
...and region serializability for all

Jessica Ouyang Peter M. Chen Jason Flinn Satish Narayanasamy

University of Michigan

{jouyang,pmchen,jflinn,nsatish}@umich.edu

Abstract
A desirable concurrency semantics to provide for programs
is region serializability. This strong semantics guarantees
that all program regions between synchronization operations
appear to execute in some global and serial order consis-
tent with program order. Unfortunately, this guarantee is cur-
rently provided only to programs that are free of data races.
For programs with data races, system designers currently
face a difficult trade-off between losing all semantic guar-
antees and hurting performance. In this paper, we argue that
region serializability should be guaranteed forall programs,
including those with data races. This allows programmers,
compilers, and other tools to reason about a program exe-
cution as an interleaving of code regions rather than mem-
ory instructions. We show one way to provide this guaran-
tee with an execution style calleduniparallelism and simple
compiler support. The cost of the system is a 100% increase
in utilization. However, if there are sufficient spare coreson
the computer, the system adds a median overhead of only
15% for 4 threads.

1. Introduction
The concurrency semantics of a language provide guaran-
tees to the programmer about how threads of a program
can or cannot interleave during an execution. A language’s
concurrency semantics directly impacts programmability as
software developers depend on those guarantees to reason
about all possible legal behaviors of their programs and en-
sure software correctness.

The concurrency semantics of modern languages, such as
C++ and Java, are specified in the form of a memory model.
A memory model defines the set of possible orders in which
memory operations from different threads can interleave and
the possible values a read can return. Thus, a memory model
serves as a language-level contract that specifies what guar-
antees programmers may assume and what constraints the
compiler, runtime, and processor must collectively satisfy.

Region serializability is a strong and desirable concur-
rency semantics that guarantees that all program regions be-
tween synchronization operations (synchronization-free re-
gions) appear to execute in some global and serial order that
is consistent with program order. This guarantee greatly re-

no guarantees

(DRF0)

total store

ordering

sequen!al

consistency

region

serializability

fewer possible

program behaviors

easier for compiler

and run!me to provide

Figure 1. Memory models for programs with data races.

duces the set of interleavings that programmers, compilers,
and verification/testing tools must consider. It allows pro-
grammers and tools to consider each synchronization-free
region as an atomic block, and it allows compilers to freely
reorder instructions within a region without worrying about
conflicting accesses from other threads.

Unfortunately, the guarantee of region serializability is
currently provided only to programs that are free of data
races [6]. For programs with data races, system designers
currently face a difficult tradeoff between weaker semantics
and lower performance. For example, the DRF0 model [1]
providesno guarantees to programs with data races, making
such programs impossible to reason about and unsafe to run
in production [6]. Thesequential consistency [20] memory
model is one of the strongest proposed that provides some
guarantees to programs with races, but may be too expen-
sive to provide without hardware support. The Java memory
model attempts to define behavior for programs with races,
but these semantics are difficult, even for experts, to under-
stand [30, 42].

While it would be nice to assume that programs with
data races do not exist, such an assumption is not borne out
in practice, as deployed software in common use has been
shown to be rife with data races [26]. Thus, in practice, one
can neither ignore nor attempt to legislate away programs
with data races.

The primary contributions of this paper are as follows:

• We argue that all programs — including those with data
races — should benefit from the strong guarantees of
region serializability.

• We present the first sytem that provides region serializ-
ability without custom hardware support, with a median
runtime overhead of 15% for 4 threads.



2. A case for region serializability for all
programs

2.1 Real programs have data races

Real programs have data races, both unintentional and in-
tentional. Unintentional data races are considered bugs by
developers, and these are found in many applications that
are used in production. For example, a casual perusal of bug
reports for four popular open-source applications (MySQL,
Apache, Mozilla, and OpenOffice) finds data race bugs re-
ported recently in all four applications. A study of various
services in Windows Vista and Internet Explorer found 68
unique data races [36].

Ideally, all unintentional data races would be caught and
fixed in development. However, guaranteeing this property
requires a sound and complete static data-race detector, and,
despite much research and progress on data race detection,
such a tool has yet to be developed.

Another class of data races are those added intention-
ally by developers, usually in an attempt to improve perfor-
mance. For example, Xiong et al. studied 12 server, desktop,
and scientific applications and found many (6-83) ad hoc
synchronizations in each program [48]. Programs may intro-
duce data races when updating variables that are not needed
for correctness, such as when gathering workload statistics.

While it can be argued that all programs with data races
are misguided or wrong [5], it appears that, at least for
the foreseeable future, programs used in production will
continue to have data races. Unfortunately, classifying such
programs as illegal [6] does not make them go away. This
paper is concerned with the memory models provided to
these programs.

