Constrained Data-Driven Parallelism

Tim Harris

Yossi Lev
Virendra J. Marathe

Victor Luchangco
Mark Moir

Oracle Labs
{timothy.l.harris/yossi.lev/victor.luchangco/virendra.marathe/mark.moir} @oracle.com

Abstract

In data-driven parallelism, changes to data spawn new
tasks, which may change more data, spawning yet more
tasks. Computation propagates until no further changes
occur. Benefits include increasing opportunities for fine-
grained parallelism, avoiding redundant work, and sup-
porting incremental computations on large data sets.
Nonetheless, data-driven parallelism can be problematic.
For example, convergence times of data-driven single-
source shortest paths algorithms can vary by two orders
of magnitude depending on task execution order. We
propose constrained data-driven parallelism, in which
programmers can impose ordering constraints on tasks.
In particular, we propose new abstractions for defining
groups of tasks and constraining the execution order of
tasks within each group. We sketch an initial implemen-
tation and present experimental results demonstrating
that our approach enables new efficient data-driven im-
plementations of a variety of graph algorithms.

1. Introduction

Exploiting multicore systems requires parallel computa-
tion, preferably with minimal synchronization. A promis-
ing approach is data-driven parallelism, in which com-
putation is broken into tasks, each of which must run
when some data is modified. Such tasks may modify ad-
ditional data, thereby triggering additional tasks. Thus,
changes to data “drive” the parallel computation.

Consider, for example, the single-source shortest
paths (SSSP) problem: given a weighted graph with no
negative-weight cycles, compute the length of the short-
est paths to each node from a single source node. We can
solve SSSP by assigning the source a distance estimate
of 0 and every other node a distance estimate of oo, and
then relaxing the graph’s edges until no more relaxation
is possible. An edge from x to y can be relaxed if going
to z and then following this edge provides a path shorter
than the current distance estimate to y.

This computation is well-suited for parallelism be-
cause edges may be relaxed in any order, and the re-
laxation of edges need to synchronize only when the
edges share a node. It is well-suited to being data-driven
because relaxation must be performed initially only on

262144 T T T

65536 b BF-OMP —x—i |
H DD-Wild +—&s— |

16384 DD-Phased +—e—

4096 |
1024 |
256

64§

Execution time (ms)

16
4

1

#Threads

Figure 1: Time to compute SSSP with OpenMP (BF-
OMP) and data-driven algorithms (DD-Wild, and DD-
Phased).

edges of the source node, and thereafter, only on edges
of nodes whose distance estimates have been updated.

Although this computation is correct regardless of the
order in which edges are relaxed, this order can have a
profound impact on execution time: with an ideal order,
each edge is relaxed at most once; a bad order can in-
duce an exponential number of relaxations. As Figure
illustrates, this problem is not merely theoretical. The fig-
ure shows three variants of SSSP running on the collab-
oration network graph ca-HepPh from SNAP [23]]. BF-
OMP is a parallel version of Bellman-Ford: computation
proceeds in rounds, and every edge is relaxed once per
round using an OpenMP parallel for loop. DD-Wild is
data-driven: an edge is relaxed when it is incident on a
node whose distance estimate has changed. This tends to
produce a depth-first traversal of the graph, which is a
bad order for computing SSSP. Thus, although it scales
well, with one thread, DD-Wild is over 200 times slower
than BF-OMP. DD-Phased—a data-driven implementa-
tion that uses the abstractions introduced in Section 2] to
constrain task execution order—outperforms BF-OMP at
every thread count. We discuss these results in more de-
tail in Section[dl

We argue that data-driven parallelism benefits signif-
icantly from the ability to constrain the order in which
tasks run. Furthermore, we argue that choosing the ap-

propriate constraints is a property of an algorithm, and
so should be expressed in the source code (rather than by
picking a plug-in scheduler for a whole application).
Section [3] describes our prototype. Section [shows
the power of constraining data-driven parallelism via our
abstractions in various ways using several benchmarks.
Section [discusses related work. Section 6] concludes.

