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Abstract

Emerging cache-coherent non-uniform memory access (cc-
NUMA) architectures provide cache coherence across hun-
dreds of cores. These architectures change how applica-
tions perform: while local memory accesses can be fast, re-
mote memory accesses suffer from high access times and in-
creased interconnect contention. Because of these costs, per-
formance of legacy code on NUMA systems is often worse
than their uniform memory counterparts despite the potential
for increased parallelism.

We explore these effects on prior implementations of con-
current stacks and propose the first NUMA-friendly stack
design that improves data locality and minimizes intercon-
nect contention. We achieve this by using a dedicated server
thread that performs all operations requested by the client
threads. Data is kept in the cache local to the server thread
thereby restricting cache-to-cache traffic to messages ex-
changed between the clients and the server. In addition, we
match reciprocal operations (pushes and pops) by using the
rendezvous elimination algorithm before sending requests
to the server. This has the dual effect of avoiding unneces-
sary interconnect traffic and reducing the number of opera-
tions that change the data structure. The result of combining
elimination and delegation is a scalable and highly parallel
stack that outperforms all previous stack implementations on
NUMA systems.

1. Introduction

The current trend in computer architecture is to increase sys-
tem performance by adding more cores so that more work
can be done simultaneously. In order to enable systems to
scale to hundreds of cores, the main hardware vendors are
switching to non-uniform memory access (NUMA) architec-
tures. Recent examples include Intel’s Nehalem family and
the SPARC Niagara line.

NUMA systems contain multiple sockets connected by an
interconnect. Each socket (also called a node) consists of
multiple processing cores with a shared last level cache
(LLC) and a local memory (as in Figure 1). A thread can

quickly access the local memory on its own socket and it
can access the memory on another socket using the intercon-
nect, so the programming model is similar to uniform mem-
ory architectures. The NUMA design allows systems to scale
to hundreds of cores and provides inexpensive data sharing
for cores on the same socket. However, remote cache inval-
idations and remote memory access can drastically degrade
performance because of the interconnect’s high latency and
limited bandwidth. Therefore, in many cases, legacy code
exhibits worse throughput when ported to NUMA machines
than on non-NUMA ones.

Prior research addresses this by using a NUMA aware con-
tention manager that migrates threads closer to the data they
access [1]. However, migrating threads is a complex solution
that, while feasible for operating systems, is not generally re-
alistic for end-user applications. Alternatively, one could de-
vise solutions in which the data are moved to the accessing
threads. For example, cohort locks [2] and NUMA reader-
writer locks [3] keep the data local to one cache as long as
possible. This is implemented by transferring ownership of
the locks from the threads finishing their critical sections to
other threads on the same socket. Similarly, Metreveli et al.
[4] minimize cache data transfers by partitioning a concur-
rent hash table and distributing operations for each partition
to a specifically assigned thread. All threads wanting to ac-
cess the hash table submit requests to these server threads
through message passing implemented in shared memory.
Essentially, the hash table resides in the caches of the ac-
cessing threads and the cache-to-cache traffic is limited to
requests sent to and from the servers.

Making Data Structures NUMA-Friendly. To maximize
performance, Metreveli et al. [4] leverage the concurrency
properties of hash tables in their partition implementation.
Namely, hash tables are highly concurrent, easily partition-
able data structures. However, many data structures do not
have the inherent concurrency benefits of hash tables. In this
paper, we focus on a NUMA-friendly implementation of a
stack. Nevertheless, the method presented can be applied to
other data structures as well.

Stacks have a broad range of uses: from calculators to eval-
uate expressions to compilers to parse the syntax of expres-



Figure 1: Example of a NUMA system with two nodes and
128 hardware threads.

sions and program blocks. In addition, stacks can easily be
used to implement unfair thread pools and any containers
without ordering guarantees. An example is the Java unfair
synchronous queue [5].