2.2 Weak semantics are bad for programs with races

As shown in Figure 1, there is a range of memory models
that a compiler and runtime system can provide to programs
with data races, ranging from no specific semantics at all to
the same semantics that are provided to programs without
data races.

At the left end of this spectrum is the DRF0 model [1],
which provides no semantic guarantees at all to programs
with data races. The main benefit of this approach is the ease
with which it can be provided. Processor architectures need
not provide cache coherence to programs with data races, ex-
cept on explicit synchronization operations. Compilers can
assume that programs have no data races — even if this
assumption is invalid for any given program, the compiled
code still operates within the allowed range of “arbitrary”.
The main cost of this approach is the implication of losing all
semantic guarantees. Since DRF0 allows arbitrary behavior
for programs with data races, it is impossible for developers
and verification tools to reason about the program (except
to conclude that it has a data race). For example, under this
model, compiler optimization can transform programs with
data races in ways that are very surprising to programmers,

such as jumping to arbitrary program locations [6]. To pre-
serve safety guarantees, the Java memory model takes pains
to define the semantics of data races [30].

In the middle of this spectrum are the memory mod-
els traditionally provided by cache-coherent multiproces-
sors, such as sequential consistency and total store ordering.
These memory models operate at the granularity of instruc-
tions. Such fine granularity is well suited for guaranteeing
the concurrency semantics of machine-level code. However,
consistency models at the level of machine instructions do
not provide meaningful guarantees at the source-code level
because surprising results can be produced when lines of
source code are divided into multiple machine instructions
and interleaved with other threads. Providing a meaningful
guarantee for the source code in higher-level languages re-
quires additional effort on the part of compilers, and it is
not yet known if such a guarantee can be provided without
significant performance loss or hardware support [32, 43].
More fundamentally, simply guaranteeing a globally sequen-
tial order to all threads is a weaker guarantee than program-
mers are accustomed to.

2.3 We already assume region serializability

At the right end of this spectrum is the memory model pro-
vided by most higher-level languages to programs without
data races, which we callregion serializability. In this mem-
ory model, the source code between synchronization opera-
tions is considered a region (also called asynchronization-
free region [27]), and the compiler and runtime guarantee
that regions appear to execute in a sequential order that is
consistent program order. The set of synchronization opera-
tions is defined by the language. In this paper, we consider
pthread functions, system calls, and atomic variable ac-
cesses to be synchronization operations.

One indication of the value of stronger memory mod-
els, such as region serializability, is how often they are as-
sumed or sought after, even when the intended runtime does
not actually guarantee this memory model. We believe most
data race bugs are due to programmers who, being used
to region serializability for race-free programs, assume this
guarantee holds even though their program has races. Sim-
ilarly, compilers commonly perform sequential optimiza-
tion techniques (e.g., loop-invariant code motion) on mul-
tithreaded code without first proving that the program is
free of data races, even though those optimizations are in-
valid for programs with data races. Software verification
tools and model checkers assume sequential consistency by
reasoning aboutthread interleavings, each of which is as-
sumed to be seen consistently across all threads. Some pro-
posals for verifying programs seek to shrink the state space
by grouping multiple instructions into atomic units, either
by proving commutativity, as in Lipton’s theory of reduc-
tion [21, 23], or by relying on programmer annotations, as
in thread-modular verification [16]. Other examples are sys-
tematic testing tools that only explore preemptions at syn-



chronization operations [34]; this is exactly the concurrency
semantics guaranteed by region serializability.

3. Design
If performance were not an issue, a trivial way to guarantee
region serializability for all programs would be to actually
run regions serially. This could be done by a system with the
following three properties:

Property 1. All instructions from a particular address
space are executed on a single processor, i.e., only one
thread runs at a time. Limiting execution to a single pro-
cessor prevents multiple, concurrent processors from inter-
leaving instructions from multiple regions.

Property 2. Preemptions are only allowed at region
boundaries. Even on a single processor, allowing one re-
gion to preempt another would violate our goal of running
regions serially.

Property 3. Synchronization-free regions correspond to
the original source code. The first two properties guarantee
that synchronization-free regions in the program binary are
executed serially. To make this guarantee meaningful to pro-
grammers, the compiler must not perform any optimizations
that violate the ordering or atomicity constraints of regions.
For example, it must not move instructions from one region
to another. However, because regions in the program binary
are guaranteed to execute atomically, the compiler can opti-
mize freely within a region.

By satisfying Properties 1-3, a system would provide
all programs with region serializable semantics, even those
containing data races.

4. Uniparallel execution
Clearly, requiring a program to execute on a uniprocessor
(Property 1) is too restrictive given the current architecture
trend to provide parallelism through multicore and many-
core computing. Our system leverages a style of execution
calleduniparallelism, first used by Veeraraghavan et al. [46].
Uniparallelism allows our system to scale with increasing
number of CPUs, while providing the uniprocessor seman-
tics required by Property 1.

