considered portabil-
ity of auto-tuned implementations within hardware

4



K

K

kl

kl

ks

ks
M ml ms

N

nl

ns

*=
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from a single vendor, we demonstrate that our pa-
rameterized kernels also lead to portable high per-
formance among different vendors.

Recent GPUs now include a hardware L1 cache
in each of their compute units. As a consequence,
state-of-the art GEMM kernels rely on a double-
blocking strategy, depicted in Fig. 3. In this con-
figuration, the matrices A and B are divided into
large blocks of size ml × kl (resp. kl ×nl), which are
further divided into smaller blocks of size ms × ks
(resp. ks×ns). Each work-unit of coordinates (gi, g j)
is then responsible of the computation of the sub-
matrix

C[gims : gims + ms−1, g jns : g jns + ns−1] .

This enables each work-unit to benefit from data
fetched by its neighbors, which leads to a drastic
reduction of the global L1 miss rate when the block
sizes are well chosen.

GPUs integrate local memory to allow the work-
units of the same work-group to share data. While
this software-managed memory can have a band-
width twice as high as that of the L1 cache on
some devices, it is subject to conflicts, when dif-
ferent work-units fetch data from the same memory
bank. Besides, allocating too much local memory
limits the number of work groups which can con-
currently execute on a given compute unit. There-
fore, the proper use of local memory for the large
blocks of size ml× kl and kl×nl is an additional de-
gree of freedom in the generator and consequently
in the tuning process.

In addition to various memory domains, the
OpenCL standard offers a broad range of built-in
vector types and is thus more explicit with respect
to vectorization than for example the C program-
ming language. Using these vector types properly
can lead to higher occupancy rate, or better assem-
bly code, when the platform’s compiler translates
them for instance to SSE or AVX instructions for
CPUs. As a consequence, the use of vector types is
an important parameter for the generated kernel’s
performance and constitutes another degree of free-
dom for the generator.

In summary, our kernels reside in a nine-
dimensional space, whose bounds are empirically
chosen. We have found that the parameter space
determined by

ml,kl,nl ∈ {2k, 5 ≤ k ≤ 8}
ms,ks ∈ {2k, 1 ≤ k ≤ 3}
ns [GPU] ∈ {2k, 1 ≤ k ≤ 3}
ns [CPU] = nl
alignment ∈ {2k, 0 ≤ k ≤ 3}
fetch from A to local memory ∈ {true, false}
fetch from B to local memory ∈ {true, false}

leads to tractable auto-tuning procedures. It should
be noted that even though we restrict our param-
eters to be powers of two, our parameter space
consists of 27648 kernels for one operation in the
case of GPUs Additional tuning runs for opera-
tions involving either transposes different memory
layouts (row-major versus column-major) are re-
quired. Moreover, optimization studies of matrix-
matrix multiplications for NVIDIA GPUs suggest
that ml, kl, and nl are better chosen to be multiples
of 16 rather than powers of two [5], leading to a fur-
ther increase of the search space. Nevertheless, even
a restriction to powers of two leads to high portable
performance across different CPU and GPU vendors
as shown next.

6 Examples and Results

Our benchmarks compare the performances ob-
tained for three different architectures, namely an
INTEL Core i7 960 CPU, an NVIDIA Geforce GTX
470, and an AMD Radeon HD 7970. The hard-
ware is chosen to represent a broad range available
in average desktop machines rather than high-end
configurations only. As a performance reference,
the implementations in Intel MKL 11.0, CuBlas 5.0,
and clAmdBlas 1.10 were used, respectively. Even
though our generator can deal with both row- and
column-major matrices, the matrices considered for
the benchmarks were taken to be all row-major for
simplicity.

We first review the bandwidth-limited operation

β← xT
× (2.x + y) (3)

for vectors x, y, and scalar value β on a single com-
pute device. While this operation requires two dis-
tinct BLAS level 1 calls for each of the vendor li-
braries, (3) is parsed as a single operation by our
generator, which enables the operation to be com-
puted loading the data in x and y only once. Fig. 4
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Figure 5: Comparison of SGEMV performance

shows that such memory optimization leads to a
gain of a factor of two at large vector sizes over the
reference implementations on all three devices con-
sidered. For small sizes, management overhead in
PCI-Express communication and the OpenCL back-
end becomes apparent, the latter particularly on the
CPU. Our results further show that the BLAS inter-
face is only poorly suited for such a heavily mem-
ory bandwidth-limited setting, because data reuse
across multiple BLAS calls other than through cache
is impossible. Since the results for single precision
exhibit exaclty the same qualitative behavior, we
omit these for the sake of brevity.

