Evaluation of Hardware Synchronization Support
of the SCC Many-Core Processor

Pablo Reble, Stefan Lankes, Florian Zeitz and Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University, Germany
{reble,lankes,zeitz,bemmerl } @1fbs.rwth-aachen.de

Abstract

The integration of many cores per chip will lead to in-
efficiency of traditional multi-processor techniques. In
particular, a hardware cache coherency protocol includes
performance and hardware overhead, so that for a grow-
ing number of cores the coherence wall problem will be-
come more serious.

The Single-chip Cloud Computer (SCC) is a recent re-
search processor of a Cluster-on-Chip architecture, that
waives a hardware-based coherency and possesses a net-
work on chip technology. An attractive alternative to
enable shared memory programming models on future
many-core systems is the introduction of a software-
oriented coherency.

Any software based approach, such as shared virtual
memory (SVM), will need fast synchronization methods.
The assumption is that hardware support is essential to
achieve this performance. In this paper we will study
and evaluate this hypothesis.

1 Introduction

The Single-chip Cloud Computer (SCC) experimental
processor is a concept vehicle created by Intel Labs as
a platform for many-core software research. The proces-
sor consists of 48 P54C cores arranged in a 6 x 4 on-die
mesh of tiles containing two cores each and resembles
a Cluster-on-Chip architecture by providing distributed,
but shared memory.

A major goal of the research many-core architecture
is to find an answer to the coherence wall problem. The
SCC platform waives hardware cache coherency and pro-
vides a low-latency infrastructure called Message Pass-
ing Buffer (MPB). Therefore, each tile has a special
shared on-die memory of 16kByte!. These memory re-
gions are accessible by all cores without any coherency

!default distribution 8 kByte per core

and mainly used for message-passing between the SCC
cores in an explicit way.

The lack of a hardware cache coherency arises prob-
lems for shared memory synchronization constructs. Be-
cause the use of atomic operations, to update a shared
memory location, is not possible on such an architec-
ture. Nevertheless, busy wait implementations, which
are commonly used for low latency synchronization con-
structs can be used with limitations on the SCC. By
switching off or explicitly flush the local core cache, the
on-die MPB memory as well as the off-die shared mem-
ory can be used for flag based synchronization. Addi-
tionally, to provide atomic operations, the SCC possesses
a small set of special memory mapped hardware regis-
ters, namely Test and Set Register (TSR) and Atomic In-
crement Register (AIR).

This paper is structured as follows. In Section 2 we
motivate the evaluation of this hardware synchroniza-
tion support for shared memory applications. Section 3
presents an overview of the MetalSVM project a well
as classic work to increase scalability of busy-wait syn-
chronization methods. In Section 4 we describe the SCC
hardware with a focus on synchronization support. Next,
we analyze in Section 5 the fairness and scalability of
busy-wait synchronization methods on the SCC platform
and present alternatives. In Section 6 we present opti-
mized barrier implementations based on these results.

2 Motivation

The default configuration of the SCC platform suggests
the use of the message passing programming model. The
global shared memory is partly partitioned among the
cores to run a separate Linux instance on each core. With
RCCE a light weight message passing oriented program-
ming library exists to facilitate the use of the message
passing programming model [10].

However, many applications benefit strongly from us-
ing a shared memory programming model. Established



Yy @ (39 [@ @] (3] ;
SREEIE ECRE
126 38 40 401 [ad] 46 Tile |c..psl s
1B 22 |2 | B |
MC1 [@%r,;ﬁr,?ﬁr,?ﬂﬁﬂ ! mc3| | MIU MPB
] | ] [ | g
2 g 14 160, 1815l 20 Core22- L2
J B (B e [N
mco— -2 -t O gl S ui@ wea| | et
0 1 2 3 4 5 X < Routerr
FPGA T

Figure 1: SCC layout with a focus on tile architecture (based on [11])

shared memory programming interfaces like OpenMP
focus on thread and loop parallelism. Explicit synchro-
nization primitives such as locks and critical sections as
well as implicit synchronization means in the form of re-
duction clauses are defined.

