
A Consumer Application for GPGPUs: Desktop Search
Ateeq Sharfuddin

Department of Computer Science
The George Washington University

Washington, DC, 20052
pikachu@gwmail.gwu.edu

Xiaofan Feng
Department of Computer Science

The George Washington University
Washington, DC, 20052

xiaofan@gwmail.gwu.edu

Abstract

To date, the GPGPU approach has been mainly uti-
lized for academic and scientific computing, for exam-
ple, for genetic algorithms, image analysis, cryptogra-
phy, or password cracking. Though video cards sup-
porting GPGPU have become pervasive, there do not
appear to be any applications utilizing GPGPU for a
household user. In this paper, one consumer application
for GPGPU is described: utilizing GPGPUs for Desk-
top Search. Though the implementation is somewhat
rudimentary, it still demonstrates a sizable performance
gain.

1 Introduction
Most video cards manufactured today support
OpenCL[1, 2], CUDA [3], or DirectCompute [2, 4].
These mechanisms allow a video card’s graphics pro-
cessing units (GPUs) to be utilized for general purpose
computing, an approach which is termed GPGPU. The
GPGPU approach has been used extensively in the
scientific and academic community for evolutionary
algorithms [5], image analysis [6, 7], or brute-force
password cracking [8, 9]. Though video cards sup-
porting GPGPUs have become pervasive, to a common
household user, video cards still only provide image
rendering support. In this paper, we demonstrate one
consumer application to which the GPGPU approach
could be applied: Desktop Search. There are quite
a few works detailing applications of GPGPU, such
as for fluid simulation [10], object detection [7], and
linear genetic programming [5], to name a few. Sim-
ilarly, there are quite a few works on Desktop Search
[11, 12, 13]. However, to our knowledge, no research
has been performed that applies GPGPUs for Desktop
Search.

Given that a majority of the consumers use Microsoft
Windows, we specifically tailor this paper towards the
NT File System (NTFS). First, the standard approach to
finding files on Microsoft Windows is described. Then
some intricacies of the NT File System (NTFS) are ex-
plained. Following that, an approach tailored to utilize
these intricacies to find files faster is described. Finally,

experimental results are provided, comparing the perfor-
mance of this approach utilizing GPGPU to a CPU im-
plementation.

The implementation for the experiment described in
this paper is rudimentary, and only the performance of
case-insensitive filename substring queries is demon-
strated. The goal of this paper is to demonstrate a con-
sumer application of GPGPUs, and to expand upon this
idea further at a later date, by supporting multiple simul-
taneous queries on multiple attributes. A preliminary
version of this Desktop Search, though marginally fast,
won an Honorable Mention Prize at the AMD OpenCL
Innovation Challenge last year. We describe this version
and also how improve this particular approach.

2 Querying for a File in Windows
The Windows API provides a set of functions (e.g.,
FindFirstFile, FindNextFile, FindClose,
as well as a few others), which one can use to query
for files in a volume. For example, to query for all files
having a case-insensitive .txt extension in the C drive,
one might call a recursive function similar to the one de-
scribed in Procedure 1 with “c:\” and “.txt” as the first
and second arguments, respectively.

This approach is relatively simple. Regardless of
any compiler or hand-coded optimizations performed for
Procedure 1, for obvious reasons (such as the small read
requests and the number of ring-0 transitions), this is
not the fastest approach to finding files, particularly on
NTFS. One can simulate this procedure by performing a

dir C:*.txt /S

from the command line.

3 NTFS
The native file system format for Windows is NTFS, and
a thorough examination of this file system is provided by
Mark Russinovich and David Solomon in Windows In-
ternals [14]. NTFS has a metadata file called the Master
File Table ($Mft), which is a logical array of file refer-
ences. This $Mft contains a file reference for each file on
the volume, including the $Mft itself and other metadata

pikachu@gwmail.gwu.edu
xiaofan@gwmail.gwu.edu

Procedure 1 find (path, query, result)
data← {0}
more← TRUE
(f , data)⇐ FindFirstFile(path + “*.*”);
if f = INVALID HANDLE VALUE then

return result
end if
repeat

if data.cFileName = “.” then
continue

end if
if data.cFileName = “..” then

continue
end if
if isDirectory(data) then

result.add (find(path + data.cFileName + “\”,
query, result))

else if stristr(data.cFileName, query) 6= 0 then
result.add(path + data.cFileName)
{assume stristr is case-insensitive strstr}

end if
(more, data)⇐ FindNextFile(f)

until more = FALSE
FindClose(f)
return result

files. Each file reference record in the $Mft has a fixed-
size of 1024 bytes, and if a file has a large number of at-
tributes, there may be more than one file reference in the
$Mft for that file. The first 42 bytes of a file reference is
the header (see FILE RECORD SEGMENT HEADER
in Figure 1). Immediately following these first 42 bytes
is the update sequence array. And the remaining bytes in
the file reference are utilized for attributes.