2. Programming Model

Computation is divided into tasks executed by threads.
Each task belongs to a fask group. A task may spawn
a new task via a parallel for loop or a trigger, which
specifies data-driven computation:

x triggers [deferred] f(void *d);
*y triggers [deferred] g(void *d);

We say x is a direct trigger for f and y an indirect trig-
ger for g. A trigger is a deferred trigger if it is declared
with the optional deferred keyword; otherwise, it is an
immediate trigger. When such declarations are in effect,
writing to x spawns a task to run f, and modifying data
by dereferencing y spawns a task that runs g. (See Sec-
tion for an example.) The functions f and g take a
single argument, which is a pointer to the data that was
modified. This has been sufficient for all use cases we
have explored so far, though additional arguments may
be useful in the future.

A task spawned by an immediate trigger may execute
concurrently with the task that spawned it. In contrast,
the execution of a task spawned by a deferred trigger is
deferred until all nondeferred tasks in its task group have
completed. This implicitly partitions the tasks in a task
group into a totally ordered series of phases: immediate
triggers spawn tasks in the current phase, deferred trig-
gers spawn tasks in the next phase, and no task is exe-
cuted until all tasks in previous phases have completed
(see Figure . Thus, at any time, each unfinished task is
in either the current phase or the next phase of its task
group.

A task group, declared as follows, is a set of tasks.

taskgroup {

/] code
Pt

When this block is executed, a new task group t is cre-
ated. Initially, a new task group has a single task, running
the code in the declared block (executed by the thread
that entered the block). A newly spawned task belongs
to the same task group as the task that spawned it. In
our current model, every task belongs to exactly one task
group. There is a single anonymous task group to which
all initial tasks belong.

A task group’s only method—WaitForGroup()—blocks
until every task in that task group has completed. Note
that deadlock cannot arise solely from calls to WaitFor-

phase 1

phase 4

\
i
]

. completed task
[:] executing task

1 deferred task

—> spawn immediate

----- > spawn deferred

Figure 2: Snapshot of a CDDP computation: Tasks spawn
other tasks, either immediate or deferred. Deferred tasks
are not executed until all nondeferred tasks complete,
implicitly partitioning tasks into phases.

Group because the name of a task group is not in scope
in the task group’s code block and we provide no mecha-
nism to pass task groups (i.e., there is no named type for
task groups).

3. Implementation Overview

To evaluate the constrained data-driven parallelism (CDDP)
approach, we have implemented a simple prototype using
C++ macros and a runtime library. We support trigger-
ing via explicit calls to runtime library functions (one
for immediate triggering, and one for deferred). These
functions take as arguments the object that triggered the
call and the handler function to run. Our runtime system
manages tasks using a work-stealing scheduler based on
the Chase-Lev deque [4].

We implement task groups with a TaskGroup class,
exposing BeginTaskGroup and EndTaskGroup meth-
ods. BeginTaskGroup begins the “scope” of a task group
which owns all tasks spawned until the matching call to
EndTaskGroup. EndTaskGroup returns a pointer to the
task group object, which can be passed to WaitForGroup.

Each task group tracks whether any tasks remain to
be executed in the current and next phases using SNZI
objects [7, [14]]. Each thread keeps the deferred tasks that
it spawns in a thread-local deferred-task bag. When no
tasks remain in the current phase of a task group, each
thread moves any deferred tasks it has from the bag of
that task group to its deque. When no thread has any
deferred task for a task group, the task group’s execution
is compete.

4. Evaluation

We evaluate our CDDP prototype using SSSP, Com-
munities (a graph clustering algorithm [20]]), and BC
(betweenness centrality, a social network analysis algo-
rithm [15]). We compare our data-driven solutions with
parallel implementations using OpenMP [17]. CDDP de-

livers competitive, or significantly better, performance
across most benchmarks and inputs.

We also ported the discrete-event simulator from the
Lonestar benchmark suite [[12], in which the computa-
tion is structured entirely via data dependencies between
tasks. The performance of our CDDP solution is consis-
tent with results reported by Kulkarni et al. [12] (we omit
full details for brevity).

