
Does shared-memory, highly multi-threaded, single-application scale on
many-cores?

Ghassan Almaless, Franck Wajsburt
LIP6 - UPMC Sorbonne Universités

4, place Jussieu – Paris, France
firstname.lastname@lip6.fr

Abstract
Nowadays, single-chip cache-coherent multi-cores up to
100 cores are a reality. Many-cores of hundreds of cores
are planned in the near future. Due to the large number
of cores and for power efficiency reasons (performance
per watt), cores become simpler with small caches. To
get efficient use of parallelism offered by these architec-
tures, applications must be multi-threads. The POSIX
Threads (PThreads) standard is the most portable way
to use threads across operating systems. It is also used
as a low-level layer to support other portable, shared-
memory, parallel environments like OpenMP. In this pa-
per, we propose to verify experimentally the scalabil-
ity of shared-memory, PThreads based, applications, on
Cycle-Accurate-Bit-Accurate (CABA) simulated, 512-
cores. Using two unmodified highly multi-threads ap-
plications, SPLASH-2 FFT, and EPFilter (medical im-
ages noise-filtering application provided by Phillips) our
study shows a scalability limitation beyond 64 cores for
FFT and 256 cores for EPFilter. Based on hardware
events counters, our analysis shows: (i) the detected scal-
ability limitation is a conceptual problem related to the
notion of thread and process; and (ii) the small per-core
caches found in many-cores exacerbates the problem.
Finally, we present our solution in principle and future
work.

1 Introduction

Since ten years ago, the processors manufacturers
reached physical limits concerning clock frequency and
heat dissipation [4]. They turn today to multi-cores.
Nowadays, multi-cores are common [15, 13] and single-
chip cache-coherent multi-cores up to 100 are a reality
[3, 8]. Many-cores with hundreds to thousands of cores
are planned in the near future [10]. In the case of single-
chip many-core, the bus interconnect, which becomes a
bottleneck, is replaced by Network-on-Chip (NoC) in-
terconnect like a bidirectional ring in Intel MIC architec-

ture [1] or a 2D-mesh in Tilera architecture [8]. Both of
these two industrial architectures are cache-coherent and
they have backwards compatible Instruction Set Archi-
tecture (ISA) which makes their adoption easier by the
software industry.

As the number of cores becomes large and for power
efficiency reasons (performance per watt), cores become
simpler each with its own CPU, FPU, TLB and L1/L2
caches. These per-core caches become relatively small
with low associativity. This emphasizes the cache (TLB-
I, TLB-D, L1-I, L1-D, L2) locality problem caused
by a potentially higher miss rate. The traffic of the
cache miss from one level might cause an interconnect
and several cache-levels traversal with potential cache-
coherence traffics. This impacts both the performance
(more latency) and the power consumption (energy by
moved bit). To get efficient use of parallelism offered
by many-cores, applications must be multi-threads. Due
to per-core small caches, a thread’s working set has to
be small and this can be achieved by decomposing a big
working set among several threads, ideally, until it meets
per-core cache size. As a result, performance driven
applications should be significantly multi-threads. The
POSIX Threads (PThreads) is the most portable way to
use threads across operating systems. It is also used
as a low-level layer to support other portable, shared-
memory, parallel environments like OpenMP.

In this paper, we propose to verify experimentally the
scalability of shared-memory PThreads-based applica-
tions. In particular, we investigate the effect of small
caches on the scalability of single, multi-threads, shared-
memory, applications to resolve a given problem us-
ing the biggest set of core allocated by an operating
system. To this end, we did our experimentation us-
ing a full-system Cycle-Accurate-Bit-Accurate (CABA)
simulation. In this accurate full-system simulation we
used: (i) TSAR1 a clustrized, cc-NUMA, many-core ar-

1TSAR (Tera-Scale ARchitecture) is a 4-years, MEDEA+, Euro-
pean funded project started in 2008, grant #2A718.