Each unit of information associated to a file, such
as its name, owner, timestamps, content, etc. are im-
plemented as attributes, and each type of attribute fol-
lows its own structure. In this paper, we only perform
file name queries– as such, only the FILE NAME at-
tribute structure is of interest. More details regarding
these structures and other NTFS structures are available
at [16, 17, 18, 19, 20, 21].

4 Large Read Requests

Given that the $Mft is an array consisting of 1KB fixed-
size file references, a large chunk of the $Mft could be
read at once. For example, a one megabyte read request
from the $Mft, would contain 1024 file references. As a
consequence, this approach also minimizes the number
of ring-0 transitions.

s t r u c t MULTI SECTOR HEADER
{

UCHAR S i g n a t u r e [4] ;
USHORT U p d a t e S e q u e n c e A r r a y O f f s e t ;
USHORT U p d a t e S e q u e n c e A r r a y S i z e ;

} ;

s t r u c t FILE RECORD SEGMENT HEADER
{

MULTI SECTOR HEADER M u l t i S e c t o r H e a d e r ;
ULONGLONG Reserved1 ;
USHORT SequenceNumber ;
USHORT Reserved2 ;
USHORT A t t r i b u t e O f f s e t ;
USHORT F l a g s ;
ULONG Reserved3 [2] ;
FILE REFERENCE B a s e F i l e R e c o r d ;
USHORT Reserved4 ;
. . .

} ;

Figure 1: FILE RECORD SEGMENT HEADER and
MULTI SECTOR HEADER structures

5 A CPU-based Approach

The CPU-based approach reads the entire $Mft by per-
forming large asynchronous read requests. The ap-
proach consists of a main thread and a pool of worker
threads. The main thread performs read requests, and the
worker threads are in a waitable state. When the operat-
ing system completes a requested read, a worker thread
is awoken and provided the data. This worker thread an-
alyzes this provided data and, when complete, returns
to a waitable state (unless new work is readily avail-
able). The CPU-based approach’s worker thread is de-
scribed in Procedure 2. Certain details such as security
on NTFS, error-handling, “patching,” the “in use” flag,
resident vs. non-resident attributes, attribute traversing,
etc. have been abstracted away from the pseudocode of
this paper; the problem and solution described in this pa-
per can be introduced without detailing these concepts.

Procedure 2 findCPU (query, records)
results← {0}
for all i in records do
filename⇐ nameAttribute(i)
if existsAttribute(filename) then

results.append(matched(filename, query))
end if

end for
return results

A file reference could have multiple FILE NAME
structures. The function nameAttribute re-

turns the longest file name when available. The
existsAttribute function ensures that filename
was found. And the matched function uses a
case-insensitive character-based Boyer-Moore-Horspool
(BMH) [22] implementation to find the query in the file-
name. This CPU approach achieves much better re-
sults than the “dir” approach shown in Section 2. The
reasons are quite simple: large read requests (so fewer
ring-0 transitions); reads are asynchronous; and reads
are aligned at sector boundaries, which allow us to per-
form reads without intermediate buffering by the operat-
ing system. The CPU approach can be modified slightly
for the GPGPU approach.

6 A GPGPU Approach
If we take the example from the previous section, where
a one megabyte read request contained 1024 file ref-
erences, on a video card with 1024 GPUs, all 1024
file references could be analyzed simultaneously. Let
us say that the cost is C(Ri) to process a file refer-
ence Ri. Assume that we have n file references la-
beled R1, R2, R3, . . . , Rn, and n GPU cores labeled
G1, G2, G3, . . . , Gn. We can assign core Gi to pro-
cess file reference Ri. The cost for concurrently pro-
cessing all n file references would be max{C(Ri) |
i = 0, 1, 2, . . . , n} [15]. This GPU-based approach is
described in Procedure 3. Procedure 3 first enqueues
a write of file references (or records) into video-card
memory. Then this procedure enqueues an execution of
match. Following that, Procedure 3 enqueues an exe-
cution of reduce, and waits for results to be read back
into main memory. The first element of results contains
the number of matches found in this set of records. The
remaining elements (from 1 up to and including count)
contain the indices of the file references which matched
the query.