In uniparallelism, an application’s execution is divided
into distinct time intervals, calledepochs. The goal is to
run epochs in a pipelined fashion, allowing later epochs to
start before earlier epochs finish. A pipeline consisting of8
epochs, Ep 0-7, is shown on CPUs 4-11 of figure 2. This
execution of the program is called theepoch-parallel execu-
tion, as it allows epochs to run in parallel on separate cores.
Each epoch is isolated in its own address space, and runs on
a single CPU. The program’s semantics are equivalent to a
sequential execution: e.g., writes to local memory or files in
one epoch are visible to epochs that logically occur later.

While the epoch-parallel execution satisfies Property 1
and, additionally, allows us to scale uniprocessor execution,
we must still address how to start later epochs before prior

ones complete. Because of program dependencies, we must
predict the starting state of later epochs (for example, in fig-
ure 2, the starting states of Ep 1-7). To do this, uniparallelism
executes a second copy of the application. This copy of the
program produces predictions of starting state, calledcheck-
points, that include relevant program state, such as the ad-
dress space and thread registers, that are necessary to start
later epochs.

In order for uniparallelism to provide scalable uniproces-
sor execution, three properties must be true. First, the check-
points must be generated by the second execution of the
program before the epoch completes in the epoch-parallel
execution. In our system, the execution generating check-
points runs ahead of the epoch-parallel execution because its
threads execute simultaneously on multiple cores. For that
reason, the second execution is called thethread-parallel ex-
ecution. (Figure 2 shows the thread-parallel execution of an
application with 4 threads on CPUs 0-3.) The thread-parallel
execution produces a checkpoint at the end of an epoch that
is used to start the next epoch of the epoch-parallel execu-
tion.

Second, the system must detect and recover when the
state predicted by the thread-parallel execution is incorrect.
This is done by comparing the memory and register state
of the two executions at epoch boundaries. If the predicted
ending state for an epoch (generated by the thread-parallel
execution) does not match the actual ending state (generated
by the epoch-parallel execution), the thread-parallel execu-
tion has generated a checkpoint that exposes non-region se-
rializable behavior. The system must flush the pipeline of
any epochs that depend on the incorrect prediction, and the
thread-parallel execution must restart from the last commit-
ted state (this is called arollback). If the checkpoint and end-
ing state match, the execution up to that epoch is a valid
region-serializable execution of the program.

Third, the state predictions generated by the thread-
parallel execution mustusually be correct. While incorrect
predictions do not affect correctness, they do reduce per-
formance. Each rollback causes the pipeline to be flushed,
which reduces parallelism and wastes the CPU time spent
on the flushed epochs. To ensure the accuracy of the pre-
dicted state, uniparallelism usesonline replay [22] to keep
the thread- and epoch-parallel executions as similar as pos-
sible. The thread-parallel execution logs most sources of
nondeterminism, and the logged values are replayed dur-
ing the epoch-parallel execution. Logged events include all
synchronization operations (e.g., allpthread operations)
and input received from system calls (e.g., disk and network
I/O). All synchronization operations are replayed in a way
that obeys the happens-before partial order of synchroniza-
tion objects observed during recording. Because both execu-
tions use the same happens-before order of synchronization
objects, shared-memory accesses can cause the executions



[Ep 7]

[Ep 6]

[Ep 5]

[Ep 4]

[Ep 3]

[Ep 2]

[Ep 1]

A

CPU 0

B

CPU 1

C

CPU 2

D

CPU 3

Epoch-parallel executionThread-parallel execution

CPU 7

[Ep 0]

T
I

M
E

checkpoints

and replay logs

CPU 4
[Ep 0]

CPU 5 CPU 6

C

B

D

A

A

D

B

C

A

D

C

B

B

C

A

D

B

C

A

D

A

D

C

B

B

C

D

A

B

D

A

C

CPU 8 CPU 9 CPU 10 CPU 11

D

C

B

A

C

D

B

A

B

A

D

C

D

A

B

C

A

C

D

B

A

D

C

B

B

C

D

A

A

D

B

C

[Ep 1]

[Ep 2]

[Ep 3]

[Ep 4]

[Ep 5]

[Ep 6]

[Ep 7]

Figure 2. Uniparallelism overview.

to diverge only when there is a data race [41] that exposes
non-RS state.

Thus, as shown in Figure 2, uniparallelism runs the ap-
plication twice. The epoch-parallel execution guarantees
region-serializable semantics by time-slicing threads within
each epoch on a uniprocessor, while the thread-parallel ex-
ecution runs ahead to predict future epoch states, thus en-
abling multiple epochs in the epoch-parallel execution to
run in parallel.