Experiments were run on an Oracle T5140 series ma-
chine, comprising two 1.2 GHz Niagara T2 chips with a
total of 128 hardware thread contexts (8 cores per chip,
8 hardware threads per core). Each chip has an 4MB on-
board L2 cache, and each core has a 8KB L1 data cache
shared between its threads. We use the Oracle Solaris
Studio 12.1 C++ compiler at optimization level xO5.

4.1 Single-Source Shortest Paths (SSSP)

As discussed in the introduction, relaxation algorithms
such as SSSP are well-suited for data-driven paralleliza-
tion. To reduce the overhead of spawning tasks, we
spawn a single task that relaxes all the edges of a node
whose distance estimate is updated, rather than spawn-
ing a separate task for each edge. We also introduce a
per-node pendingRelaxation flag that indicates whether
the node’s distance estimate has been modified since its
edges were most recently relaxed, and trigger relaxation
when this flag is set to true, rather than when the dis-
tance estimate is updated. This allows multiple succes-
sive updates to be handled by a single task that calls the
following function:

1 void RelaxNeighbors(Node *n)

2 n->pendingRelaxation = false

3 forall (Node *k in neighbors(n))

4 newDist = n->dist + weight(n,k)
5 bool* pendingFlagP = &k->pendingRelaxation
6 *xpendingFlagP triggers RelaxNeighbors (k)
7 currDist = k->dist
8 while (newDist < currDist)

9 if (CAS(&k->dist, currDist, newDist))
10 // Triggers on successful CAS

11 CAS (pendingFlagP, false, true)

12 break

13 currDist = k->dist

Note the use of an indirect trigger to trigger RelaxNeigh-
bors when the flag changes from false to true at line [T1]
but not when it is set to false at line 2l We use CAS at
line so that RelaxNeighbors is triggered only when
the flag changes (i.e., when the CAS is successful).

We experimented with three versions of this algo-
rithm. DD-Wild uses “classical” work-stealing, in which
each thread pushes and pops tasks on one end of its
deque, and thieves steal from the other end. With only
a single worker thread, this implies LIFO execution of
tasks. DD-Phased uses the same algorithm and runtime,
but with deferred triggering (adding the deferred key-
word at line @ Finally, DD-Fifo uses immediate trig-
gering with a modified version of the runtime system

262144 ‘ ‘ ‘
Dijkstra ——
65536 |- Seq-DD-Fifo +—x—
BF-OMP +—— 1
7 163/ DD-Wild —a— 7
i DD-Fifo
A L |
g 0% DD-Phased —e— |
o 1024 | B
£]
c 256
S
3 64
[}
X
w 16

4

1 I I I I

64 |

1
2
4
8
16
32 +

Number of Threads

10000 : ‘ ‘ : —
£ Seq-DD-Fifo mmmmm
BF-OMP]
[DD-Wild ——1
1000 L DD-Fifo 4
£ DD-Phased 7771 1

100 ¢

10

#Nodes processed relative to Dijkstra

3
4
6
72
96
112
127

Number of Threads

Figure 3: Top: SSSP execution time (mean of 10 runs
with different source nodes, error bars showing min/-
max). Bottom: Work performed, normalized to Dijkstra.

in which threads access their deques in FIFO order with
self-stealing (pushing on one end, but with workers and
thieves popping from the other end).

Figure [3] compares these data-driven algorithms with
three alternative algorithms: BF-OMP is an OpenMP-
based parallel version of the Bellman-Ford algorithm that
avoids write-write conflicts by having a task relax all in-
coming edges of a node. Dijkstra is the classic sequential
SSSP algorithm, which relaxes edges in an ideal order
(i.e., every edge is checked exactly once). Seq-DD-Fifo
is a sequential version of DD-Fifo that uses a sequential
queue to store the nodes to be processed instead of our
abstractions (we used it to estimate the overhead imposed
by our runtime system). The figure uses the ca-HepPh
collaboration network from SNAP [23] (12,008 nodes
and 237,042 edges). Graphs from a variety of bench-
mark suites show qualitatively similar results. Results are
shown in a log-log scale.