Our second benchmark evaluates the perfor-
mance of our framework for the GEneral Matrix-
Matrix multiplication (GEMV) routine, i.e. the op-
eration

y← α×A×x +β× y

for a matrix A, vectors x, y, and scalar values α,
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Figure 6: Comparison of DGEMV performance
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β. The results are depicted in Fig. 5 for single pre-
cision (SGEMV) and in Fig. 6 for double precision
(DGEMV). In all the cases, our best kernels exhibit
performance ranging from 80 percent to 200 percent
of those obtained using vendor-tuned libraries. The
poor performance on small problems for the Intel
CPU is attributed to the overhead induced by the
OpenCL backend. However, for problems of size
greater than 1024, our double precision implemen-
tation achieves better performance than the Intel
MKL. We also outperform clAmdBlas, for which the
vendor-provided auto-tuning framework was used,
in both the SGEMV and the DGEMV case.

A comparison of the obtained performance for the
GEMM operation (2) considered in our case study in
Sec. 5 is given in Fig. 7 for single precision (SGEMM)
and Fig. 8 for double precision (DGEMM). In all six
cases our generated compute kernels obtain at least
75 percent of the peak performance of vendor-tuned
libraries. Our approach outperforms the tuned
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Figure 8: Comparison of DGEMM performance.

clAmdBlas library in the SGEMM case at big prob-
lem sizes and is on par with CUBLAS 5.0 for the
DGEMM case. The performance difference in the
case of SGEMM on the NVIDIA GPU is due to the
choice of our parameter space, where other authors
have shown that best performance is actually ob-
tained for block sizes not being powers of two [5].

In our last example we demonstrate the flexibility
and performance of our framework based on the
operation

C← (A + B)× (A−B) . (4)

on a system with two NVIDIA GPUs in single preci-
sion. In order to execute this operation concurrently
on all available GPUs, we provide the following
high level API:

a d d a l l a v a i l a b l e d e v i c e s ( CL DEVICE TYPE GPU ) ;
2 mult i matr ix<f l o a t > C, A, B ;
/ ∗ F i l l m a t r i c e s wi th d a t a h e r e ∗ /

4 C = prod (A + B , A − B ) ;
f i n i s h ( ) ;

Here, all available devices are first attached to the
scheduler. The multi matrix<> type explicitly creates
matrix objects for use on multiple devices. The oper-
ation is then triggered and the main process stalled
until completion.

Using operator overloads and symbolic repre-
sentations, our engine is able to deal directly with
matrix expressions instead of temporary matrices.
However, since performing such calculations inside
the GEMM kernel would significantly increase the
register pressure, we compute temporaries at the
block level, which guarantees a negligible memory
consumption overhead in practice without detri-
mental effect on overall performance. As shown
in Fig. 9, our approach considerably reduces the to-
tal memory consumption, which enables handling
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Figure 9: Performance of C = (A + B)× (A−B) for a
machine equipped with an NVIDIA GTX 470 and
an NVIDIA Tesla C2050 in single precision. The op-
timized case refers to temporaries on the block level,
while the default case uses explicit temporaries for
A + B and A−B.

problem sizes up to 31000 instead of 24000, when
using full temporaries for A + B and A−B on a ma-
chine with 12 GB main memory. An overall perfor-
mance of 90 percent of the ideal case of summing
the two single-GPU-performances is obtained.

7 Outlook and Conclusion

As with all auto-tuning approaches, a weakness of
our framework is the empirical choice of bounds
for the parameter space, still leading to a large
search space. For this reason, future work lies in
reducing the time spent on auto-tuning or widen-
ing its exploration space by using clever adaptive
strategies. Even though a database for storing and
retrieving devices allows to provide close-to-peak
performance for library users on a wide range of
hardware without necessarily exposing them to the
auto-tuning process, the plethora of different hard-
ware available makes it nevertheless hard for library
implementors to provide sufficient coverage.

In summary, our framework addresses issues re-
lated to performance portability in heterogeneous
environments by proposing dynamic kernel gener-
ation to tackle this issue. Comparable or even better
performance than vendor-provided libraries is ob-
tained for the three BLAS levels. The convenient use
of multiple devices was addressed using work parti-
tioning, scheduling, and operator overloads, while
scalability is achieved using a temporary removal
mechanism.
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