Figure 1: (a) TSAR clustered architecture with 2D-Mesh
NoC; (b) A cluster of TSAR which contains: a local-
interconnect, up to 4-cores, Network-Interface (NIC) to the
NoC, Memory-Cache, multi-timers, 4-channels DMA and an
Interrupt Control Unit (ICU).

chitecture configured to 512-cores; (ii) ALMOS (Ad-
vanced Locality Management Operating System), a new
research operating system which we develop targeting
cc-NUMA many-cores; and (iii) two unmodified shared-
memory, highly multi-threads applications: SPLASH-2
FFT [5] and EPFilter (a medical images noise-filtering
application provided by Phillips). Our study shows a
scalability limitation beyond 64 cores for FFT and 256
cores for EPFilter. Based on hardware events counters,
related to per-core L1 and TLB caches (instructions and
data), our analysis shows: (i) the detected scalability lim-
itation is a conceptual problem related to the notion of
thread and process; and (ii) the small per-core caches
found in many-cores exacerbates the problem.

The remainder of this paper is organized as follows.
Section 2 introduces the experimental testbed and work-
loads, while Section 3 presents: (i) the experimental re-
sults including the speedup measurement; (ii) the de-
tected scalability limitation and its analysis; and (iii) the
description of the conceptual problem behind it. Section
4 describes our solution in principle, while Section 4 re-
views related work. The conclusions and future work are
presented in Section 6.

2 Testbed and Workloads

Our experimental evaluations are done using a cycle-
accurate full-system simulation. In this section, we first
describe the TSAR many-core and its CABA simulator.
Then, we present the ALMOS operating system executed
by the TSAR simulator. Finally, we present two evalua-
tion workloads used in this experiments.

2.1 TSAR (Tera Scale ARchitecture)
TSAR [2] is an homogeneous, cc-NUMA (cache-
coherent Non Uniform Memory Access) many-core ar-
chitecture. It consists of up to 1024-clusters intercon-
nected by DSPIN (Distributed, Scalable, Predictable, In-
tegrated Network) a 2D-mesh NoC [18]. This homoge-

neous many-core has some common properties with a
recent industrial many-core [8] such as small L1 cache
size, distributed L2 caches, the choice of 32-bit cores,
and the usage of 2D-mesh NoC with X-First wormhole
packet-routing. Figure 1 illustrates TSAR clustered ar-
chitecture.

A cluster of TSAR contains up to 4-cores, each of
which has its own CPU, FPU and L1 separated (instruc-
tion and data) physical cache with MMU. The shared
physical address space is 1 TB (40 bits physical ad-
dress). It is distributed among clusters each of which
is a home-cluster of its corresponding segment. The
physical memory segment, homed by a given cluster, is
accessed and cached by a specific per-cluster controller
named Memory-Cache. The Memory-Cache can be seen
as L2-cache with a coherence-directory and a memory-
controller to access the cluster’s memory segment via a
separate and dedicated NoC. Each L1 can read and write
to any cache-line of physical memory. If the requested
physical address belongs to the core’s cluster, it is a local
request and the local Memory-Cache handles it. Other-
wise, the request is a remote one and it is routed via the
NoC to the target cluster. The target cluster is determined
by decoding the MSB bits of the requested physical ad-
dress.

In TSAR, cores can be of any simple RISC type. That
is, a single-issue, short pipeline without any branch pre-
dictor nor out-of-order execution. TSAR memory sub-
system is independent of cores type and there is a de-
fined interface between the TSAR L1-cache and the used
core. Each L1 has its own MMU with separated (instruc-
tions and data) TLBs. In order to be independent from
core choice, the TLB MISS are handled by a hardware
table-walk. TSAR page tables have two-levels where
two page sizes are supported (2 MB and 4 KB). The
coherence of L1 caches and their TLBs is guaranteed
by a distributed directory based cache-coherence proto-
col named DHCCP (Distributed Hybrid Cache Coher-
ence Protocol). If a given L1 writes to address X , the
write is propagated (write-through strategy) to the home
Memory-Cache of X cache-line. If the cache-line is not
shared (references counter equal to 1) then the write is
done. If the cache-line is shared with N L1-caches,
then the write is blocked by the Memory-Cache until it
takes the appropriate action. It sends a multicast-update
command to L1-caches if N < λ , othwise it sends a
broadcast-invalidate command to all L1-caches. The size
of the cache-line is 64 bytes. An L1 can issue one to four
words of 32bits in one write request. A cache miss issued
by an L1 is always one cache line size.

