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Abstract

With the ubiquitous availability of parallel architectures,
the burden falls on programmers’ shoulders to write cor-
rect parallel programs that have high performance and
portability across different systems. One of the major is-
sues that complicates this task is the intricacies involved
with the underlying memory consistency models. Se-
quential Consistency (SC) is the simplest and most in-
tuitive memory model. Therefore, programmers usually
assume SC for writing parallel programs. However, vari-
ous concurrency bugs can lead to violations of SC. These
subtle bugs make the program difficult to reason about
and virtually always lead to incorrectness. This paper
provides the first (to the best of our knowledge) compre-
hensive characteristics study of SC violation bugs that
appear in real world codebases.

We have carefully examined pattern, manifestation, ef-
fect, and fix strategy of 20 SC violation bugs. These bugs
have been selected from randomly chosen 127 concur-
rency bugs from a variety of open source programs and
libraries (e.g. Mozilla, Apache, MySQL, Gcc, Cilk, Java,
and Splash2). Our study reveals interesting findings and
provides useful guidance for future research in this area.

1 Introduction

Over the last few years, we have seen parallel architec-
tures to become ubiquitous. This burdens the program-
mers with the responsibility to write correct parallel pro-
grams. Therefore, the issue of programmability and cor-
rectness of parallel programs becomes one of the top pri-
orities for today’s computing world. A memory model
directly affects programmability, performance, portabil-
ity, and correctness of a parallel program. It defines a
set of rules that specifies how the memory behaves with
respect to read and write operations. It forms the funda-
mental basis for writing parallel code.

The memory model that programmers usually have in

mind when they program and debug shared-memory par-
allel programs is SC. SC requires the memory operations
of a program to appear in some global sequential order
that is consistent with each thread’s program order [9].
In practice, however, current processor hardware aggres-
sively overlaps, pipelines, and reorders the memory ac-
cesses of a thread. As a result, a program’s execution can
be very unintuitive.

As an example, consider the simple case of Fig-
ure 1(a). In the example, processor PA allocates a vari-
able and then sets a flag. Later, PB tests the flag and
uses the variable. While this interleaving produced ex-
pected results, the interleaving in Figure 1(b) did not.
Here, since the variable and the flag have no data de-
pendence, the PA hardware reorders the statements. In
this unlucky interleaving, PB ends up using uninitialized
data. This is an SC violation.

PB

A0: buff=malloc()

A1: init=TRUE

B0: if (init)

B1: ...=buff

(b)

PA PBPA

A1: init=TRUE

A0: buff=malloc()

B0: if (init)

B1: ...=buff

(a)

Figure 1: Example of an SC violation.

SC violation bugs are arguably the hardest type of con-
currency bugs. First, these bugs complicate the reason-
ing process of a parallel program. When an SC violation
occurs, the program execution loses its intuitive seman-
tic meaning. As a result, the execution becomes harder
to verify. Second, SC violation bugs are often architec-
ture dependent. They might manifest under one mem-
ory model while completely invisible under a different
memory model. Therefore, theses bugs directly affect
the portability of a program. Third, often times, these
bugs are found in codes that are known to have inten-
tional data races. Examples of such codebases are Dou-
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PA PB
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(d)

PA PB

(e)

Figure 2: Understanding SC violations.

ble Checked Lock (DCL) constructs [19], synchroniza-
tion and concurrent libraries, and codes that implement
lock-free data structures. Therefore, traditional data race
detectors cannot detect SC violation bugs from these
codebases. Fourth, the presence of SC violation bugs
can make various software debugging tools inadequate.
These tools usually assume SC behavior of a program.
Therefore, if a program has SC violation bugs, the tools
may loose their applicability. This makes SC violation
bugs an important category of concurrency bugs, even
for the sake of detection of other bugs. Last but not the
least, SC violation bugs require very specific reordering
of memory accesses to manifest. Therefore, they cannot
be reproduced with existing debugging and testing tech-
niques.