As these results illustrate, the order in which tasks
are executed has a huge effect: For single-thread runs,
DD-Wild, which runs tasks in LIFO order (i.e., traverses
the graph depth-first), is 250x slower than BF-OMP,

whereas DD-Phased and DD-Fifo, which approximate
a breadth-first traversal, are about 2x faster than BF-
OMP. Dijkstra, which relaxes nodes in an optimal order
and avoids the overhead of spawning and synchronizing
tasks, is about 6x faster than BF-OMP with a single
thread. Comparing Seq-DD-Fifo and DD-Fifo shows that
the overhead of our system in this benchmark is about
50%.

The data-driven algorithms all scale well up to 32
threads, with DD-Phased and DD-Fifo slightly improv-
ing their lead over Bellman-Ford (and outperforming Di-
jkstra with 4 or more threads), and DD-Wild rapidly
catching up. Although DD-Fifo is 27% slower than DD-
Phased with one thread, DD-Fifo outperforms it by 42%
at 127 threads. Perhaps surprisingly, DD-Wild exhibits
superlinear speedup, and with 72 or more threads, it out-
performs all the other algorithms.

We can understand these results better by looking
at Figure E| (bottom), which shows the total amount of
work done by each algorithm, measured by the num-
ber of nodes processed. With a single thread, DD-Wild
does 500x more work than DD-Fifo, and 125x more than
BF-OMP, its closest competitor, because of its LIFO ex-
ecution of tasks. With more threads, the LIFO execu-
tion is increasingly disrupted by work-stealing, result-
ing in a better order for computing SSSP, and a cor-
responding reduction in total work. For all other paral-
lel algorithms, the work increases slightly as the thread
count increases, with DD-Phased doing the least work
at all thread counts, explaining its relatively good per-
formance at low thread counts. However, at high thread
counts, the waiting due to phases limits its scalability, and
DD-Fifo and DD-Wild outperform it. Although DD-Wild
does more work than DD-Fifo, we believe it outperforms
DD-Fifo at high thread counts because it avoids the syn-
chronization overheads that DD-Fifo incurs due to self-
stealing.

4.2 Community-based Graph Clustering

Our next example is a clustering algorithm that parti-
tions a graph into communities, each comprising nodes
that are relatively strongly connected to each other and
relatively weakly connected to nodes in other communi-
ties. We build on the sequential round-based algorithm
of Raghavan et al. [20] (Serial). In each round, this al-
gorithm iterates over all nodes in a random order, and
assigns each node to the community with the most of its
neighbors (ties are broken arbitrarily). The algorithm ter-
minates after a round in which no node changes commu-
nity.

OMP is a parallel version of this algorithm that uses
an OpenMP parallel for loop to iterate over the nodes
at each round. Both Serial and OMP can perform a lot
of unnecessary work: a node changes its community in

Serial —+— DD-Wild —=— DD-Mixed —a—

OMP —%— DD-Fifo DD-Phased —o—
131072 — ‘
65536 |
w
& 32768 |-
%)
E 16384 |
()
£ 8192 -
c
S 4096 |-
3
3 2048 -
>
w
1024
512 L L L L L L L L
- o < [ee) (=} N < o)
— (32} [{e] N
-
Number of Threads
1000 n T T T T]
P OMP mmmm 1
DD-Wild
DD-Fifo =1]
DD-Mixed |
DD-Phased 7777

100 |

#Nodes processed relative to Serial (%)

i

N < 0 © N ®© ¥ N ©
© N~ O

10

112 |
127 |

Number of Threads

Figure 4: Top: Communities clustering execution times
(mean of 5 runs, error bars showing min/max). Bottom:
Work performed, normalized to Serial.

a round only if at least one of its neighbors changed its
community recently (in the last or the current round),
but these algorithms recompute each node’s commu-
nity every round even if none of its neighbors has since
changed its community. Tseng and Tullsen made simi-
lar observations for other applications in their work on
data-triggered threads [25} 26].