TSAR architecture is prototyped with a Cycle-
Accurate-Bit-Accurate (CABA) SystemC [12] based
simulator. This simulator is able to do accurate full-
system simulation starting from reset interrupt. The



drawback of such an accuracy is the simulation time
(2000 simulated cycles per second). At the command
line, the simulator takes the X and Y widths and the num-
ber of cores per cluster. It supports up to 256 clusters
(16x16) and provides up to 12 MB of per-cluster physi-
cal memory.

2.2 ALMOS
ALMOS stands for Advanced Locality Management Op-
erating System. It is a new research operating system that
we develop targeting cc-NUMA many-core with hun-
dreds of cores. The locality of memory access impacts
directly both the scalability and the power consumption.
The main challenge is to enforce the locality of mem-
ory access made by threads of parallel applications. Al-
though the locality enforcing needs a fine management
of hardware resources (mainly cores and physical mem-
ory), ALMOS aims to hide the hardware topology and
its resources management to applications. This allows
POSIX shared-memory, parallel applications as well as
legacy applications to benefit from performances offered
by many-cores. ALMOS is a UNIX-like, POSIX com-
patible operating system. It currently has a fairly com-
plete C library, a math library, a fairly complete PThreads
library and the GNU OpenMP run-time. The kernel of
ALMOS has the primordial subsystems related to tasks,
virtual memory and files management. The PThreads im-
plementation has a native support from the kernel and it
has 1:1 threading model as in Linux. In this experimen-
tal study we use ALMOS for three reasons: (i) it is op-
timized and naturally available for TSAR; (ii) we have
a fine control on its kernel and its behavior is fully pre-
dictable; and (iii) it has a similar threading model and
implementation as a more complete and mature shared-
memory operating system like Linux.

2.3 Evaluated Workloads
In order to evaluate the scalability of shared-memory,
highly multi-threads single-application on 512-cores we
selected two HPC-class applications: SPLASH-2 FFT
and EPFilter. The choice of these applications is moti-
vated by: (i) the need for scalable parallel applications
allowing us to avoid the applications quality question in
case of an abnormal results; (ii) the need for All-to-All
inter-threads communication scheme that stress the NoC
and various caches including TLB-I, TLB-D, L1-I, L1-D
and Memory-Caches (L2); and (iii) feasibility - we need
applications with relatively small execution time as we
do an accurate full-system simulation.

Both applications are written in C and use PThreads.
The FFT program is a complex, one-dimensional version
of the ”Six-Step” FFT described by Bailey et al. [5]. The

Figure 2: FFT and EPFilter Speedup, the number of cores is
on x-axe.

EPFilter is an industrial medical image noise-filtering
application provided by Philips. It consists of apply-
ing a convolution filter of 201x35 pixels on an image
1024x1024 pixels of 2-bytes. The application uses 4
memory-mapped regions. One of them is used to map the
image file, while the other three regions are used as in-
termediate buffers where a pixel is extended on 4-bytes.
FFT process 262144 (M=18) complex doubles.