5. Evaluation
We built a system that provides region serializability using
the above design.

To provide Property 1, we modified the Linux scheduler
to block all-but-one thread for each address space. On a page
fault or other exception in a synchronization-free region,the
kernel may choose to run a thread from a different address
space, but it cannot run another thread from the same address
space.

To provide Property 2, we modified the Linux scheduler
so it can preempt threads only at boundaries of synchronization-
free regions (i.e., at system calls and synchronization opera-
tions).

To provide Property 3, We used an LLVM compiler that
has been explicitly modified to support DRF0 [31]. To pre-
vent the compiler from reordering across region boundaries,
the initial compiler pass inserts explicitly memory fences
before and after everyatomic andvolatile memory ac-
cess andpthread operation. Because the LLVM compiler

already does not optimize across system calls, these fences
are sufficient to preserve source-level regions.

To provide scalability, we used the DoublePlay infras-
tructure [46], which splits a process into epochs and runs
those epochs on multiple processors using uniparallelism.

5.1 Methodology

For our evaluation, we used an 8-core Intel Xeon processor
running CentOS Linux version 5.3. Our system used mod-
ified versions of the Linux 2.6.26 kernel, the GNU glibc
library version 2.5.1, and the LLVM compiler. We evalu-
ated our system on 3 SPLASH-2 [47] benchmarks (water-
nsquared, ocean, and lu), two parallel desktop applications
(pfscan and pbzip2), and Apache v2.2.11. For pfscan, we
performed repeated searched for a query string on files with
a total size of 983 MB. For pbzip2, we compressed a 522
MB file. Finally, we evaluated our system with Apache ver-
sion 2.2.11. We used the Apache benchmarking tool, ab, to
request a 17MB file 100 times over a local network. To mea-
sure the runtime of each application, we ran each experiment
a total of five times and report the mean of these values in
figures 3 and 4.

5.2 Scalability

Figures 3 and 4 show the runtime cost of providing region
serializability with and without spare cores, respectively.
Each bar in the figures shows the normalized execution time
of the program, running with the specified number of worker
threads (we do not count control threads that perform little
computation). The baseline is the execution time of the same



0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 1 2 3 4 1 2 4 1 2 4 1 2 3 4 1 2 3 4

pfscan pbzip2 water-nsq ocean-cont lu-cont apache

N
o

rm
a

li
ze

d
 E

x
e

cu
!

o
n

 T
im

e

Applica!ons and Number of Threads

Normalized Execu!on Time (with spare cores)

Uniparallelism

Compiler

Figure 3. Performance with spare cores. This graph shows the cost of providing region serializable semantics when there
are spare cores available. Each bar represents the normalized runtime of the application with the specified number of worker
threads, relative to the runtime of the application compiled with an unmodified LLVM compiler, with all optimizations enabled,
using the same number of worker threads. The darker portion of the bar shows the performance impact the compiler, which
was modified to prevent optimizations acrosspthread operations. The lighter bar shows the additional cost of ouruniparallel
runtime. We show the mean of 5 trials for each of the experiments. The average overhead is 4%, 8%, 11%, and 31% for 1, 2,
3, and 4 threads, when there are spare cores available.

application compiled with an unmodified LLVM compiler
and all optimization enabled, running the same number of
threads, without our uniparallel runtime. The darker bottom
portion of each bar shows the performance impact of our
modified compiler. The lighter top portion of each bar shows
the overhead of our uniparallel runtime.

Our system is based on the DoublePlay infrastructure and
our performance costs are largely the same. For a detailed
discussion of specific application performance, we refer the
reader to [46]. Additionally, the impact of the LLVM com-
piler was negligible, and manual inspection of the LLVM
byte-code indicated that LLVM does not perform cross-
boundary optimizations for these applications, which is not
surprising, since LLVM currently performs few optimiza-
tions across function calls, due to the difficulty of validating
the correctness of interprocedural analyses.

As shown in figure 3, when spare cores are available on
our system, the mean overhead of providing region serial-
izability is 4%, 8%, 11%, and 31% for 1, 2, 3, and 4 cores
respectively.

Most applications scale well with our system. In addition
to the the 2x utilization cost, the uniparallel runtime incurs
overhead to keep its two executions in-sync. The runtime
must record and replay non-deterministic events, such as
system calls and synchronization operations. Additionally,

the runtime must perform a memory comparison at the end
of each epoch, to check whether a data race has caused a
memory divergence. Of all the applications,ocean has high-
est overhead at 4 threads. This behavior has been observed
in other systems using uniparallelism [46] and is due to the
application touching a large amount of memory, all of which
must be compared at the end of each epoch, to check for
divergences caused by data races. (pbzip2 also has higher
overhead due to data races that cause memory divergences,
which we discuss in section 5.3.)