Based on this observation, we built four data-driven
variants of this algorithm: DD-Wild, DD-Fifo, DD-
Phased, and DD-Mixed. In all of them, updating a node’s
community triggers tasks for its neighbors. To begin the
computation, we use a parallel for loop to assign a unique
community to each node, triggering computation across
the graph. The first three variants are similar to the corre-
sponding SSSP variants. In DD-Mixed, a task to process
a node is triggered in the current phase if that node has
not already been processed in the current phase; other-
wise, the task is deferred to the next phase. This more
closely imitates Serial, with DD-Mixed’s phases corre-
sponding to rounds in Serial.

We ran all the algorithms on various SNAP [23]
graphs, using the modularity metric [16] to confirm that

the “quality” of the results achieved by the parallel algo-
rithms are similar to or better than those of Serial. The
top chart of Figure] shows, on a log-log plot, the exe-
cution times for the amazon0505 graph (10,236 nodes,
3,356,824 edges, converted to an undirected graph by
adding the reverse edges, as the above algorithm requires
an undirected graph). The data-driven algorithms outper-
form Serial and OMP algorithms in every case. As with
SSSP, constraining task execution order substantially im-
proves performance. In particular, DD-Wild performs
considerably worse than all other data-driven variants.
This is explained by the bottom chart of Figure |4 that
shows that, at all thread counts, DD-Wild performed sig-
nificantly more work than the other data-driven variants
(about 40% versus 15%, normalized to Serial). Single-
threaded OMP does the same amount of work as Serial,
and at higher thread counts, it usually even does 14-50%
more work than Serial. This is why it performs worse
than DD-Wild.

Because DD-Mixed was designed to imitate the be-
havior of Serial, we also compared the number of rounds
for Serial to converge and the number of phases taken by
DD-Mixed. Indeed, the two numbers were very similar
for most graphs. However, for one graph, web-BerkStan,
the number of serial rounds was an order of magnitude
higher than the number of data-driven phases, regardless
of the random order in which Serial processed the nodes,
resulting in a serial execution time that is 40x longer than
that of DD-Mixed. This suggests that for some graphs,
the data-driven order of processing can lead to faster con-
vergence than that achieved with most random orders.

4.3 Betweenness Centrality (BC)

BC is a measure of the importance of each node in a
graph in terms of the number of shortest paths going
through that node. Hong et al. wrote a Green-Marl pro-
gram (bc-GM) that approximates BC [[10], based on an
algorithm by Madduri et al. [15]]. Briefly, bc-GM does
a BFS traversal rooted at a randomly selected node,
recording the number of shortest paths from the root to
each node, and then does a reverse-BFS (rBFS) traversal,
recording at each node the number of shortest paths from
the root to other nodes that go through it. This process is
repeated several times.

We developed a data-driven variant (bc-DD) in which
the BFS traversals are done using task group phases, and
the rBFS traversals are done in classic data-driven fash-
ion. The BFS and rBFS tasks in bc-DD can be overlapped
to some degree, improving overall parallelism. Note that,
in contrast to SSSP, executing the tasks in phases is re-
quired for correctness, to ensure BFS traversal.

The Green-Marl compiler does source-to-source trans-
formation, converting a Green-Marl program into an
equivalent OpenMP program. The resulting bc-GM Open-

MP program dynamically constructs sets of nodes visited
at each level in the BFS traversal, and within each BFS
level, employs an OpenMP parallel for loop to visit each
graph node at that level. We believe that our experimental
comparison between bc-GM and bc-DD reflects trade-
offs between the OpenMP and CDDP implementations,
rather than Green-Marl and CDDP abstractions. Further-
more, because OpenMP provides numerous options for
how loop iterations are scheduled, we experimented with
the static scheduling policy, the dynamic scheduling pol-
icy with multiple for loop chunking factors.

We conducted experiments with several input graphs
and report results in Figure [5| for two representative
graphs: a social network graph soc-LiveJournall and a
web graph web-Google. We show the performance of
the static scheduling policy (bc-GM), and the dynamic
scheduling policy (bc-GM-dy-*) with different loop iter-
ation chunking factors (128, 1K, and 4K). The chunking
factors help us understand the potential impact of varying
task granularity. bc-DD does not employ any chunking.
We note that, unlike other benchmarks reported here,
CDDP’s data driven execution model does not reduce the
amount of real work done in BC.