3 Experimental results and analysis

Our TSAR configuration are as follow: (i) core type is
MIPS32; (ii) L1-I and L1-D are each of 16 Kb, 4-ways;
(iii) TLB-I and TLB-D are each of 16 entries, 4-ways;
(iv) Memory-Cache of 256 Kb, 16-ways; and (v) Mesh
of 8x16 = 128 clusters. This configuration is the same for
all discussed experiments. Figure 2 shows the speedup
measurement for FFT and EPfilter applications during
their parallel phase. As we can see, the FFT is fac-
ing a speedup limitation beyond 64 cores while EPfil-
ter speedup limitation comes beyond 256. It is impor-
tant to recall the communication scheme of these two ap-
plications before further scalability investigation. FFT
has an All-to-All communication scheme in which each
thread reads intermediate results of all other threads be-
fore starting a new processing phase. EPFilter has the
same scheme of communication but each thread writes
each filtered pixel to other threads. Another point is how
threads and physical memory placement is done in AL-
MOS. Threads are pinned to cores with one thread by
core. When a thread faults on a virtual page, ALMOS
allocates the requested physical page from the thread’s
cluster with a granularity of small page size (4 KB). Fol-
lowing this policy, all writes done by a core will be lo-
cal for FFT, while in EPFilter, all reads will be local
(except for some global variables). Finally, both of the
evaluated applications are data-parallel where the paral-
lel phase consists of several processing phases which al-
ternate with global synchronization phases. The slower
thread will determine the duration of the parallel phase.



Figure 3: FFT histogram of remote cache-related requests re-
ceived by clusters. Clusters as labeled by their coordination in
the mesh. The requests number is shown on the x-axe. Re-
quests are sorted in descending order.

3.1 Events Counters Measurement

In order to investigate the reason behind the detected
speedup limitation we used TSAR hardware events coun-
ters related to its various cache requests. The in-
spected events are: L1 data miss (RD), L1 instruction
miss (INST), L1 writes (WR), TLB data miss (DTLB)
and TLB Instruction miss (ITLB). As described in sec-
tion 2.1, the physical address space is distributed among
clusters. The Memory-Cache of a given cluster can be
seen as the only server of cache-lines homed by its clus-
ter. Thus, in order to verify if the scalability limitation
is caused by a physical pages allocation/placement mis-
match, we focused on remote memory related requests
issued by remote cores to each Memory-Cache.

Figures 3 and 4 show histograms of cache-related re-
mote requests received by each cluster. The requests are
sorted in descending order. All absent clusters in each
histogram, have the same requests details as the last one
listed. Each figure shows two requests histograms cor-
responding to the last two points in the scalability di-
agram of FFT and EPFilter shown in Figure 2. The
first histogram of each figure corresponding to the last-
scalability-point, that is, the cores number beyond which
the speedup reaches its limit (64-cores for FFT and 256-
cores for EPFilter).

3.2 Scalability limitation analysis

We classify the five instrumented requests in two
categories: payload-requests and overhead-requests.
Payload-requests are RD and WR, while overhead-
requests are INST, DTLB, ITLB. By payload-requests,
we designate requests issued by a core upon the process-
ing algorithm executed by its thread (RD and WR). The
overhead-requests are needed only to enable a thread to
progress and continue processing its data.

Figure 4: EPFilter histogram of remote cache-related requests
received by clusters. Clusters as labeled by their coordination
in the mesh. The requests number is shown on the x-axe. Re-
quests are sorted in descending order.

Figure 3 shows a reduction of per-cluster payload-
requests by a factor of 1.9 while the number of cores is
multiplied by 4. In the other hand, the overhead-requests
increased by a factor of 2.55. The treatment of the
most of overhead-requests is done by the Memory-Cache
(L2) of the cluster (0,0). The result is a serialization
of overhead-requests treatment and therefore a speedup
limitation. Figure 4 shows a reduction of per-cluster
payload-requests by a factor of 2.57, while the number of
cores is multiplied by 2. Although the overhead-requests
increased by a factor of 1.38, their treatment still serial-
ized, mainly on clusters (0,0) and (0,1). Figures 3 and 4
show that the communication scheme of FFT application
(remote RDs, local WRs) and EPFilter (remote WRs, lo-
cal RDs) is as expected, which indicates that the physical
pages mapping various data used by both applications are
well placed by ALMOS. The speedup limitation in both
applications is due to the fact that the overhead-requests
are centred on one or two clusters which become a bot-
tleneck.

