
Performance Implications of Co-scheduling Modern Parallel Applications
on NUMA Multi-core Systems

Cheol-Ho Hong and Chuck Yoo

Korea University

Abstract

The non-uniform memory access (NUMA) architecture
has attracted attention as a state-of-the art multi-core so-
lution for addressing the practical limitations of increas-
ing the number of cores in symmetric multiprocessing
systems. In order to utilize this architecture, the schedul-
ing of parallel applications has become an important
problem.

In this study, we investigate the performance impact of
co-scheduling parallel threads in the recent NUMA plat-
form. From our evaluation, we find that certain applica-
tions are found to show significant performance improve-
ments when co-scheduled in the same memory domain.
The reason for the improvement is examined, and the use
of the memory usage patterns of threads in analyzing the
co-scheduling impact is advocated on the basis of the ex-
amination result.

1 Introduction

The non-uniform memory access (NUMA) architecture
has attracted attention as a scalable solution to the practi-
cal limitations of increasing the number of cores in sym-
metric multiprocessing systems. The NUMA architec-
ture consists of several processors, each of which has its
own local memory and memory controller. Any proces-
sor can access remote memories belonging to other pro-
cessors through a cross-chip interconnect. Remote mem-
ory latency is quite high because of the long path, includ-
ing the cross-chip interconnect and the remote memory
bus. Recent AMD Opteron and Intel Nehalem proces-
sors are designed for the NUMA architecture; AMD’s
HyperTransport and Intel’s QuickPath Interconnect are
examples of cross-chip interconnect technologies.

A multi-core processor that consists of a NUMA plat-
form shares some hardware resources, such as a last-
level cache or memory controller, on the same proces-
sor chip. In terms of the shared last-level cache between

cores, hardware designers intended parallel threads to
have efficient inter-core communication. On the basis
of this expectation, researchers have developed cache-
sharing-aware schedulers at the operating system (OS)
level[3][6][4]. The basic concept of these schedulers is
that parallel applications can benefit from cooperative
data accesses that induce cache hits between threads by
co-scheduling threads within the same last-level cache.
The proposed schedulers detect data sharing patterns be-
tween threads and cluster them onto cores that share the
same cache domain.

Although the traditional perception that the perfor-
mance of parallel applications is dependent on the place
of threads, [8] has found that the significant performance
improvement of PARSEC cannot be achieved by just
placing threads in the same cache domain. PARSEC is
a recently released benchmark program and “focuses on
emerging workloads and was designed to be represen-
tative of next-generation shared-memory programs for
chip-multiprocessor”[1]. In most cases, when threads
are co-scheduled, the performance of the program dete-
riorates slightly because of the contention on the shared
last-level cache and memory bus. [8] concluded that
cache sharing has very limited influence on the perfor-
mance of the PARSEC parallel benchmark suite.

However, significant canneal and streamcluster per-
formance improvement are achieved in PARSEC when
threads are co-scheduled using the native inputs in the
recent NUMA platform. The co-scheduling running time
was reduced by as much as 20% according to the num-
ber of threads, as compared to the default Linux sched-
uler. This result is different from the result of [8]. In [8]’s
work, the authors report that the contention on a shared
last-level cache mainly causes canneal and streamclus-
ter performance degradation when the native inputs are
used.

The different result is thought to partly originate from
the capacity of the last-level cache. The processors used
in our experiments are Intel Xeon E7540 processors,



each of which has six cores and an 18 MB last-level
cache, whereas the AMD Opteron processor used in [8]
has four cores and a 2 MB last level-cache. The larger
last-level cache capacity in our system can mitigate the
contention on a shared cache. However, the mitigated
contention is insufficient to address the performance im-
provement of the two applications.

In this study, we step back and reinvestigate the per-
formance impact of co-scheduling parallel threads in the
recent NUMA platform. From our evaluation, the perfor-
mance of parallel threads was found to be deeply related
to the last-level cache miss rate and the memory usage
pattern of each thread. On the basis of this finding, a clas-
sification method that mainly analyzes the cache miss
rate and the memory usage pattern is proposed in order to
distinguish characteristics of each parallel thread. In ad-
dition, a simple scheduler that dynamically co-schedules
parallel threads is provided using the former method.

The main contributions of this paper are as follows:
First, the memory usage pattern is found to be an im-

portant requirement for scheduling parallel threads in the
recent NUMA system, and its use is advocated in ana-
lyzing co-scheduling impact. Recent research studies re-
lated to NUMA-aware scheduling focus on several fac-
tors, including the cache miss rate, but not the memory
usage pattern[2][5]. Therefore, they tend to have limita-
tions in analyzing the co-scheduling impact.