Because bc-DD tasks are far more fine grained (one
task per graph node) than bc-GM work items, bc-DD in-
curs significant overheads for single-thread runs (up to
50%). However, this overhead diminishes rather quickly
with increasing thread count, presumably because of
the better load balancing achieved by our work-stealing
scheduler.

The scalability results are mixed: For soc-LiveJournall
(Figure [5a), bc-DD outperforms significantly than bc-
GM, but the bc-GM-dy-* versions with coarse chunking
slightly outperform bc-DD. Both be-DD and the coarse-
grained bc-GM-dy-* versions outperform bc-GM, pre-
sumably because they offer better load balancing. The
finer-grained bc-GM-dy-128 appears to suffer with the
consequences of too fine a granularity, which leads to
worse communication to computation ratios on our ex-
perimental platform.

For web-Google (Figure [5b), bc-GM appears to per-
form best. We believe this to be due to the graph struc-
ture. In particular, because the average degree of graph
nodes in web-Google is much smaller than soc-Live-
Journall graph nodes, the amount of work done in
each bc-DD task for webGoogle is correspondingly
much smaller. This significantly increases communi-
cation to computation ratio for the dynamic schedul-
ing schemes on webGoogle. Because OpenMP static
scheduling comes with essentially no communication
between worker threads (except for communication hap-
pening via application data), it appears to outperform
all the dynamic scheduling alternatives (including bc-
DD), all of which encounter communication overheads

262144
i bc-GM ——
bc-GM-dy-128
> L bc-GM-dy-1K —%— |
@ 181072 be-GM-dy-4K —e—
2 bc-DD
£ 65536
£
= 32768 |
[
s}
£ 16384 |
(8]
2
Ny 8192 r
4096 L L L L L L
1 2 4 8 16 32 64 128

Number of Threads
(a) soc-LiveJournall, a social network graph (4.8M nodes, 137M edges)

32768
bc-GM +——

bc-GM-dy-128

m T bc-GM-dy-1K —— |

@ 16384 be-GM-dy-4K —e—

? bc-DD

£ s192¢]

£

= 4096 q

g >

= 2048 | S — o =8

3 R

2

i 1024

512 L L L L L

1 2 4 8 16 32 64 128
Number of Threads

(b) webGoogle, a web graph (1M nodes, 10M edges)

Figure 5: Betweenness Centrality performance results for
two graphs from the SNAP data set [23|] converted to
undirected graphs by adding reverse edges.

while enforcing dynamic scheduling. bc-DD appears to
be competitive with the best performing dynamic bc-GM
version.

We believe that the various bc-GM versions we ex-
perimented with benefit significantly from chunking of
loop iterations. However, we do not have support for such
chunking in our CDDP scheduler. Implementing a strat-
egy of dynamically consolidating several CDDP tasks
into a bigger task can potentially significantly boost per-
formance of some of our benchmarks. We plan to inves-
tigate this direction in future work.

5. Related Work

Data-flow systems. Data-driven parallelism stems from
early work on data-flow computation [2} 6], in which data
dependencies between instructions drive execution. We
work at a coarser grain—typically, tasks access locations
and perform local computation. The StarSs programming
model [[19] provides a form of data-flow computation us-

ing coarse-grained tasks. Synchronization is provided via
barriers which wait until all spawned tasks are complete;
CDDP phases avoid the need to wait for all tasks to com-
plete before new tasks can be spawned. Gajinov et al. [8]
and Seaton et al. [22] explored combinations of data-flow
programming models and atomic tasks. These systems do
not provide CDDP’s control over the scheduling order of
parallel tasks. Our current system does not require tasks
to be atomic (although we discuss future work in this di-
rection in Section[6). The Habanero project [24] includes
data-driven tasks. In that model, tasks are spawned ex-
plicitly. Futures allow synchronization on tasks as they
complete. In CDDP, our focus is constraining the order
of tasks as they run, rather than waiting for specific tasks
to finish.