3.3 Scalability Drawback of Threads
The overhead-requests are mandatory and cannot be
eliminated. DTLB and ITLB are related to the notion
of paginated virtual address space. Moreover, their num-
ber is proportional to cores number. More threads im-
plies more cores (true parallelism) thus more overhead-
requests. The small size of caches in current and future
many-cores exacerbates the problem because the rate of
requests is inversely proportional to cache size. A vir-
tual address space is related to the notion of a process.
All threads of a given process share the same virtual ad-
dress space. In a multi-threaded program, the process
(representing an image of a program in execution) is just
a resources container. The execution is defined by an-
other entity which is a thread. In order to reduce the la-



tency of DTLB and ITLB requests, the page tables have
to be replicated on several memory banks, except that
these page tables are unique for each process. Therefore,
we cannot replicate them. Distributing them on differ-
ent memory banks will reduce the latency of related miss
but it will not resolve the problem. If there are multi-
ple threads sharing the same segment of virtual address
space, say 2 MB, all TLBs miss of all cores running these
threads will request the same last-level page table and so
it will be a serialization point. However, the first-level
page table is looked up by all TLBs miss requests and
It is also another serialization point. We have the same
problem with physical pages mapping the program’s in-
structions (INST miss requests). They can be replicated
only in per-process bases, while they are shared by all
threads of the same process.

4 Our solution in principle

We seek a software solution that resolves the detected
scalability limitation and provides a cc-NUMA opti-
mized implementation of PThreads. By its conforming to
the PThreads interface, it will be compatible with current
shared-memory programming paradigms and it can be
reused in other shared-memory operating systems. Our
solution in principle consists of introducing the notion of
a task as a hybrid notion between thread and process. A
task is a thread with its own virtual address space. The
virtual address space of a task is partitioned mainly in
three regions: (i) per-cluster shared region; (ii) global
shared region; and (iii) per-task private region. The ex-
istence of per-task virtual address space enables the ker-
nel to replicate the page tables and program instructions
per-cluster bases. By mapping the global region at the
same virtual address between all the process’s tasks, the
kernel gives the illusion of a single, shared virtual ad-
dress space in a transparent manner to the application.
All inter-tasks shared data like .bss, .data program sec-
tions and dynamically allocated memory (malloc) can be
shared as usual. A task can do a private dynamic alloca-
tions in its private region without causing any contention
with other tasks. The kernel can use the per-task private
region to provide a dynamic stack. ALMOS replicates its
kernel in each cluster and as the kernel code is mapped
in per-process bases, threads cannot benefit truly from
this replication because of their share of process page ta-
bles. Thus, when a thread executes a kernel code, all
instruction miss will be redirected to the unique cluster
containing a kernel replica mapped in the process’s vir-
tual address space. This will be not the case with tasks
thanks to per-task virtual address space in which the ker-
nel page tables can set to refer to local kernel replica in
task’s local cluster.