Procedure 3 findGPU1 (query, records)
results← {0}
enqueueWrite(records)
enqueueKernel(match)
enqueueKernel(reduce)
event⇐ enqueueRead(results)
waitFor(event)
count← results[0]
for i = 1 to count do
filename⇐ nameAttribute(record[i])
results.append(filename)

end for
return results

The kernel match in Procedure 4 is identical to the
for-loop’s body in the CPU approach (Procedure 2): it
identifies if a file reference is in use and locates the

FILE NAME attribute with the longest file name, and
uses a GPU implementation of matched to find the
user’s query in the file name. In the event that a match
occurs, match updates the shared global memory ar-
ray error. The function get global id (which is an
OpenCL function) returns a unique work item identifier
id. For our purposes, assume that this id indexes into the
file reference records array.

Procedure 4 match (query, records, error)
id⇐ get global id(0)
filename⇐ nameAttribute(records[id])
if existsAttribute(filename) ∧ matched(filename,
query) then

error[id]← 0
else

error[id]← 1
end if

The kernel reduce in Procedure 5 iterates through
this shared global memory array error, and stores the
number of matches in results[0]. The subsequent entries
in the results array index into the file reference records
array which matched the query. Assume that the call
atomic inc(results) atomically increments results[0]
and returns the prior value held by results[0].

Procedure 5 reduce(error, results)
id⇐ get global id(0)
if error[id] = 0 then
k ⇐ atomic inc(results)
results[k + 1]← id

end if

This approach was entered into the AMD OpenCL
Innovation Challenge last year. This was a fully par-
allel GPU implementation: in addition to matching and
reducing, attribute traversing and in-use checking were
also performed in the GPU. The main performance bot-
tleneck was data-transfer: large read requests were be-
ing copied from main memory to video-card memory.
As a result, for file-name queries, performance was
only marginally better than the CPU-based approach de-
scribed in Section 2.

7 An Improved GPGPU Approach

A file name can be at most MAX PATH (which is de-
fined as 260) characters. Therefore, for queries specific
to file names, the entire 1KB file reference does not need
to be transferred into video-card memory. If a request
contains n file references, an array of size n is created,
with each element being MAX PATH characters large.
This array is populated with the largest file name of each

file reference when available. In the event that the file
reference is not in use or does not have FILE NAME
attributes, the respective element’s first character is ze-
roed. This new array is transferred to the video-card
memory, and the kernel match2 is enqueued. With this
approach however, attribute traversing and in-use check-
ing has to be performed on the CPU prior to building
this array, since the full 1KB file reference is not being
transferred. The pseudocode is provided in Procedure
6. A second pool of threads is also utilized: Threads in
this pool only wait for reads from video-card memory to
complete, and update the user interface. This decoupling
allows the worker threads to focus on read completions
from the operating system and not block waiting for the
GPU to write results back into main memory.

Procedure 6 findGPU2 (query, records)
filenames← {0}
results← {0}
for all i in records do
filename⇐ nameAttribute(i)
if existsAttribute(filename) then
filenames.add(filename)

else
filenames.add({0})

end if
end for
enqueueWrite(filenames)
enqueueKernel(match2)
event⇐ enqueueRead(results)
post(threadpool2, callback, event, filenames
results)

The kernel match2 has been modified to only per-
form compare and merged with reduce.

Procedure 7 match2 (query, filenames, valids)
id⇐ get global id(0)
if matched(filenames[id], query) then
k ⇐ atomic inc(valids)
valids[k + 1]← id

end if

This callback function is called from the second
threadpool and the results are posted to the user inter-
face.

8 Experiment

To test our new approach, we updated the user-mode
application originally submitted to the AMD OpenCL
Innovation Challenge, and devised a simple experi-
ment. The application provides a graphical user inter-
face, which allows the user to select NTFS volumes,

Procedure 8 callback (event, records, results)
waitFor(event)
count← results[0]
for i = 1 to count do
filename⇐ nameAttribute(record[i])
results.append(filename)

end for
return results

query for file names, and utilize GPUs (via OpenCLTM)
or CPUs. When the user clicks “Search,” the list box
shows the file paths for all files located. The status bar
shows the total time taken to complete the query. The
user interface for our implementation is shown below,
with a query performed for “microsoft.” For this exper-
iment, retrieving the full file path has been disabled, as
this requires additional file reference lookups.

Figure 2: The Desktop Search User Interface: Querying for
“microsoft” on the Q drive.