Incremental and self-adjusting computation. Re-
cent work on incremental [} [18] and self-adjusting com-
putation [1} 9] has explored the ability to avoid repeating
unnecessary work. Tseng and Tullsen demonstrate sub-
stantial speed-ups using data-triggered threads [25} 26].
CDDP benefits from the same ability to avoid repeated
work, but provides additional control over how parallel
work is scheduled.

Domain-specific scheduling. Researchers have often
observed that different workloads perform best under dif-
ferent schedulers [[13} 121]]. In contrast, CDDP’s abstrac-
tions allow the programmer to constrain task ordering
without requiring a full scheduler to be written, or requir-
ing a single policy to be applied to a complete process.

BSP. The idea of phases in task groups builds on ideas
in the classic BSP programming model [27], but BSP
targets different kinds of computations than CDDP.

6. Conclusion and Future Work

In this paper, we have described constrained data-driven
parallelism. In CDDP, parallel task execution is driven
by changes to data, and the programmer can impose
additional constraints on the order in which tasks run.

Our exploration to date has focused on a simple set
of abstractions for expressing parallelism and for im-
posing constraints on execution order. Our initial results
demonstrate that these abstractions can provide signif-
icant performance improvements. Compared with “un-
constrained” approaches, CDDP enables the programmer
to avoid pathologically bad scheduling orders. Compared
with non-data-driven algorithms, CDDP avoids repeating
computation when data does not change.

We are encouraged by these preliminary results, and
hope to extend our work in several directions. We wish
to study the use of CDDP for additional algorithms and
workloads. Our initial exploration has focused on graph
algorithms on different kinds of input (e.g., planar graphs
versus small-world graphs. We would like to study a
broader range of algorithms, and to characterize where

CDDP is an appropriate solution (e.g., for which of the
“dwarfs” of Asanovic et al. [3] it is an appropriate fit).
This study will help us identify whether our current ab-
stractions of task groups and phases are sufficient for a
wide range of algorithms, or whether additional or alter-
native abstractions are needed.

We have considered whether CDDP should include a
notion of atomic tasks. These tasks would execute atom-
ically and in isolation from one another. In addition to
CDDP’s existing constraints, tasks would have to execute
after the atomic task that triggered them. This builds on
aspects of atomic dataflow models [8, [22]], and of the au-
tomatic mutual exclusion system [[L1]. Introducing atom-
icity simplifies programming by preventing tasks from
observing each others’ intermediate state. In addition, it
is possible that implementations may be able to use a sin-
glemechanism for detecting conflicts between tasks and
for detecting when a new task should be spawned.

As we gain experience with CDDP, we want to refine
the syntax for expressing constraints, and to investigate
the trade-offs in providing language support. Introducing
atomicity may push us toward compiler support. We have
not yet tried to define a formal semantics for CDDP.

Finally, our initial implementation supports execution
only within a single shared memory system. With in-
creasing interest in large data sets, we plan to extend
our implementation so that it supports similar program-
ming abstractions but is not limited to use a single shared
memory system. This will enable exploration of a num-
ber of interesting issues, such as adapting (perhaps dy-
namically) to use more systems when there is sufficient
parallelism available, without requiring programmers to
rewrite their applications.

References

[1] U. A. Acar. Self-adjusting computation: (an overview). In
Proceedings of the ACM SIGPLAN workshop on Partial
Evaluation and Program Manipulation, pages 1-6, 2009.

[2] Arvind and D. E. Culler. Dataflow architectures. Annual
Review of Computer Science, 1:225-253, 1986.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The land-
scape of parallel computing research: A view from Berke-
ley. Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley, Dec. 2006.

[4] D. Chase and Y. Lev. Dynamic circular work-stealing
deque. In Proceedings of the 17th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures,
pages 21-28, 2005.

[5] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph:
Taking the pulse of a fast-changing and connected world.
In Proceedings of the 7th ACM European Conference on
Computer Systems, pages 85-98, 2012.