The MetalSVM project has been started to enable
thread based shared memory programming on many-core
architectures. The concept is the integration of a shared
virtual memory (SVM) management system into a bare-
metal hypervisor. As a result, a shared memory applica-
tion is executed on a standard operating system, which
runs as a paravirtualized guest on top of MetalSVM.
Therefore, Iguest is integrated to a minimalist monolithic
kernel, self-developed by the authors. Compared to the
Single System Image (SSI) approach, an SVM system
only virtualizes the memory, which reduces the complex-
ity of the virtualization environment.

Our project approach shares similarities to the vSMP
architecture developed by ScaleMP. Evaluation of this ar-
chitecture has shown that expensive synchronization is a
big drawback [14]. Here, we see an advantage of the de-
sign of our architecture. The access to special synchro-
nization resources can be easily managed by our hyper-
visor and transparently provided to selected user appli-
cations.

3 Related Work

In this paper, we benchmark common shared-memory
synchronization algorithm implemented by the subse-
quently added synchronization support of the SCC plat-
form. This work is based on the presentation of an
inter-kernel communication and synchronization layer
for MetalSVM in [13], at the 3"Y MARC [1] sympo-
sium. This already includes an analysis of the effect of
a mesh interconnect to the latency of on-die synchro-
nization support. Furthermore, we introduce the use of

iRCCE [4] for a non-blocking and low latency inter-
kernel communication.

A first prototype of our SVM system has been pre-
sented at the 4" MARC Symposium [7]. Further Op-
timizations of our prototype and first experiments with
relaxed consistency models are presented in [8].

Anderson has motivated years ago in his article [2]
the need of hardware support of busy-wait mutual exclu-
sion on shared memory multiprocessors. Consequently
he presented spin-lock alternatives to increase scalability,
for instance by the use of a back-off policy. Previously,
Lamport discovered that pure software mutual exclusion
is quite expensive [6].

Graunke and Thakkar [5] proposed queuing based
locking algorithms for cache coherent systems instead of
simple test and set locks. Their experiments have shown
that on the strategy of spinning on a different cache-line
outperforms a centralized approach.

4 SCC Hardware

The SCC platform supports basic synchronization prim-
itives implemented in hardware. These are Test and Set
Registers (TSR) and Atomic Increment Registers (AIR).

As the SCC cores are based on the 32 bit pentium ar-
chitecture, an additional mechanism is needed to cover
the entire system address space of 46bit. Each core
holds a separate lookup table (LUT) with 256 entries to
translate core addresses to system addresses. A system
address consists of the encoded mesh coordinates, the
router port, and the address of a memory segment in-
cluding offset. LUT entries are configurable and point
to specific types of memory regions (off-chip memory,
on-chip memory, configuration and synchronization reg-
ister) with a maximum size of 16 MB. Therefore, read
and write requests of a core are performed transparent by
the mesh interface unit (MIU cf. scale-up from Figure 1)
across its FSB.



T T T T
600 0900900000 |
,.....mm.o"mw
500 - 8
2 i |
> 400
5
S 300 8
200 o=
T ™
100 & \ | | =

0 10 20 30 40 50
location

(a) Atomic Increment Register ® and Test and Set Register ®

latency [ns]