The availability of spare cores greatly impacts the per-
formance of our system. When the application can scale to
use all of the available cores, our system incurs at least a
100% runtime overhead due to the utilization costs of uni-
parallelism. Because uniparallelism requires a second exe-
cution, we are effectively halving the CPU resources avail-
able to an application that can scale to all available CPUs.
Figure 4 shows that without spare cores, providing region se-
rializable semantics has an average 134% overhead.Apache

continues to scale, even at 8 threads, because the application
is network-bound.

5.3 Strong semantics for programs with races

The goal of our system is to provide region serializability to
all programs, including those with data races. If a data race



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

8 8 8 8 8 8

pfscan pbzip2 water-nsq ocean-cont lu-cont apache

N
o

rm
a

li
ze

d
 E

x
e

cu
!

o
n

 T
im

e

Applica!ons and Number of Threads

Normalized Execu!on Time (without spare cores)

Uniparallelism

Compiler

Figure 4. Performance overhead without spare cores. This graph showsthe cost of providing region serializability when
applications can scale to use all 8 cores. Each bar represents the normalized runtime of the application with the 8 workerthreads,
relative to the runtime of the application compiled with an unmodified LLVM compiler, with all optimizations enabled, also
running with 8 worker threads. The darker portion of the bar shows the performance impact the compiler, which was modified
to prevent optimizations acrosspthread operations. The lighter bar shows the additional cost of ouruniparallel runtime. We
show the mean of 5 trials for each of the experiments. The average overhead, when no spare cores are available is 134%.

occurs, the state predicted by the thread-parallel execution
may be wrong, and this will lead to a rollback and slower
performance. Note that rollbacks only occur when the data
race occurs and results in a state that differs from the epoch-
parallel execution. No overhead is incurred if the race is
never triggered, or if the race does not affect program state.

Many of the applications used in our evaluation con-
tain data races [45], but onlypbzip2 experiences rollbacks.
pbzip2 experiences 1, 3, and 6 memory divergences on av-
erage for 2, 3, and 4 threads, which results in an overhead of
5%, 14%, and 41%. As always, our system guarantees that
the racy execution is still well-behaved with region serializ-
able semantics.

5.4 Region sizes

One of the benefits of region serializability is that it allows
programmers and tools to reason about the interleavings of
atomic code regions, instead of individual memory instruc-
tions. To quantify this benefit, we measured dynamic size of
each synchronization-free region. We created a Pin tool [29]
to intercept all system calls andpthread library calls and
count the number of user-level machine instructions in each
region as the programs execute. (We did not count instruc-
tions withinpthread functions.) As shown in Table 1, the
average size of a synchronization-free region ranges from 50
to 200 instructions, allowing programmers and tools to rea-

Dynamic Region Sizes
Application Mean Median

(instructions)
pfscan 212 129
pbzip2 104 81
water-nsq 138 111
ocean-cont 134 51
lu 55 11

Table 1. Dynamic region sizes

son about program behavior at a granularity that is at least
an order of magnitude larger than that of underlying machine
instructions.

6. Related Work
To the best of our knowledge, this paper describes the first
software system to guarantee region serializability (RS) at
the language level for all multithreaded programs (includ-
ing programs with data races) on commodity hardware. In
section, we discuss work related to providing language-level
guarantees for concurrent programs.



6.1 Sequential consistency

Language-level sequential consistency (SC), which is weaker
than RS, has long been accepted as a desirable semantics for
concurrency languages, but is also widely believed to be
practically impossible to support with reasonable efficiency.
Marino et al. [32, 43] showed that a compiler could preserve
SC for a low performance cost. However, the end-to-end se-
mantics would still depend on the weakest memory model
supported by hardware, and no modern processors provides
SC guarantees today.

6.2 DRF0 with data race detection

The most popular and widely adopted concurrency seman-
tics is the DRF0 memory model. DRF0 and its derivatives [1,
6, 17, 30] provide RS semantics for data-race-free programs,
but provide no [6] or extremely complicated semantics [30]
for programs with data races. If a sound static data race de-
tector could be developed, then the compiler could reject
programs with data races and enforce the race-free discipline
assumed by the DRF0 memory model. While many static
type systems have been proposed (e.g., [7, 8, 15, 39]), static
solutions must be conservative in their analysis and can im-
pose severe restrictions on programming styles, as well as re-
ject valid programs due to imprecise analysis, such as pointer
analysis. Another approach argues for always-on dynamic
data race detection that halts program execution when a race
is detected [4, 13, 27, 28, 31]. However, detecting races at
runtime can incur more than an 8x performance penalty [14],
or require custom hardware support [2, 27, 31, 35, 40]. Fur-
ther, legacy software contains a number of data races that
are deliberately used by programmers to achieve high per-
formance [36].