5 Related work

As the best of our knowledge, we are the first to es-
tablish a speedup-limitation causality between the ef-
fect of small caches found in current and future single-
chip many-cores and the notion of threads sharing the
same virtual address space as their process. How-
ever, prior work exists that attempts to improves perfor-
mance of application based on the cache misses infor-
mation [20, 22, 21]. TLBs are critical to processor per-
formance [6, 14, 16] and hardware solutions exists [6, 9]
to reduce miss traffics. These solutions were proposed
to current multi-cores with large transistor budget per-
core where in the current and future many-cores caches
will be small. Big physical pages can be used to reduce
DTLB and ITLB miss requests [19]. This can reduce
the number of TLB entries used for a memory-mapped
region. In the other hand it can cause a physical mem-
ory waste and it is less flexible for an operating system
to manage the memory protection. Using big physical
pages is also less flexible in placement strategies as a big
page is located in one location, while small pages can
be interleaved on more locations. Also, on demand page
migration is more expensive for a big pages compared
to small ones. They can cost I/O performance draw-
back [19]. Using big physical pages do not reduce the
instructions miss requests. In Corey [11], the authors ar-
gues in favor of breaking of the UNIX/POSIX abstrac-
tion by (among other things) exposing the management
of process’s virtual address space to programmers of user
applications. This is done by allowing programmers to
explicitly control a kernel data-structure, named address
range, so they can control the partitioning of the global
virtual address space of a process. The goal of this ap-
proach is to improve the performance of page-fault han-
dling and page tables modifications (TLBs shootdown).
This technique has been used in Barrelfish [7] to con-
struct a shared virtual address space between distributed
entities named dispatchers. A dispatcher is an execu-
tion unite in user-mode and it is managed by cpu upcalls
which is used in Psyche [17]. Both of these systems do
not present their techniques in relation with TLBs and
instruction misses latency in a many-core. As it is men-
tioned in the section 2.1, the TLBs coherence is insured
by the hardware cache-coherency protocol so there is no
need to any TLBs shootdown mechanism. Our analysis
is based on cache (data, instruction and TLBs) miss traf-
fics and our evaluated HPC-oriented applications are not
sensitive to pages-faults performance related drawbacks.
The performance drawback caused by pages-faults and
TLBs shootdown are not relevant for a large number of
HPC-oriented applications where each thread touches its
data in the initialization phase and all threads are syn-
chronized before starting the parallel processing phase.



Although our study argues also in the favor of reconsid-
ering the process’s virtual address space, we arrived to
this conclusion from a completely another way by ana-
lyzing the cache misses traffics and their relation to the
notion of threads and a process. Our solution introduces
a third sharing level (by cluster) and addresses the prob-
lem of remote instruction miss traffics by replicating the
code of applications by cluster basis. Our approach does
not break the UNIX/POSIX interface as the management
of a task’s address space is done by the kernel in a trans-
parent manner and the user-land (programmers, libraries
and run-times) has no knowledge or control on it. This
is a very interesting and suitable property as it insures a
PThreads compatibility and do not requires any modifi-
cation for the existent applications.

6 Conclusions and future work

In this paper, we have presented an experimental eval-
uation of the scalability of two shared-memory, highly
multi-threads, applications, on 512-cores based many-
core. We have identified a scalability limitation beyond
64 cores for the SPLASH-2 FFT and 256 cores for EP-
Filter. Based on hardware cache-related events, our anal-
ysis has shown that: (i) the detected scalability limita-
tion is due to the treatment serialization of TLBs and in-
structions miss requests and not to data physical pages
miss-placement; (ii) the traffics of these miss requests
are proportional to threads number; and (iii) the problem
behind the scalability limitation is related to the notion
of thread and process where a virtual address space is
unique and defined per-process bases and it is shared be-
tween all process’s threads. Moreover, the many-cores
tends to use small per-core caches which exacerbates the
problem as the traffics of the cache miss requests are in-
versely proportional to its size. In order to reduce the
latency of TLBs and instruction related miss requests,
we have proposed a solution in principle to resolve the
detected scalability limitation in software. This solution
aims to provide a NUMA-optimized implementation of
PThreads interface for many-cores and it is articulated
around the notion of the task as a new kernel hybrid en-
tity between thread and process. We are currently im-
plementing this solution in ALMOS and our preliminary
evaluations are promising and indicate the pertinence of
this solution.

References
[1] Intel many integrated core architecture. http://www.many-

core.group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf.

[2] Tera-scale architecture. https://www-asim.lip6.fr/trac/tsar/wiki.

[3] Tile-gx processors family. http://www.tilera.com/products/TILE-
Gx.php.