220
200 |
180 [
160 [ |
140 |

12 48 p Tt
24 30 36 42 470 12 core
register

(b) Access latency to Test and Set Register from Core

Figure 2: Read access latencies of hardware synchronization registers

The synchronization registers, which are described in
the following, are memory mapped accessible the de-
scribed way. A pair of Test and Set Registers is physi-
cally located on-die at each tile (2 x 24 = 48) to realize
an atomic test and set instruction on a binary value. Con-
sequently, a TSR can have two possible states, ’0’ or ’1°.
The initial state, which can be restored by a writing ac-
cess, is ’0’. A read access can atomically change the state
from ’0” to ’1°, where the read data holds the previous
state. For an extension of functionality, the Rocky Lake
system FPGA, which is directly connected to the on-die
mesh interconnect, provides a set of off-die Atomic In-
crement Counter (2 x 48 = 96 AIC). Here, an AIC is
structured as a pair of Atomic Increment Register (AIR),
namely initialization and increment register. A write ac-
cess to the initialization register loads a 32 bit value to
the AIC. Whereas, a read access simply returns the cur-
rent value of the AIC. A read access to the increment
register triggers an atomic post-increment operation of
the AIC value, related to the read data, whereas a write
access just decrements the current value atomically.

In addition to the synchronization registers the SCC
provides a broad set of configuration registers. For in-
stance, to change frequencies and voltages of mesh, cores
and off-chip memory. Core frequencies have a range
from 100 MHz to 1 GHz. These are fully configurable
only depended on the selected voltage domain, which
spans across four cores. For all benchmark results pre-
sented in this paper the SCC platform has been statically
configured with a frequency of 533 MHz for the cores,
and a frequency of 800 MHz for the mesh and the mem-
ory.

Figure 2a shows average access latencies, over a mil-
lion accesses, to a fixed TSR and AIR from all cores.

The marks = represent the average access latency to the
TSR of core 6, located at x-y mesh coordinate (3,0) (cf.
Figure 1). To ensure comparability, we selected the TSR
closest to the AIRs for this measurement. Latencies of
TSR accesses are lower by a factor of 3 compared to AIR
latencies due to the on-chip location. The marks e repre-
sent the access latencies to the atomic increment regis-
ters, which are located off-chip at the system FPGA.

Figure 2b gives a full overview of read access latencies
dependent on location of TSR and location of core. This
implies a variation of target synchronization register, as
well as, the core that triggered the register access. The
result is a deterministic average latency in relation to the
mesh distance.

5 Spin-Lock

In this section, we present the effect of a fast on-die
mesh interconnect on common busy-wait synchroniza-
tion techniques and hardware synchronization registers.
As these resources are scarce, one has to careful choose
their application. The simplest implementation of a spin-
lockis a loop, which requests a TSR while the read data is
’1’. Currently, acquire and release lock are the only two
functions of the RCCE gory API, that exist to explicitly
access a TSR.

Figure 2b shows a huge impact of physical mesh dis-
tance to access latency of a synchronization register.
Thus, we analyze fairness and scalability exemplarily for
different spin lock implementations, which use hardware
synchronization support. Results of the following exper-
iments can be applied to general busy wait synchroniza-
tion constructs. For instance, on a barrier construct in
Section 5.



—_
oo
T

core id
[\]
~
T

W
(@)}
T

| | | |
1 1,200 2,400 3,600 4,800

iteration

Figure 3: Iteration scattering of simple spin-lock on TSR
(location 0) — per core 100 locks

5.1 Fairness

For the analysis of fairness of a simple busy-wait algo-
rithm, we generate a high contention on a hardware syn-
chronization register. Therefore, all available 48 cores
increment a shared counter one hundred times. The in-
crement operation is protected by a spin-lock, which uses
the RCCE implementation.

Target hardware synchronization register is physically
located at the lower left corner of the mesh (core id: 0,
cf. Figure 1). Since each core records the obtained
counter values, the fairness of a busy-wait synchroniza-
tion method with a single target can be classified. There-
fore, the scattered plot from Figure 3 visualizes the
chronological order.

Analysis of the measurement shows the expected re-
sult of this benchmark. Cores, that are located at a tile
close to the synchronization register, in this scenario id
0 to 11, nearly pass around the lock during the first it-
erations. Not before this first group of cores finished
contending for the lock, all other cores can frequently
acquire the lock.