Despite the importance and difficulty of SC violation
bugs, there have been very few attempts to understand
the characteristics of these bugs in real world programs
and libraries. Most of the previous work [3, 1] focuses on
SC violation bugs in small kernels and programs. Vul-
can [16] provides a preliminary study of SC violation
bugs in various open source programs but the study is far
from comprehensive, considering the many dimensions
of the bugs. This work performs the first (to the best of
our knowledge) comprehensive characteristics study of
SC violation bugs found in various popular codebases.
More specifically, we examine bug pattern, effect, fix
strategy, and other characteristics of real world SC vi-
olation bugs. Our study is based on 20 SC violation bugs
out of a total of 127 randomly chosen concurrency bugs.
These bugs are selected from Mozilla, Apache, MySQL,
Gcc, Cilk, Java, and Splash2 programs. Our study re-
veals interesting findings which can act as guidelines for
future research in this area.

This paper is organized as follows: Section 2 describes
some background and related work; Section 3 explains
the methodology of the study; Sections 4 describes the
findings of our work; Section 5 explains the limitations
of our study; and finally, Section 6 concludes the paper.

2 Background and Related Work

Shasha and Snir [20] show what causes an SC viola-
tion: overlapping data races where, at runtime, the de-
pendences end up ordered in a cycle. Recall that a data
race occurs when two threads access the same memory
location without an intervening synchronization and at
least one is writing. Figure 2(a) shows the required pro-
gram pattern for two threads (where each variable is writ-
ten at least once) and Figure 2(b) shows the required or-
der of the dependences observed at runtime for SC vio-
lations (where we assigned reads and writes to the refer-
ences arbitrarily).

If at least one of the dependences occur in the opposite
direction (e.g., Figure 2(c)), no SC violations occur. In
addition, if the code of the two threads references the two
variables in the same order (Figure 2(d)), no SC violation
is possible — no matter how these references end up be-
ing reordered at runtime. For example, in Figure 2(e), no
SC violation can occur — no matter the execution order
of the instructions within a thread, or the direction of the
inter-thread dependences. All of these patterns can be
generalized to include more than two threads and vari-
ables.

Given the pattern in Figure 2(a), Shasha and Snir [20]
avoid the SC violations by placing a fence between the
references A0 and A1 and another between the references
B0 and B1. Their algorithm to find where to put the
fences has been called the Delay Set.

There have been several proposals [6, 14, 13, 16, 18]
for detecting SC violations. However, most of them have
focused on detecting data races as proxies for SC vi-
olations. This includes the work of Gharachorloo and
Gibbons [6], DRFx [14], and Conflict Exceptions [13].
Specifically, they all look for a data race between two
accesses from different threads that occur within a short
time distance. The actual detection scheme varies among
them. Recently, Vulcan [16] and Volition [18] focus on
detecting actual SC violations by uncovering the required
cycle as in Figure 2(a) and (b) among the memory ac-
cesses.
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App Bug Info Brief Description

Gcc 2644 In pthread cancel init(), libgcc s getcfa is used as a flag without proper fences.
Gcc 11449 In init des r(), small tables initialized is used as a flag without proper fences.
Gcc 10418 Fences are misplaced inside the code of atomic compare and exchange, resulting in an incorrect

implementation of pthread mutex unlock.
Gcc 55492 The implementation of atomic load places a fence before the load. This can cause later memory

accesses to get reordered before the load.
Gcc 48076 The use of emutls key can get reordered with obj→loc.offset because of unsafe DCL pattern.
Gcc 48126 Misplaced fences can cause later memory accesses to get reordered before compare and swap operation.
Mozilla 225525 The use of decoding in a pattern similar to DCL can lead to reordering.
Mozilla 622691 defaultCompartmentIsLocked is updated outside a critical section without using proper fences.
Mozilla 554860 takeSample is used as a flag without enough fences.
Mozilla 124923 The use of oid d hash in a pattern similar to DCL can lead to reordering.
MySQL Duan et al.[4] Clean up code may start before slave running is cleared because of insufficient fences.
MySQL Duan et al. The use of cell→object as a flag without proper fences can lead to reordering with prior memory accesses,