We generated 8,000 files on an NTFS volume, in 100
file increments, all containing the same five character ex-
tension. After each 100 files are created, we query for
the files using the CPU approach and the GPGPU ap-
proach. The NTFS volume had a total of 234,240 file
references at the end of the experiment (and 226,240 in
the beginning). We compare the performance of GPU
implementation described in the Section 7. The CPU
implementation is almost exactly the same as the GPU
implementation in Section 7, with the only difference
being that second threadpool is not used, given that the
CPU implementation does not need to wait for results to
be read back into main memory from video-card mem-
ory.

We ran our experiment on a commodity machine with
a Core Duo CPU (at 2.6GHz each) and 4 GB of DDR2

RAM with PCI Express 1.1 Bus. The video-card we uti-
lized was an AMD Radeon HD 6870, with 1120 stream
processors and 1 GB of DDR5 RAM. The hard drive
we utilized was a Western Digital 7200 RPM drive, with
64MB cache.

9 Results

Table 1: Times in seconds, in 1,000 file increments
Number of Files GPU Time CPU Time

1000 1.82 1.87
2000 2.15 2.47
3000 2.34 2.81
4000 2.49 3.24
5000 2.63 3.53
6000 2.92 4.27
7000 3.08 4.64
8000 3.36 5.02

The results show that GPGPU approach is always
faster than the CPU implementation. The cost of read-
ing the entire $Mft from the hard drive is roughly 1.60
seconds. If we deduct this time from the results of both
the approaches, the GPU approach is roughly 1.8 times
faster on average, with minimum being 1.1 times and
maximum being 3.4 times. Table 1 shows the perfor-
mance in 1,000 file increments. Figure 3 shows the per-
formance of the two implementations.

Note that this is a user-mode implementation– as
such, the operating system scheduler will interrupt this
application’s threads as it sees fit.

Figure 3: Graph of our results. The CPU performance is in
red, and the GPU performance is in blue, starting at 100 files
and ending at 8,000 files. The GPGPU approach is always
faster.

We do not compare performance against the “dir” im-
plementation, given that the “dir” approach takes min-
utes to complete and not seconds. We also do not com-
pare our performance against other Desktop Search ap-
pliances; this is something we would like to compare

against in the future. Most Desktop Search appliances
rely on indexing: Windows Search can return no results
when the files have not been indexed, and if non-indexed
lookups is enabled, the speed is as slow as the “dir” im-
plementation.

We could of course make the performance astronom-
ically faster, by copying a large block of file references
into video-card memory (say 900MB) prior to the user
issuing a “Search” request. However, the intent of this
paper was only to demonstrate a feasible consumer ap-
plication using the GPGPU approach.

10 Future Work
The experiment designed for this paper is somewhat
primitive. The approach taken to generate the files will,
more likely than not, produce file references in a con-
secutive block in the $Mft. In the future, one goal is
to uniformly distribute file references being queried for.
Performance could also be tested on other hardware, for
example, on a machine with a PCI Express 2.0 bus, and
multiple video-cards, and ranges of video cards. We
would also like to implement querying other attributes
(such as timestamp queries, file owner, etc.) and mul-
tiple simultaneous queries (such as, retrieve all .txt files
created before 2010 by user ‘x’ having “microsoft” in
the content). And we would also like investigate index-
ing and index lookups with GPGPU.

11 Conclusion
Though video cards supporting GPGPU have become
pervasive, there does not appear to be any applica-
tions utilizing GPGPU for the common household. This
paper demonstrated a consumer application for GPG-
PUs: Desktop Search. A rudimentary implementation
achieved an 1.8x performance gain. We aim to further
develop on this idea– to design a more thorough exper-
iment, and also to support more attributes for querying,
and implement other available algorithms for searching.

12 Availability
The AMD OpenCL Innovation Challenge entry will be
available as a sample in the AMD APP SDK: this is the
fully parallel implementation. The improved GPGPU
approach described in this paper can be derived from this
fully parallel implementation.

References
[1] OpenCLTM Conformant Products, http:

//www.khronos.org/conformance/
adopters/conformant-products/,
Retrieved January 22, 2012.

[2] M. Ireton, OpenCLTM and Microsoft
C++ AMP, http://blogs.amd.

http://www.khronos.org/conformance/adopters/conformant-products/
http://www.khronos.org/conformance/adopters/conformant-products/
http://www.khronos.org/conformance/adopters/conformant-products/
http://blogs.amd.com/developer/2011/07/07/opencl™-and-microsoft-c-amp/

com/developer/2011/07/07/
opencl-and-microsoft-c-amp/ (2011),
Retrieved January 22, 2012.