6.3 Transactional memory

Perhaps the most closely related approaches to our work are
the studies on transactional memory (TM) systems [19, 25].
One way of viewing region serializability is as a transac-
tion memory system that provides strong isolation [18, 33],
where all code belongs to a transaction. The strongest guar-
antee discussed in the context of a TM system is Transac-
tional Sequential Consistency (TSC) [10]. TSC guarantees
that all transactions and all memory operations outside trans-
actions appear to have executed in a global order that is
consistent with per-thread semantics. In practice, however,
TSC is believed to be too expensive to support for all pro-
grams [18].

6.4 Speculative parallelism

Another category of related work are runtime systems that
use speculative parallelism. This style of execution was first
proposed by Zilles and Sohi [49], who called itmaster-slave
speculative parallelization, and has since been used in other
research projects [37, 44, 49]. Uniparallelism was first pro-
posed by Veeraraghavan [46] and combines a speculatively
parallel execution style with online deterministic replay[22]

and timesharing of multiple threads on a uniprocessor [9].
The uniparallel execution style has also been used for the
race detection system, Frost [45].

7. Future Work
We plan to apply and extend region serializability in sev-
eral ways, including increasing the size of regions, pro-
gram verification, deterministic execution, and transactional
memory. Currently, regions in our system are bounded by
synchronization operations and system calls. It may be
possible to increase the size of a region to span multi-
ple synchronization-free regions [12], which would allow
programmers and tools to reason about even larger atomic
sections of code. Program verification tools try to limit the
space of states they must consider by assuming knowledge
of atomic regions. These tools can take advantage of the re-
gion serializability provided by our system to further limit
their state space and reason further about the properties of
the program. Deterministic execution of multithreaded pro-
grams is a challenging and important feature [3, 11, 24, 38].
In addition to providing serializability for regions, we can
also provide deterministic execution of regions by control-
ling the order of execution between regions and the behavior
of synchronization operations. While we have applied re-
gion serializability only to programs based on locks, we also
hope to experiment with how well our system can support
programs based on transactional memory, which provides
similar guarantees to region serializability.

8. Conclusion
Current systems do not provide meaningful concurrency se-
mantics to programs with data races. The absence of concur-
rency semantics makes it impossible for programmers and
software tools to reason about the behavior of programs with
data races and it admits the possibility of arbitrary behavior
for the numerous programs used in production that contain
data races. In this paper, we argued that strong semantics,
namelyregion serializability, should be provided for all pro-
grams, and we showed one way of providing it at reason-
able performance overhead with a custom runtime system
and compiler.

References
[1] A DVE, S. V., AND HILL , M. D. Weak ordering—a new def-

inition. In Proceedings of the 17th International Symposium
on Computer Architecture (1990), pp. 2–14.

[2] A DVE, S. V., HILL , M. D., MILLER , B. P., AND NETZER,
R. H. B. Detecting data races on weak memory systems.
In Proceedings of the 18th International Symposium on Com-
puter Architecture (1991), pp. 234–243.

[3] BERGER, E. D., YANG, T., LIU , T., AND NOVARK , G.
Grace: Safe multithreaded programming for C/C++. InPro-
ceedings of the International Conference on Object Oriented



Programming Systems, Languages, and Applications (Or-
lando, FL, October 2009), pp. 81–96.

[4] BOEHM, H.-J. Simple thread semantics require race detec-
tion. In FIT session at PLDI (2009).

[5] BOEHM, H.-J. How to miscompile programs with “benign”
data races. InProceedings of the 2011 USENIX Workshop on
Hot Topics in Parallelism (May 2011).

[6] BOEHM, H.-J.,AND ADVE, S. Foundations of the c++ con-
currency memory model. InProceedings of the ACM SIG-
PLAN 2008 Conference on Programming Language Design
and Implementation (2008), pp. 68–78.

[7] BOYAPATI , C., LEE, R., AND RINARD , M. Ownership types
for safe programming: Preventing data races and deadlocks.
In Proceedings of OOPSLA (2002).

[8] BOYAPATI , C., AND RINARD , M. A parameterized type sys-
tem for race-free Java programs. InProceedings of OOPSLA
(2001), ACM Press, pp. 56–69.

[9] CODD, E. F., LOWRY, E. S., MCDONOUGH, E., AND

SCALZI , C. A. Multiprogramming STRETCH: feasibility
considerations.Communications of the ACM 2, 11 (November
1959), 13–17.