Unfortunately, stacks cannot be easily partitioned without
forfeiting their last-in-first-out (LIFO) property. Because of
this, multiple threads often contend on the single entry point
providing access into the stack. It is primarily for this reason
that stacks seem to be inherently sequential. However, prior
work has shown that stacks can benefit from parallelism
under balanced workloads (i.e., a similar number of push
and pop operations) using a method called elimination [6,
7]. This is implemented by canceling concurrent inverse
operations from different threads even before they reach the
stack. Elimination is not specific to stacks. Moir et al. [8]
have shown how to use elimination with queues. Although
this method significantly improves scalability of stacks, it
does not address our primary concern: i.e., remote cache
invalidations on NUMA systems.

We combine a variation of this method and a slightly modi-
fied version of the delegation method introduced by CPHash
[4] using only one server thread, to design what is, to the best
of our knowledge, the first NUMA-friendly stack. We de-
scribe in more detail how we use elimination in Section 2.2
and delegation in Section 2.1.

Our goal is to reduce cache traffic and maintain data locality
while using the properties of the underlying data structure to
enable parallelism. The result is a scalable and highly paral-
lel stack that outperforms all previous stack implementations
on NUMA systems.

The technical contributions of this paper are as follows.
1) We explore previous concurrent stack implementations
in the context of NUMA systems; 2) We design, imple-
ment, and evaluate a scalable concurrent stack optimized
for NUMA machines by delegating responsibility for all re-
quests to one server thread, keeping the data local to this

thread’s cache, avoiding synchronization, contention and
cache to cache traffic; 3) We enable parallelism by using
elimination.

2. NUMA-Friendly Stack

In this section we describe our use of delegation to imple-
ment a NUMA-friendly stack. At the highest level, our de-
sign provides efficiencies in increased cache locality and re-
duced interconnect contention. After discussing the design,
we show how we employ the rendezvous elimination algo-
rithm [7] to make this stack scalable. Moreover, we differ-
entiate between global elimination, which is implemented
using one rendezvous structure shared by all threads, and lo-
cal elimination, which contains an elimination structure for
each NUMA node.

2.1 Delegation

The idea of one thread helping other threads complete their
work is a well-known concept [4, 9–14]. A recent example
of this helping mechanism is called flat combining [9], in
which a thread that acquires a lock for a data structure
executes operations for itself and also for other threads that
are waiting on the same lock. The global lock and the data
remain in this thread’s cache while it executes operations
on behalf of other threads, thereby decreasing the number
of cache misses and contention on the lock. Moreover, flat
combining aligns well for data structures that are sequential,
because only one thread would be able to operate on it at a
time, regardless.

Due to the increasing number of hardware threads in a sys-
tem, the helper thread could be a dedicated thread (called
a server thread) used only to service requests from other
threads (client threads). This is especially useful on hetero-
geneous architectures, where some cores could be faster than
others. An example of this approach is CPHash [4], a par-
titioned hash table. Each partition has an associated server
thread that receives add and remove requests from clients
and sends back the responses obtained from performing the
operations requested. Each client-server pair share a location
where they exchange messages.

We use this delegation approach to implement a NUMA
friendly stack. In particular, we use one dedicated server
thread that accepts push and pop requests from many client
threads. The communication is implemented in shared mem-
ory, using one location (which we call slot) for each client.
The server loops through all the slots, collecting and pro-
cessing requests and writing the responses back to the slots.
The clients post requests to their private slots and spin-wait
on that slot until a response is provided by the server. Fig-
ure 3a provides a high-level overview of this communication
protocol.



We note that only the pop operations need to spin-wait un-
til a response is provided. The push operations could return
as soon as the server notices their requests. This optimiza-
tion improves throughput, but we decided not to use it in
our experiments, for a more fair comparison with the other
methods.