An interesting effect is, that this access behavior
mainly depends on their y-coordinate. The explanation
for this effect is the x-y routing of the on-die network.
A read request to a register generates a network packet,
which is first routed to target x and second to target y co-
ordinate. The busy-wait synchronization scheme inten-
tionally generates a high load for the interconnect. Here,
the path in y-direction appears to be a bottleneck. This
fact can lead to starvation under high contention of cores
with a large distance to target synchronization register.

I T
+ simple +
150 |- e tournament

100 |- * n

latency [us]
+

50 ++ |

=

|| | | | | | | | | | | |

14 8 12162024 28 32 36 40 44 48
cores

Figure 4: Performance of spin-lock implementations

5.2 Scalability

In the next experiment, we compare the simple spin-lock
implementation to a tournament lock [5] implementation
on the SCC platform. Here, multiple synchronization
register are used to build an n-ary locking tree. The dia-
gram in Figure 4 shows measurement results for a tourna-
ment lock based on a binary tree with a depth of one (®),
compared to the simple spin-lock (+).

Exemplarily three registers are used to build a lock-
ing tree and reduce the maximum contention by a factor
of 2. Following from the results of the previous bench-
mark, cores are preferably assigned to locks sharing their
y-coordinate. In the presented example, as a first step,
each core contends for the assigned group lock and, as
a second step, for the global lock to acquire the tourna-
ment lock. Accordingly, the locks are released in reverse
order to release the tournament lock.

For a comparison, both spin-lock implementations are
used to protect a critical section for an increasing number
of cores to generate a high contention . In contrast to
the evaluation of Section 5.1, here the critical section is
empty and a high contention continues over all iterations.
Thus, a core which has performed one thousand timed
iterations, requests the lock repeatedly to generate noise
for the remaining cores. The plotted values from Figure 4
are maximum values of all participants of the average
spin-lock latencies to acquire and release a lock.

The results of the presented experiment are a linear
increasing spin-lock latencies for both implementations
up to a core count of 24. This is an expected behav-
ior, because of the linearly raising core count. A fur-
ther increase of the core count leads to a constant latency
of 20 us for the tournament lock and the latencies for
the simple spin-lock increase exponentially from a core
count of 24.



The locking path for the simple spin-lock is minimal
and consists of two synchronization register accesses.
Consequently, the locking path for the tournament lock,
with a depth of two, consists of four synchronization reg-
ister accesses, which results in a higher latency up to a
core count of 28. Average register latencies contention of
more than 42 cores must be considered with caution. Due
to the fact that cores can starve under high contention,
exact values are of little importance.

However, this experiment proves the assumption that
a simple spin-lock implementation has a bad scalability
under high contention on the SCC platform. In [13] we
introduced the use of an exponential back-off to relax
the contention on a synchronization register. Addition-
ally, we presented in this section results of the tourna-
ment lock, which are promising to relax the contention.
In the next section, we apply further optimizations to the
implementations of common barrier synchronization al-
gorithms, based on these results.

6 Barrier

A shared virtual memory system can combine shared
memory programming and a many-core architecture,
e. g. by approaching the memory consistency problem on
a page granularity in software. The programming model
OpenMP introduces constructs and clauses to enable the
creation of parallel shared-memory programs. Many of
these constructs imply a barrier [3].

We present in this section, two barrier implementa-
tions, which use the hardware synchronization support
of the SCC to atomically increment a 32 bit counter. For
a performance analysis, we compare the latency of both
barrier implementations to a TSR based barrier from [13]
and a MPB based implementation from the RCCE li-
brary [10]. Therefore, the different barrier implementa-
tions are repeatedly called one million times. Figure 5
depicts the maximum average latency for all threads,
whereas each thread runs on a dedicated SCC core.