[4] increasing the possibility of a crash.
MySQL 45058 The use of charset initialized in a pattern similar to DCL can lead to reordering.
Apache 49972 The use of currentDateGenerated in a pattern similar to DCL can lead to reordering.
Apache 49986 The use of reload in a pattern similar to DCL can lead to reordering.
Apache 47158 The use of currentMillis in a pattern similar to DCL can lead to reordering.
Apache 44178 queue is used as a flag without proper fences.
Java 6633229 The use of unsafe DCL pattern in Math.random() can lead to similar random values in two threads.
Cilk Duan et al. The use of store-store fence instead of a full fence in Cilk unlock can lead to reordering with prior load

[4] operations, resulting in an incorrect critical section.
fmm Vulcan [16] construct synch is used as a flag without proper fences.

Table 1: Summary of SC violation bugs.

Some researchers have used the compiler to identify
race pairs that can cause SC violations, typically using
the Delay Set algorithm, and then insert fences to prevent
cycles [4, 5, 8, 10, 11, 21]. There has been some work
on program testing and verification that either checks se-
mantic correctness or collects traces of a program and
then, off-line, applies reordering rules to detect SC vio-
lations [1, 2, 3]. Such techniques are typically limited to
small sized and intentionally buggy codes.

3 Methodology

3.1 Applications
We select several open source applications, libraries and
benchmarks in our study: Mozilla, Apache, MySQL,
Gcc, Cilk, Java, and Splash2. These are all mature con-
current applications and libraries. They represent dif-
ferent type of server applications, client applications,
programming libraries, threading libraries, and multi-
threaded benchmarks. Concurrency is used for differ-
ent purposes in different programs. The server applica-
tions use from hundreds to thousands of threads to handle
incoming requests. The client applications use concur-
rency to handle multiple GUI sessions and background
worker threads. The libraries implement a variety of
functionalities, a significant portion of which is meant
to be thread-safe. The Splash2 benchmark contains dif-
ferent multithreaded scientific programs. We believe that
these programs and libraries represent a variety of con-
current programs that are in use today.

3.2 Bugs
We collect SC violation bugs randomly from bug
databases and previously published literature. The bug
databases of the selected programs contain thousands of
bug reports. In order to effectively collect SC viola-
tion bugs, we first search concurrency bugs using various
keywords like ‘double checked lock’, ‘synchronization’,
‘race’, ‘lock’, ‘concurrent’, ‘volatile’, ‘atomic’, ‘mutex’,
‘consistent’, ‘memory model, ‘violation’, and their vari-
ations. These keywords return several hundred bug re-
ports. We discard the bug reports that have not been
confirmed and fixed. So, the remaining bugs are clear-
cut harmful ones. Among them, we randomly select 127
bugs. We manually check these bug reports, detailed dis-
cussions, relevant source codes, and patches to filter out
the concurrency bugs that do not cause SC violations.
After that, we finally get 20 bugs that can cause SC vio-
lations. It should be noted that not all of these bugs can
cause SC violations in every memory model. We con-
sider a bug to be an SC violation bug if it can cause SC vi-
olations at least in the most relaxed memory model (e.g.
Release Consistency [7] or IBM PowerPC [15] model).
Table 1 lists a summary of SC violation bugs that we have
finally selected.

4 Findings

We analyze the bugs based on three main characteristics
- pattern of the bugs, fix strategy, and time to fix. Besides
these main issues, we also collect information about the
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T1 T2

B0: if(small_tables_initialized==0){

     atomic_write_barrier();  

eperm32tab[...]= ...;

A1: small_tables_initialized=1;

A0:

... =eperm32tab[...];B1:

Fence needed
Can reorder here

small_tables_initialized=1;         

      ...

}

      }

... =eperm32tab[...];

Done:

         if(small_tables_initialized)
            goto Done;

_init_des_r(...){
if(small_tables_initialized==0){

         atomic_write_barrier();

B0:

B1:

A0:

A1:

eperm32tab[...]= ...;

         lock;

         unlock;

(b) Accesses that participate in the SC violation

(a) Code from crypt_util.c
Figure 3: Example of a DCL pattern.

number of threads and variables involved, impact of the
bugs, and initial detection mechanism.