A weakness of this design is that using a reserved slot for
each client can result in wasted space if the clients’ work-
loads are not evenly distributed. Furthermore, the server
must loop through all slots, even those not in use, when
looking for requests. These two drawbacks can result in in-
creased space and time complexity. To overcome these lim-
itations, we statically assign several threads to the same slot
by thread id. 1 To synchronize the access of multiple threads
to the same slot, we introduce an additional spinlock for each
slot. Figure 3b reflects these changes to the communication
protocol. Figure 2 shows the overall interaction between the
server and the clients.

Figure 2: Clients posts their requests in shared local slots
and wait for the server to process them. The server loops
through all the slots, processes requests as it finds them
and immediately posts back the response in the same slot.
The sequential stack is only accessed by the server thread;
therefore, the top part of the stack remains in the server’s L1
cache or LLC all throughout execution.

2.2 Elimination

Stacks are generally seen as sequential data structures. This
is because all threads contend for access to the stack at its
top location. However, prior work has shown that stacks can
be parallelized using a technique called elimination [6]. This
technique uses an additional data structure to allow threads
performing push operations to meet threads performing pop
operations and exchange their arguments. This is equivalent
to the push being executed on the stack and immediately be-
ing followed by a pop. The elimination data structure, gen-
erally implemented as an array, allows multiple such pairs to
exchange arguments in parallel and decrease contention on
the underlying lock-free stack. If one thread fails to find its
inverse operation being performed by another thread, then

1 It is important to note that all threads using the same slot need to be on the
same NUMA node in order to maintain the slot’s locality.

the elimination attempt times out and the thread accesses the
stack directly.

The rendezvous method [7] improves the elimination algo-
rithm by using an adaptive circular ring for the additional
elimination data structure. In this paper, whenever we refer
to an elimination layer, we use a rendezvous structure to im-
plement it.

Elimination generally works best when the number of in-
verse operations are roughly equivalent. For inequivalent,
unbalanced workloads, many operations cannot be elimi-
nated, thereby requiring a thread to access the data structure
directly. This creates contention and cache-to-cache traf-
fic because these operations could originate from different
NUMA nodes. In order to solve these problems, we aug-
ment the delegation stack presented in the previous section
with a rendezvous elimination layer. Threads first try to elim-
inate and, if they time out, they delegate their operation to
the server thread. Delegation ensures that the data remains
in the server’s cache, while elimination enables parallelism,
thus making the NUMA-friendly stack more scalable. More-
over, threads can continue to try to eliminate while they wait
for the spinlock of their slot to be released. The complete
algorithm is described in Figure 3c.

Figure 3: Communication protocol between a client thread
and the server thread using slots

(a) (Black) Single thread per slot: each thread posts requests in its
private slot, without any synchronization.

(b) (Blue) Multiple threads per slot: threads share slots, so they
need to acquire the slot’s spinlock before writing the request.

(c) (Red) Elimination: Threads first try to eliminate; if they fail they
then try to acquire the slot spinlock and submit a request, but if the
lock is already taken, they go back to the elimination structure; they
continue this loop until either they eliminate, or they acquire the
spinlock.

Local vs. Global Elimination. For the rendezvous stack,
threads first try elimination and, in the case of failure, they
then directly access the stack. Our NUMA-friendly stack is
an improvement over this design, because it increases local-
ity and reduces contention on the stack by replacing direct
access to the stack with delegation. However, the initial stage



of elimination can still cause a number of invalidations be-
tween different NUMA nodes’ caches because each of the
threads accesses the same shared structure when perform-
ing elimination. To overcome this bottleneck, our NUMA-
friendly stack splits the single elimination data structure
into several local structures, equal to the number of NUMA
nodes. To minimize interconnect contention, we limit elim-
ination to occur only between those threads located on the
same socket.

2.3 Advantages and Limitations

Our stack design is optimized for the NUMA architecture.
Local elimination and delegation both contribute to remov-
ing the contention on the interconnect and on the stack. The
number of remote cache misses is reduced to exchanging
messages between the server and the clients. Furthermore,
the stack is only accessed by the server thread, relieving it of
any form of synchronization.