[10] DALESSANDRO, L., AND SCOTT, M. L. Strong isolation is
a weak idea. InTRANSACT ’09: 4th Workshop on Transac-
tional Computing (feb 2009).

[11] DEVIETTI , J., LUCIA , B., CEZE, L., AND OSKIN, M. DMP:
Deterministic shared memory multiprocessing. InProceed-
ings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems
(March 2009), pp. 85–96.

[12] EFFINGER-DEAN, L., BOEHM, H.-J., CHAKRABARTI , D.,
AND JOISHA, P. Extended sequential reasoning for data-race-
free programs. InProceedings of the 2011 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness.

[13] ELMAS , T., QADEER, S., AND TASIRAN, S. Goldilocks:
A race and transaction-aware Java runtime. InProceedings
of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (2007), pp. 245–255.

[14] FLANAGAN , C., AND FREUND, S. FastTrack: Efficient
and precise dynamic race detection. InProceedings of the
ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation (Dublin, Ireland, June 2009),
pp. 121–133.

[15] FLANAGAN , C.,AND FREUND, S. N. Type-based race detec-
tion for Java. InProceedings of the ACM SIGPLAN 2000 Con-
ference on Programming Language Design and Implementa-
tion (2000), pp. 219–232.

[16] FLANAGAN , C., FREUND, S. N.,AND QADEER, S. Thread-
Modular Verification for Shared-Memory Programs. InPro-
ceeding of the 2002 European Symposium on Programming
Languages and Systems (ESOP) (2002).

[17] GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIB-
BONS, P., GUPTA, A., AND HENNESSY, J. Memory consis-
tency and event ordering in scalable shared-memory multipro-
cessors. InProceedings of the 17th International Symposium
on Computer Architecture (1990), pp. 15–26.

[18] HARRIS, T., LARUS, J. R.,AND RAJWAR, R. Transactional
Memory, 2nd edition. Synthesis Lectures on Computer Archi-
tecture. Morgan & Claypool Publishers, 2010.

[19] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures. InPro-
ceedings of the 20th International Symposium on Computer
Architecture (May 1993), pp. 289–300.

[20] LAMPORT, L. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs.IEEE Transac-
tions on Computers C-28, 9 (September 1979), 690–691.

[21] LAMPORT, L., AND SCHNEIDER, F. B. Pretending atomicity.
Tech. Rep. DEC SRC 44, Digital Equipment Corporation,
May 1989.

[22] LEE, D., WESTER, B., VEERARAGHAVAN, K., CHEN,
P. M., FLINN , J., AND NARAYANASAMY , S. Respec: Ef-
ficient online multiprocessor replay via speculation and ex-
ternal determinism. InProceedings of the 15th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Pittsburgh, PA, March 2010),
pp. 77–89.

[23] L IPTON, R. J. Reduction: a method of proving properties
of parallel programs. Communications of the ACM 18, 12
(December 1975), 717–721.

[24] L IU , T., CURTSINGER, C., AND BERGER, E. D. Dthreads:
efficient deterministic multithreading. InProceedings of
the 23rd ACM Symposium on Operating Systems Principles
(2011), pp. 327–336.

[25] LOMET, D. B. Process structuring, synchronization, and
recovery using atomic actions. InProceedings of an ACM
conference on Language design for reliable software (1977),
pp. 128–137.

[26] LU, S., PARK , S., SEO, E., AND ZHOU, Y. Learning from
mistakes — a comprehensive study on real world concurrency
bug characteristics. InProceedings of the 13th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (2008), pp. 329–339.

[27] LUCIA , B., CEZE, L., AND STRAUSS, K. Colorsafe: ar-
chitectural support for debugging and dynamically avoiding
multi-variable atomicity violations. InProceedings of the 37th
International Symposium on Computer Architecture (Saint-
Malo, France, 2010), pp. 222–233.

[28] LUCIA , B., CEZE, L., STRAUSS, K., QADEER, S., AND

BOEHM, H.-J. Conflict Exceptions: Simplifying Concurrent
Language Semantics with Precise Hardware Exceptions for
Data-Races. InProceedings of the 37th International Sympo-
sium on Computer Architecture (June 2010), pp. 210–221.

[29] LUK , C.-K., COHN, R., MUTH, R., PATIL , H., KLAUSER,
A., LOWNEY, G., WALLACE , S., REDDI, V. J., AND

HAZELWOOD, K. Pin: Building customized program anal-
ysis tools with dynamic instrumentation. InProceedings of
the ACM SIGPLAN 2005 Conference on Programming Lan-
guage Design and Implementation (Chicago, IL, June 2005),
pp. 190–200.

[30] MANSON, J., PUGH, W., AND ADVE, S. The Java memory
model. InProceedings of POPL (2005), pp. 378–391.