The RCCE library contains a simple barrier imple-
mentation, which is based on a master follower approach.
A master thread is responsible to count incoming threads
as well as release waiting threads, by using flags, which
are located in the MPBs. RCCE follows a local-put,
remote-get approach for message passing. This means,
that a flag based synchronization only touches the MPB
at that core, which has initiated an update. As a result
of this approach, the linear release cycle requires remote
polling of the master core, repeatedly for all follower
cores. At least, this approach avoids a centralized struc-
ture.

In [13] we presented another flag based barrier ap-
proach, which uses a set of atomic test and set registers to
indicate and release incoming threads. For the initializa-

I — I
—e— linear MPB
30l | ™ linear TSR |
—e— linear AIR
— —x— back-off AIR
=
> 20 8
=
2
=
10 - 8
O | |
| | | | | |
24 8 16 32 48
cores

Figure 5: Performance of Barriers

tion of this barrier, a number of initially unlocked TSR
equals the number of threads is allocated. Each thread,
which enters the barrier, performs a linear search for an
unlocked TSR. Thereby, target TSR becomes locked and
this thread, except the last one, enters the release cycle,
by polling on the specific TSR.

Curve —=— from Figure 5 shows that this implementa-
tion of a linear barrier has a lower latency compared to
the reference implementation of Curve —e—. However,
the allocation of a TSR for each participating thread is
expensive, as resources are scarce.

Consequently, we implemented a classic centralized
barrier algorithm according to Lubachevsky [9] on the
SCC Platform. This simple barrier algorithm is based
on counters, which are located in shared memory and
can be atomically incremented. Each thread increments
a counter to indicate its arrival and polls that counter, to
determine when all of the threads have arrived. There-
fore, the last thread of a group resets the counter and ex-
changes the counter reference, to avoid that one thread
mistakenly passes a barrier. As a result, of the original
Lubachevsky barrier, two shared memory counters have
to be allocated, since they are used for the indication as
well as the release of incoming threads.

For the straight forward implementation of a
Lubachevsky barrier for the SCC, two Atomic Increment
Registers (AIR) have to be allocated. Because of its
centralized structure, this implementation is not work-
ing without further optimization. Our experiments from
Section 5 show, that a high contention is problematic on
the SCC platform starting from a certain core count (cf.
Figure 4). If more than 30 cores are polling on an off-die
Atomic Increment Counter (AIR), a starvation of cores
with a large distance to the physical location of the AIRs
can be detected (cf. Figure 1).



Common techniques to relax this contention problem
can be applied to a synchronization register and increase
the scalability of a busy wait centralized barrier algo-
rithm [5, 12].

Our first barrier implementation introduces an ex-
ponential backoff by polling the AIR during release
cycle for the previously described straight-forward
Lubachevsky barrier implementation. This method sig-
nificantly reduces the contention and leads to promising
results. Curve —— from Figure 5 shows the latencies
parametrized with an optimal minimum and an optimal
maximum backoff for each group size of threads.

Our second AIR barrier implementation, only uses a
single AIR to indicate incoming threads and MPB lo-
cated flags to release waiting threads. Here, the linear
method of the reference barrier implementation is used
for the release cycle to avoid a high contention on the
AIR. A better performance for a group size of more than
8 threads can be achieved, compared to the TSR barrier
implementation. A further advantage is that only one
hardware synchronization register is allocated for this
first AIR barrier implementation. Curve —e— from Fig-
ure 5 depicts the resulting latencies for this implementa-
tion.

With our barrier implementation according to
Lubachevsky for the SCC platform, a significantly
speedup can be achieved compared to the linear refer-
ence implementation. If two atomic increment registers
are reserved, a speedup of up to 6 can be achieved for
this synchronization construct. If a single register is only
available, the speedup decreases to 1.6, due to the linear
release cycle.

7 Conclusion

We present an evaluation of the hardware synchroniza-
tion support of a recent cluster-on-chip architecture in
this paper. This evaluation verifies issues of common
busy-wait synchronization techniques on future many-
core architectures regarding fairness and scalability.