4.1 Bug Pattern

Different bug patterns require different diagnosis and fix
approaches. We classify the bugs into three main pat-
terns - DCL, improper flag synchronization, and incor-
rect fence. Figure 3 and 4 show a representative example
of each pattern.

In Figure 3, an unsafe DCL pattern is used to initialize
eperm32tab. If two threads call the initialization routine
simultaneously, one thread (e.g. T2) might end up us-
ing uninitialized eperm32tab because of an SC violation
caused by memory reordering.

In Figure 4(a), construct synch has been used as a flag
without declaring it as an atomic variable. This can cause
prior memory accesses of thread T2 to get reordered af-
ter the flag is set. As a result, the computation can be
incorrect. The third pattern is shown in Figure 4(b).
Here, cilk membar storestore fence inside Cilk unlock
function cannot prevent the read operation of variable b
to get reordered outside the critical section. This can lead
to a violation of mutual exclusion property of critical sec-
tions.

Apps DCL Impro. Flag Incor. Fence Total

Gcc 2 1 3 6
Mozilla 2 1 1 4
MySQL 1 1 1 3
Apache 3 1 0 4
Java 1 0 0 1
Cilk 0 0 1 1
fmm 0 1 0 1

Overall 9 5 6 20

Table 2: Patterns of SC violation bugs.
Table 2 shows the number of different patterns found

in different programs. According to this, DCL and im-
proper flag synchronization patterns constitute 70% of

all SC violation bugs. Therefore, if we target only these
two patterns, the majority of SC violation bugs can be
eliminated. Fortunately, these two patterns can be easily
handled using some static analysis technique. The rest
(i.e. 30%) require more advanced detection mechanism.
Some type of model checking based approach [1, 3] or
hardware based approach [16, 18] appears to be more
appropriate for them.

4.2 Fix Strategy

After carefully examining the fix strategies of all SC
violation bugs, we classify them into four categories -
correcting fences (Cor. Fence), using atomic variables
(Atomic), using locks (Locks), and restructuring of the
code (Res. Code). Figure 4(a) shows how an SC viola-
tion bug can be fixed by using an atomic variable. Fig-
ure 3(b) and 4(b) show how the bugs can be fixed by
correcting a fence.

Apps Cor. Atomic Locks Res. Total
Fence Code

Gcc 5 0 1 0 6
Mozilla 1 1 1 1 4
MySQL 2 1 0 0 3
Apache 0 3 1 0 4
Java 0 0 1 0 1
Cilk 1 0 0 0 1
fmm 0 1 0 0 1

Overall 9 6 4 1 20

Table 3: Fix strategies of SC violation bugs.

Table 3 shows a break down of different fix strategies.
It shows that 45% of SC violation bugs can be fixed by
adding or modifying fences whereas 30% of the bugs re-
quire atomic variables. Together these two strategies fix
75% of all SC violation bugs. Rest of the bugs are fixed
by adding locks or restructuring the code. This finding
implies that the fix strategies of SC violation bugs are
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Need to be

full fence
T1

atomic    as
Need to be declared T2

SetColleagues(...) {

while(b−>construct_synch==0);

B1:

}

... = parent_b−>colleagues[...];

b−>colleagues[...] =...;A0:

SetColleagues(...) {

child_b−>construct_synch=1;A1:

}

Can reorder here

Code from construct_grid.c in fmm

(a) Improper flag synchronization

B0:

cilk_membar_storestore();
}

v = 0;

a = ...;
Cilk_lock(l);

Cilk_lock(l);

T1 T2

Cilk_unlock(v) {

Cilk_unlock(l);

b = ...;

Cilk_unlock(l);

... = b;

Can reorder here

Code from cilk

(b) Incorrect fence
Figure 4: Example of (a) an improper flag synchronization, and (b) an incorrect fence pattern.

quite different from those of data races (which are fixed
mainly by adding or modifying locks). Hence, we need
an approach that can determine when certain data races
can lead to SC violations and suggest a fix accordingly.