[4] AGARWAL, V., AND AL. Clock rate versus ipc: the end of the
road for conventional microarchitectures. In Proceedings of the
27th annual international symposium on Computer architecture
(New York, USA, Jun 2000), ISCA ’00, ACM, pp. 248–259.

[5] BAILEY, D. H. Ffts in external or hierarchical memory. J. Su-
percomput. 4 (March 1990), 23–35.

[6] BARR, T. W., COX, A. L., AND RIXNER, S. Translation
caching: skip, don’t walk (the page table). SIGARCH Comput.
Archit. News 38, 3 (June 2010), 48–59.

[7] BAUMANN, A., AND AL. The multikernel: a new os architec-
ture for scalable multicore systems. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles (Big
Sky, Montana, USA, Oct 2009).

[8] BELL, S., AND AL. Tile64 - processor: A 64-core soc with mesh
interconnect. In Solid-State Circuits Conference, 2008. ISSCC
2008. Digest of Technical Papers. IEEE International (feb. 2008),
pp. 88 –598.

[9] BHATTACHARJEE, A., AND AL. Shared last-level tlbs for chip
multiprocessors. In HPCA (2011), IEEE Computer Society,
pp. 62–63.

[10] BORKAR, S. Thousand core chips: a technology perspective. In
Proceedings of the 44th annual conference on Design automation
(San Diego, California, USA, Jun 2007).

[11] BOYD-WICKIZER, S., AND AL. Corey: An operating system for
many cores. In In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (2008).

[12] BUCHMANN, R., AND GREINER, A. A fully static scheduling
approach for fast cycle accurate systemc simulation of mpsocs.
In Microelectronics, 2007. ICM 2007. Internatonal Conference
on (dec. 2007), pp. 101–104.

[13] CHARLES, J., JASSI, P., ANANTH, N. S., SADAT, A., AND FE-
DOROVA, A. Evaluation of the intel core i7 turbo boost feature. In
Proceedings of the 2009 IEEE International Symposium on Work-
load Characterization (IISWC) (Washington, DC, USA, 2009),
IISWC ’09, IEEE Computer Society, pp. 188–197.

[14] CHEN, J. B., BORG, A., AND JOUPPI, N. P. A simulation based
study of tlb performance. In ISCA’92 (1992), pp. 114–123.

[15] CONWAY, AND AL. Cache hierarchy and memory subsystem of
the amd opteron processor. IEEE Micro 30 (March 2010), 16–29.

[16] KANDIRAJU, G. B., AND SIVASUBRAMANIAM, A. Going
the distance for tlb prefetching: an application-driven study.
SIGARCH Comput. Archit. News 30 (May 2002), 195–206.

[17] MARSH, AND AL. First-class user-level threads. SIGOPS Oper.
Syst. Rev. 25 (September 1991), 110–121.

[18] MIRO-PANADES, I., GREINER, A., AND SHEIBANYRAD, A.
A low cost network-on-chip with guaranteed service well suited
to the gals approach. In IEEE 1st Internationnal Conference on
Nano-Networks (2006).

[19] NAVARRO, J., IYER, S., AND DRUSCHEL, P. Practical, transpar-
ent operating system support for superpages. In SIGOPS Oper.
Syst. Rev (2002), pp. 89–104.

[20] WEISSMAN, B. Performance counters and state sharing anno-
tations: a unified approach to thread locality. SIGPLAN Not. 33
(October 1998), 127–138.

[21] WOO, S. C., AND AL. The splash-2 programs: characterization
and methodological considerations. SIGARCH Comput. Archit.
News 23, 2 (May 1995), 24–36.

[22] ZHANG, X., DWARKADAS, S., AND SHEN, K. Towards prac-
tical page coloring-based multicore cache management. In Pro-
ceedings of the 4th ACM European conference on Computer sys-
tems (New York, NY, USA, 2009), EuroSys ’09, ACM, pp. 89–
102.