Our experiments show massive improvements by com-
mon optimizations such as an exponential back-off or
the use of multiple hardware synchronization primitives.
Scalability of a single synchronization point can be in-
creased by structuring the physical resources in a hi-
erarchical way. Obviously, this is a trade-off between
an optimal scalability and allocation of synchronization
registers as resources are scarce. If the implementation
of mechanism is carefully chosen, the use of hardware
support for synchronization constructs, such as a barrier,
leads to promising results.

8 Acknowledgments

The authors would like to thank Intel Labs Braunschweig
for the research grant and in particular Ulrich Hoffmann,
Michael Konow and Michael Riepen for their help and
guidance.

References

[1] Intel Many-core Applications Research Community. http://
communities.intel.com/community/marc.

[2] ANDERSON, T. E. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Parallel
and Distributed Systems 1, 1 (January 1990), 6-16.

[3] CHAPMAN, B., JosT, G., AND VAN DER PAs, R. Us-
ing OpenMP: Portable Shared Memory Parallel Programming,
vol. 10. The MIT Press, 2007.

[4] CrAuss, C., LANKES, S., GALOWICZ, J., AND BEMMERL, T.
iRCCE: A Non-blocking Communication Extension to the RCCE
Communication Library for the Intel Single-Chip Cloud Com-
puter. Chair for Operating Systems, RWTH Aachen University,
December 2010. Users” Guide and API Manual.

[S] GRAUNKE, G., AND THAKKAR, S. Synchronization algorithms
for shared-memory multiprocessors. Computer 23, 6 (June 1990),
60 — 69.

[6] LAMPORT, L. A fast mutual exclusion algorithm. ACM Transac-
tions on Computer Systems (TOCS) 5 (January 1987), 1-11.

[7] LANKES, S., REBLE, P., CLAUSS, C., AND SINNEN, O. The
Path to MetalSVM: Shared Virtual Memory for the SCC. In Pro-
ceedings of the 4th MARC Symposium (Potsdam, Germany, De-
cember 2011).

[8] LANKES, S., REBLE, P., CLAUSS, C., AND SINNEN, O.
Revisiting Shared Virtual Memory Systems for Non-Coherent
Memory-Coupled Cores (to appear). In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM
2012) (New Orleans, LA, USA, February 2012).

[9] LUBACHEVSKY, B. Synchronization barrier and related tools for
shared memory parallel programming. [International journal of
parallel programming 19, 3 (1990), 225-250.

[10] MATTSON, T., AND VAN DER WIINGAART, R. RCCE: a Small
Library for Many-Core Communication. Intel Corporation, May
2010. Software 1.0-release.

[11] MATTSON, T., VAN DER WIINGAART, R., RIEPEN, M.,
LEHNIG, T., BRETT, P., HAAS, W., KENNEDY, P., HOWARD,
J., VANGAL, S., BORKAR, N., RUHL, G., AND DIGHE, S. The
48-core SCC Processor: The Programmer’s View. In Proceedings
of the 2010 ACM/IEEE Conference on Supercomputing (SC10)
(New Orleans, LA, USA, November 2010).

[12] MELLOR-CRUMMEY, J., AND SCOTT, M. Algorithms for scal-
able synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems (TOCS) 9, 1 (1991), 21-65.

[13] REBLE, P., LANKES, S., CLAUSS, C., AND BEMMERL, T. A
Fast Inter-Kernel Communication and Synchronization Layer for
MetalSVM. In Proceedings of the 3rd MARC Symposium, KIT
Scientific Publishing (Ettlingen, Germany, July 2011).

[14] ScHMIDL, D., TERBOVEN, C., WOLF, A., AN MEY, D., AND
BISCHOF, C. How to Scale Nested OpenMP Applications on the
ScaleMP vSMP Architecture. In Proceedings of 2010 IEEE In-
ternational Conference on Cluster Computing (September 2010),
pp. 29 -37.