4.3 Time to Fix
We collect information about how much time it takes
to fix SC violation bugs. This gives us an idea about
the complexity associated with these bugs. Since not all
of the programs maintain official bug databases, we can
gather this statistics only for 15 SC violation bugs. 7
of them require from 90 days up to several years to get
fixed. This is in contrast to other concurrency bugs which
require an average of 73 days to get fixed [12]. In fact, in
one instance (Gcc bug #2644), the bug requires 5 years
to finally get fixed. This gives us an idea about the com-
plexity of analyzing SC violation bugs.

4.4 Other Characteristics
Number of threads and variables: All of the bugs that
we selected, involve only two threads and two variables.
Therefore, it suffices to have a detection mechanism that
can handle SC violation bugs between any two threads.
However, it is quite possible to have multiple SC viola-
tions between the same pair of threads.

Bug impacts: Whenever an SC violation occurs, a
thread observes an undefined or stale value of a vari-
able. This can eventually lead to dereferencing a NULL
pointer, use of uninitialized data structures, incorrectness
of a calculation, and even, violation of mutual exclusion
property of a critical section. All of these affect the cor-
rectness of a program. All the bugs in our study have
been confirmed as harmful by the developers.

Initial detection: Duan et al. [4] have detected three
SC violation bugs. Among the other bugs, Mozilla bug

#622691 has been initially detected by Helgrind [17] as
a data race. The rest of the bugs have been initially de-
tected by programmers reading the source code. This im-
plies that programmers lack effective tools for detecting
and reproducing SC violation bugs.

5 Limitations

Similar to previous work [12, 22], our characteristics
study is subject to a validity problem. Potential threats
to the validity of our work are representativeness of the
programs and bugs, and our examination methodology.

As for application representativeness, our study
chooses three open source applications, three open
source libraries, and one multithreaded benchmark. We
believe that these programs represent various concur-
rent applications and libraries used in today’s computing
world. However, our study may not reflect the charac-
teristics of other types of applications like HPC applica-
tions, operating systems, or cloud applications.

To address bug representativeness, the SC violation
bugs that we studied are randomly selected from the bug
databases of the chosen applications or previously pub-
lished work [4, 16]. Therefore, they provide a good sam-
ple of fixed bugs in those programs. However, the char-
acteristics of non-fixed and non-reported SC violation
bugs might be different.

In terms of examination methodology, we have gone
through detailed bug reports, discussions, patches, and
source codes. Since SC violation bugs are architecture
dependent, it is possible that not all of the bugs might
manifest in the same architecture. However, we believe
that each of these bugs can manifest in at least one archi-
tecture.

Overall, while our findings cannot be generalized to
all concurrent programs and libraries today, we believe
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that our study captures the characteristics of SC viola-
tion bugs in major classes of current programs and li-
braries. Still, we would like to suggest the readers to take
our findings with above methodology and applications in
mind.

6 Conclusion

This paper presents the first (to the best of our knowl-
edge) comprehensive characteristics study of SC viola-
tion bugs in large open source programs and libraries.
Our study is based on 20 SC violation bugs out of ran-
domly chosen 127 concurrency bugs. These bugs have
been collected from three open source concurrent ap-
plications, three open source libraries, and one multi-
threaded benchmark. These bugs can serve as a stan-
dard benchmark for SC violations. Our study uncovers
many interesting findings and implications of SC viola-
tion bugs. For example, DCLs and improper flag syn-
chronizations are the major source of SC violation bugs.
Therefore, some future research can be done by target-
ing only these two patterns. If we can provide some IDE
plugin for writing these two patterns correctly or design
some static analysis technique for them, then the major-
ity of SC violation bugs can be avoided. Our findings
also show that the fix strategies of SC violation bugs are
quite different from those of data races. Therefore, we
need an approach that can determine when some data
races can lead to SC violations and suggest a fix accord-
ingly.
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