[6] J. B. Dennis and D. P. Misunas. A preliminary architecture
for a basic data-flow processor. In Proceedings of the
2nd International Symposium on Computer Architecture,
pages 126-132, 1975.

[7] E. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scal-
able NonZero Indicators. In Proceedings of the 26th An-
nual ACM Symposium on Principles of Distributed Com-
puting, pages 13-22, 2007.

[8] V. Gajinov, S. Stipic, O. S. Unsal, T. Harris, E. Ayguade,
and A. Cristal. Integrating dataflow abstractions into the
shared memory model. In Proc. 24th International Sym-
posium on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 243-251, 2012.

[9] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-
based language for self-adjusting computation. In Proc.
ACM SIGPLAN conference on Programming Language
Design and Implementation, pages 25-37, 2009.

[10] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-
Marl: a DSL for easy and efficient graph analysis. In Pro-
ceedings of the 17th international conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 349-362, 2012.

[11] M. Isard and A. Birrell. Automatic mutual exclusion.
In HotOS ’07: Proc. 11th Workshop on Hot Topics in
Operating Systems, May 2007.

[12] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali.
Lonestar: A suite of parallel irregular programs. In /EEE
International Symposium on Performance Analysis of Sys-
tems and Software, pages 65-76, 2009.

[13] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan,
B. Walter, K. Bala, and L. P. Chew. Scheduling strategies
for optimistic parallel execution of irregular programs. In
Proceedings of the 20th Annual Symposium on Parallelism
in Algorithms and Architectures, pages 217-228, 2008.

[14] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nuss-
baum, and M. Olszewski. Anatomy of a scalable software
transactional memory. In 4th ACM SIGPLAN Workshop
on Transactional Computing (TRANSACT), 2009.

[15] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda. A faster parallel algorithm and ef-
ficient multithreaded implementations for evaluating be-
tweenness centrality on massive datasets. In Proceedings
of the IEEE International Symposium on Parallel and Dis-
tributed Processing, pages 1-8, 2009.

[16] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2):026113, 2004.

[17] OpenMP. http://www.openmp.org/.
[18] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In Pro-

ceedings of the 9th USENIX conference on Operating Sys-
tems Design and Implementation, pages 1-15, 2010.

[19] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hi-
erarchical task-based programming with StarSs. Interna-

tional Journal of High Performance Computing Applica-
tions, 23(3):284-299, Aug. 2009.

http://www.openmp.org/

[20] U. N. Raghavan, R. Albert, and S. Kumara. Near linear
time algorithm to detect community structures in large-
scale networks. Physical Review E, 76, 2007.

[21] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible ar-
chitectural support for fine-grain scheduling. In ASP-
LOS 2010: Proc. 15th Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 311-322, 2010.

[22] C. Seaton, D. Goodman, M. Lujan, and I. Watson. Apply-
ing dataflow and transactions to Lee routing. In MULTI-
PROG 2012: Proc. 5th Workhop on Programmability Is-
sues for Heterogeneous Multicores, 2012.

[23] SNAP: Stanford Network Analysis, http://snap.
stanford.edu/.

[24] S. Tasirlar and V. Sarkar. Data-driven tasks and their im-
plementation. In Proceedings of the International Confer-
ence on Parallel Processing, pages 652-661, 2011.

[25] H.-W. Tseng and D. M. Tullsen. Data-triggered threads:
Eliminating redundant computation. In Proceedings of
the 17th International Symposium on High Performance
Computer Architecture, pages 181-192, 2011.

[26] H.-W. Tseng and D. M. Tullsen. Software data-triggered
threads. In Proceedings of the International Conference
on Object Oriented Programming Systems Languages and
Applications (OOPSLA), pages 703-716, 2012.

[27] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103—111, Aug. 1990.

http://snap.stanford.edu/
http://snap.stanford.edu/

	Introduction
	Programming Model
	Implementation Overview
	Evaluation
	Single-Source Shortest Paths (SSSP)
	Community-based Graph Clustering
	Betweenness Centrality (BC)

	Related Work
	Conclusion and Future Work