[3] CUDA Toolkit, http://developer.
nvidia.com/cuda-toolkit, Retrieved
January 22, 2012.

[4] DirectCompute Support on NVIDIA’s CUDA
Architecture GPUs, http://developer.
nvidia.com/directcompute, Retrieved
January 22, 2012.

[5] G. Wilson and W. Banzhaf, Linear genetic pro-
gramming GPGPU on Microsoft’s Xbox 360, IEEE
Congress on Evolutionary Computation (2008) p.
378-385.

[6] Z. Yang, Y. Zhu, Y. Phu. Parallel Image Pro-
cessing Based on CUDA, International Conference
on Computer Science and Software Engineering
(2008) p. 198-201.

[7] L. Zhang, R. Nevatia, Efficient scan-window based
object detection using GPGPU, CVPRW (2008),
p. 1-7.

[8] T. Murakami, R. Kasahara, T. Saito. An implemen-
tation and its evaluation of password cracking tool
parallelized on GPGPU, International Symposium
on Communications and Information Technologies
(2010) p. 534-538.

[9] G. Hu, J. Ma, and B. Huang, Password Recovery
for RAR Files Using CUDA, IEEE Conference on
Dependable, Autonomic and Secure Computing 8
(2009) p. 486-490.

[10] E. Wu, Y. Liu, Emerging technology about
GPGPU, APCCAS (2008), p. 618-622.

[11] S. Chernov, P. Serdyukov, P.-A. Chirita, G. Demar-
tini, W. Nejdl, Building a Desktop Search Test-Bed,
Advances in Information Retrieval 4425 (2007), p.
686-690.

[12] C. Lu, M. Shukla, S.H. Subramanya, Y. Wu. Per-
formance Evaluation of Desktop Search Engines,
IEEE International Conference on Information
Reuse and Integration (2007), p 110-115.

[13] J. Chen, H. Guo, W. Wu, and C. Xie. Search your
memory! - an associative memory based desktop
search system, SIGMOD 35 (2009), p. 1099-1102.

[14] M. E. Russinovich and D. A. Solomon, Microsoft R©

Windows R© Internals, Fourth Edition, Microsoft
Press (2005) p. 717-785.

[15] AMD R© Accelerated Parallel Process-
ing OpenCLTMProgramming Guide
(v1.3f), http://developer.amd.
com/sdks/AMDAPPSDK/assets/AMD_

Accelerated_Parallel_Processing_
OpenCL_Programming_Guide.pdf, 2011,
p 18-23. Retrieved January 22, 2012.

[16] FILE RECORD SEGMENT HEADER struc-
ture, http://msdn.microsoft.com/
en-us/library/bb470124(v=vs.85)
.aspx, Retrieved January 22, 2012.

[17] MULTI SECTOR HEADER structure, http:
//msdn.microsoft.com/en-us/
library/bb470212(v=vs.85).aspx,
Retrieved January 22, 2012.

[18] FILE NAME structure, http://msdn.
microsoft.com/en-us/library/
bb470123(v=vs.85).aspx, Retrieved
January 22, 2012.

[19] MFT SEGMENT REFERENCE struc-
ture, http://msdn.microsoft.com/
en-us/library/bb470211(v=vs.85)
.aspx, Retrieved January 22, 2012.

[20] ATTRIBUTE RECORD HEADER struc-
ture, http://msdn.microsoft.com/
en-us/library/bb470039(v=vs.85)
.aspx, Retrieved January 22, 2012.

[21] ATTRIBUTE LIST ENTRY structure, http:
//msdn.microsoft.com/en-us/
library/bb470038(v=vs.85).aspx,
Retrieved January 22, 2012.

[22] R. N. Horspool, Practical fast searching in strings.
Software Practice and Experience 10 (1980) p.
501-506.

http://blogs.amd.com/developer/2011/07/07/opencl™-and-microsoft-c-amp/
http://blogs.amd.com/developer/2011/07/07/opencl™-and-microsoft-c-amp/
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/directcompute
http://developer.nvidia.com/directcompute
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://msdn.microsoft.com/en-us/library/bb470124(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470124(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470124(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470212(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470212(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470212(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470123(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470123(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470123(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470211(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470211(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470211(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470038(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470038(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb470038(v=vs.85).aspx

	Introduction
	Querying for a File in Windows
	NTFS
	Large Read Requests
	A CPU-based Approach
	A GPGPU Approach
	An Improved GPGPU Approach
	Experiment
	Results
	Future Work
	Conclusion
	Availability