[31] MARINO, D., SINGH, A., M ILLSTEIN , T., MUSUVATHI ,
M., AND NARAYANASAMY , S. DRFx: A simple and effi-
cient memory model for concurrent programming languages.
In Proceedings of the ACM SIGPLAN 2010 Conference on
Programming Language Design and Implementation (2010),
ACM, pp. 351–362.

[32] MARINO, D., SINGH, A., M ILLSTEIN , T. D., MUSUVATHI ,
M., AND NARAYANASAMY , S. A case for an sc-preserving
compiler. InProceedings of the ACM SIGPLAN 2011 Confer-
ence on Programming Language Design and Implementation
(2011), pp. 199–210.

[33] MARTIN , M. M. K., BLUNDELL , C., AND LEWIS, E. Sub-
tleties of transactional memory atomicity semantics.Com-
puter Architecture Letters 5, 2 (2006).

[34] MUSUVATHI , M., QADEER, S., BALL , T., BASLER, G.,
NAINAR , P. A., AND NEAMTIU , I. Finding and reproducing
Heisenbugs in concurrent programs. InProceedings of the 8th
Symposium on Operating Systems Design and Implementation
(San Diego, CA, December 2008), pp. 267–280.

[35] MUZAHID , A., SUAREZ, D., QI , S., AND TORRELLAS, J.
SigRace: Signature-based data race detection. InProceedings
of the 36th International Symposium on Computer Architec-
ture (2009).

[36] NARAYANASAMY , S., WANG, Z., TIGANI , J., EDWARDS,
A., AND CALDER, B. Automatically classifying benign and
harmful data races using replay analysis. InProceedings of the
ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (San Diego, CA, June 2007).

[37] NIGHTINGALE , E. B., PEEK, D., CHEN, P. M.,AND FLINN ,
J. Parallelizing security checks on commodity hardware. In
Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (Seattle, WA, March 2008), pp. 308–318.

[38] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S.
Kendo: efficient deterministic multithreading in software. In
Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (March 2009), pp. 97–108.

[39] PRATIKAKIS , P., FOSTER, J. S.,AND HICKS, M. LOCK-
SMITH: Context-sensitive correlation analysis for race detec-
tion. In Proceedings of the ACM SIGPLAN 2006 Confer-
ence on Programming Language Design and Implementation
(2006), pp. 320–331.

[40] PRVULOVIC , M., AND TORRELAS, J. Reenact: Using thread-
level speculation mechanisms to debug data races in mul-
tithreaded codes. InProceedings of the 30th International
Symposium on Computer Architecture (San Diego, CA, June
2003).

[41] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: A fully
integrated practical record/replay system.ACM Transactions
on Computer Systems 17, 2 (May 1999), 133–152.

[42] SEVCIK , J., AND ASPINALL, D. On Validity of Program
Transformations in the Java Memory Model. InProceedings
of the 2008 European conference on Object-Oriented Pro-
gramming (ECOOP).

[43] SINGH, A., NARAYANASAMY , S., MARINO, D., MILL -
STEIN, T., AND MUSUVATHI , M. End-to-End Sequential
Consistency . InProceedings of the 2012 International Sym-
posium on Computer Architecture (June 2012).

[44] SÜSSKRAUT, M., KNAUTH , T., WEIGERT, S., SCHIFFEL,
U., MEINHOLD, M., FETZER, C., BAI , T., DING, C., AND

ZHANG, C. Prospect: A compiler framework for speculative
parallelization. InProceedings of the 2010 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization
(April 2010), pp. 131–140.

[45] VEERARAGHAVAN, K., CHEN, P. M., FLINN , J., AND

NARAYANASAMY , S. Detecting and surviving data races us-
ing complementary schedules. InProceedings of the 23rd
ACM Symposium on Operating Systems Principles (Cascais,
Portugal, October 2011).

[46] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG ,
J., CHEN, P. M., FLINN , J.,AND NARAYANASAMY , S. Dou-
blePlay: Parallelizing sequential logging and replay. InPro-
ceedings of the 16th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (Long Beach, CA, March 2011).

[47] WOO, S. C., OHARA , M., TORRIE, E., SINGH, J. P.,AND

GUPTA, A. The SPLASH-2 programs: Characterization and
methodological considerations. InProceedings of the 22nd
International Symposium on Computer Architecture (June
1995), pp. 24–36.

[48] X IONG, W., PARK , S., ZHANG, J., ZHOU, Y., AND MA , Z.
Ad hoc synchronization considered harmful. InProceedings
of the 9th Symposium on Operating Systems Design and Im-
plementation (2010), pp. 163–176.

[49] ZILLES, C., AND SOHI, G. Master/slave speculative par-
allelization. InProceedings of the 35th Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO)
(2002), pp. 85–96.