Finally, our stack uses explicit communication, so it is easier
to reason about its performance penalties because underlying
cache coherency performance issues are eliminated.

One potential drawback of this approach is that the access
to the stack is serialized by using only the server thread.
However, the direct access of multiple threads to a stack
would also be serialized by a lock to keep the stack’s in-
tegrity. Moreover, we enable parallelism by using elimina-
tion, which compensates for accessing the stack sequen-
tially.

Another drawback is the potential for additional communi-
cation overhead between the clients and the server. For ex-
ample, if the stack is only rarely accessed, then direct access
to it would likely be more efficient. However, the overhead
of elimination and delegation is eclipsed by their benefits
when there are many threads contending for access to the
stack.

Finally, our description assumes one server thread for each
shared stack. In order to maintain high throughput, this
thread must always be available to handle queries. There-
fore, each server thread is assigned a hardware thread and
runs at high priority. Unfortunately, we might not have
enough hardware threads if an application uses multiple
shared data structures, so some of the structures might have
to share a server. In this situation, the server could become
a performance bottleneck. However, most applications use
only a few shared data structures.

3. Experimental Results

We conducted our experiments on an Oracle SPARC T5240
machine with two Niagara T2+ processors running at 1.165GHz.
Each chip has 8 cores and each core has 8 hardware threads

for a total of 128 hardware threads (64 per chip). We im-
plemented our NUMA stack algorithm in C++ and we com-
pared it to previous stack implementations using the same
microbenchmark as [7]: a rendezvous stack, a flat combin-
ing stack and a lock-free stack. The benchmark has flex-
ible parameters, allowing us to measure throughput under
different percentages of push and pop operations. The re-
sults we present were obtained using threads with fixed
roles (e.g. push-only threads and pop-only threads). We al-
low the scheduler to assign our software threads to NUMA
nodes and then pin them to their respective processors. 2 The
server thread is created with increased priority compared to
the client threads, to guarantee its availability.

For our experiments, we started by comparing our local
elimination and delegation NUMA stack (nstack el) with
a lock-free stack (lfstack) [15], which has been the basis
for other stack implementations such as rendezvous [7] and
flat-combining [9]. Then, we compared our stack to the
flat combining stack (fcstack) [9], which outperforms the
rendezvous stack when there is no significant potential for
elimination (i.e., in unbalanced workloads).

The scalable performance of the lock-free stack begins to de-
grade around 16 threads. The flat-combining stack, however,
seems unaffected by the type of workload and achieves rela-
tively stable scalability across different thread counts. How-
ever, the elimination based NUMA stack outperforms both
of them by a large margin. These results can be observed in
Figures 4, 5 and 6.

Figure 4: Results for 50% pushes and 50% pops

Effect of elimination. To judge the effect of the local elim-
ination structures used in our implementation, we compared
our NUMA stack (nstack el) against two other versions; one
without elimination (nstack) and one with global elimination
(nstack el gl). As expected, the global elimination algorithm

2 We also experimented with unbounded and variable role threads, but the
results were too similar to warrant inclusion in this paper.



Figure 5: Results for 70% pushes and 30% pops

Figure 6: Results for 90% pushes and 10% pops

outperforms the algorithm without elimination, while both
perform worse than local elimination. From Figures 4, 5 and
6, we conclude that local elimination is crucial for the scal-
ability of our algorithm. Our experiments were performed
on a 2-node NUMA system, but we expect that these results
generalize to bigger systems with the same number of cores
per node as our system, as long as the push and pop opera-
tions are distributed uniformly across all the nodes.

Effect of delegation. To better understand and character-
ize the impact of delegation, and because elimination has
such a strong influence on performance, we compare our
stack against two elimination-variations of the rendezvous
stack: one uses local elimination and the other uses global
elimination. The rendezvous stack (rendezvous) consists of
global elimination and direct access. To provide a more fair
comparison, we modified the rendezvous stack to perform
elimination locally on each NUMA node (rendezvous loc).
Threads that fail to eliminate on each node must access the
data structure directly. This local version of the rendezvous

stack improves the scalability of the rendezvous stack for
NUMA systems. However, our NUMA stack performs even
better, indicating there is an observable performance bene-
fit using delegation under high contention, for both balanced
and unbalanced workloads (Figures 4, 5 and 6). We believe
the benefit of delegation would become more apparent on
a NUMA system with more sockets. Although the latency
of an individual operation could increase because the server
needs to inspect slots on more nodes, cache and memory lo-
cality would play an even more significant role than they do
on a 2-node system. We leave evaluation on such a system
as future work.

Balanced workloads. We experimented with different per-
centages of push and pop operations. Elimination works best
when the number of pushes is very similar to the num-
ber of pops. In the balanced workload case, we use 50%
push threads and 50% pop threads. Experimental results are
shown in Figure 4. For this setting, elimination plays a sig-
nificant role, as most operations will manage to eliminate.
There is some benefit from delegation, as we can see when
we compare to the local rendezvous algorithm, but not that
significant.

Unbalanced workloads. For unbalanced workloads, elim-
ination plays a much smaller role in reducing the number of
operations. We present results for 70% pushes, 30% pops in
Figure 5 and 90% pushes, 10% pops in Figure 6. In both
cases, there is some elimination, but not as significant as
in the balanced workload case. However, delegation plays
a much more important role for these workloads, as more
operations fail to eliminate and need to access the stack. Re-
sults show that preserving cache locality through delegation
works much better than direct access to the stack.

Number of slots. Finally, we want to measure the im-
pact of the synchronization introduced with sharing slots by
different threads. We compared the implementation of the
NUMA stack using shared slots (nstack el) with the imple-
mentation using one slot per client thread, which does not
require any synchronization to access the slots (nstack el st
- nstack elimination single thread per slot). The results in-
dicate that there is no clear winner in this case, which can
be explained by the fact that the server has to loop through
all the slots to service requests. Each request might have to
wait a linear time in the number of slots to be found by the
server. If the server finds too many of the slots empty, then
much of the work performed by the server is wasted. How-
ever, if the server finds requests in most of the slots, then the
algorithm can benefit from more slots because of the lack of
synchronization. Our results seem to support this claim: the
single thread (ST) per slot version outperforms the multiple
threads per slot version (MT) for very unbalanced workloads
as in Figure 6, while MT outperforms ST for more balanced



workloads, as in Figures 4 and 5. This is due to the elimina-
tion algorithm significantly reducing the number of requests
sent to the server for balanced workloads, while for unbal-
anced workloads there is less elimination and more requests
sent to the server.

In our experiments, we assumed that we know the maximum
number of client threads in the system and always check
all the slots, even when running with fewer threads. This
could be improved using an adaptive way of determining the
number of slots, but we leave that as future work.

4. Discussion

Hardware’s shift towards NUMA systems urges a compat-
ible software redesign. Basic data structures are not opti-
mized for these architectures. We propose the first NUMA-
friendly design of a stack, using local elimination and dele-
gation. Combining these two methods is favorable across a
number of scenarios: elimination works best when the num-
ber of pushes and pops is roughly the same, while delegation
significantly reduces contention in the cases in which there
is not enough potential for elimination because the work-
load is not very balanced. Our NUMA-friendly stack out-
performs prior stack implementations across different sce-
narios from completely balanced workloads to the more un-
balanced ones.

However, this is just the first step in transitioning to NUMA
systems. There are vast and exciting opportunities for ex-
ploring the design of other NUMA-friendly data structures.
We presented one technique and showed that it works well
for a stack. The same technique could be applied to other
data structures, such as queues and lists, which also admit
inverse operations. In contrast, other data structures might
not be suitable for elimination or might suffer from the seri-
alized access of the server thread. For these data structures,
we need to find new tools that allow us to redesign them for
the NUMA space.
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