Second, our research can contribute to NUMA-
aware algorithms for contention management, such as
DINO[2]. DINO “tries to co-schedule threads of the
same application on the same memory domain, provided
that this does not conflict with DINO’s contention-aware
assignment”. From our finding, performance improve-
ment is achieved when streamcluster threads that have
high cache miss rates and that may conflict with DINO’s
policy are co-scheduled. Therefore, a new method for
revising the algorithm in terms of parallel threads can be
provided.

The remainder of this paper is structured as follows:
parallel threads that could be deployed in the NUMA
system are classified in Section 2. A scheduling method
for parallel applications is illustrated in Section 3. Our
evaluation results are presented in Section 4. Finally, the
conclusions are presented in Section 5.

2 Parallel Threads in the NUMA System

Multi-core machine performance depends on the effec-
tive use of multiple threads within applications. A mul-
tithreaded application has many independent execution
flows (threads) and shares the same memory address
space. Therefore, threads in an application have identical
memory views and share the same set of data structures,

such as open files. Threads can be implemented by var-
ious thread libraries. Only conventional thread libraries
such as NPTL (Native POSIX Thread Library) in Linux
are covered in this paper, in order to limit the problem
field.

Then, we illustrate the performance impact of co-
scheduling parallel threads in terms of the last-level
cache miss rate and the memory usage pattern. For this
purpose, parallel threads are classified into two groups
according to their cache miss rates: devil and non-
devil. The devil terminology is borrowed from existing
research[7] and is now common in application classifi-
cation. Devils tend towards not reusing cached data and
very frequently generate cache misses. In contrast, non-
devils include turtles, sheep, and rabbits in [7] and ex-
hibit low cache miss rates. A detailed explanation of
non-devils is provided in subsection 2.2.

For simplicity, parallel threads in an application are
assumed to exhibit uniform behaviors throughout their
lifetimes. Therefore, they have the same classification.
Few co-operative data accesses that induce cache hits
between parallel threads are assumed in order to concen-
trate only on the memory usage pattern. Moreover, cache
contention between threads is assumed to be mitigated.

2.1 Devils
Each parallel thread in an application independently al-
locates memory regions mainly from its local memory in
a NUMA platform. Then,

1. Each thread may access mostly its own local mem-
ory, as shown in Figure 1.

2. Each thread may interact with other threads using
others’ allocated memory while accessing its own
local memory, as shown in Figure 2.

3. A master thread primarily allocates some memory
regions, and other client threads may interact with
the master thread, as shown in Figure 3.

In the first case, devils’ frequent last-level cache
misses are satisfied from the local memory in both
threads A and B. In this situation, suppose that thread B
is migrated to the opposite node and two threads are co-
scheduled. Then, thread B will suffer from performance
degradation caused by remote memory accesses through
the cross-chip interconnect, because its allocated mem-
ory remains in the original place. Therefore, clustered
threads cannot take advantage of co-scheduling benefits.

In the second case, the two threads’ last-level cache
misses are satisfied from both the local and the remote
memory. In this case, any thread with a relatively large
number of remote memory accesses can be migrated to

2



Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread A 

Allocated 
memory 
of thread 

A

Allocated 
memory 
of thread 

B

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread B 

Figure 1: Each thread accesses mostly its own local
memory.

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread A 

Allocated 
memory 
of thread 

A

Allocated 
memory 
of thread 

B

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread B 

Memory access through 
the cross-chip interconnect

Figure 2: Each thread interacts with other threads using
others’ allocated memory while accessing its own local
memory.

the opposite node. However, performance improvement
is expected to be small because the original local ac-
cesses are converted to remote accesses after thread mi-
gration. Therefore, in this case, memory migration is re-
quired before threads are co-scheduled in the same mem-
ory domain.

In the last case, the two threads’ frequent last-level
cache misses are satisfied from thread A’s allocated
memory. Then, the performance of thread B cannot help
but decrease because of excessive accesses to the remote
memory. The best solution for this case is to migrate
client threads to the node where the master thread exists
and to co-schedule them. However, the main problem of
this strategy is that a node cannot accommodate threads
that are greater than its size. The OS cannot help this sit-
uation; therefore, application re-design is recommended
[2].

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread A 

Allocated 
memory 
of thread 

A

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Thread B 

Memory access through 
the cross-chip interconnect

Figure 3: A master thread primarily allocates some mem-
ory regions, and other client threads interact with the
master thread.

2.2 Non-devils
Turtles in non-devils do not make much use of the shared
last-level cache because the application has very few
memory instructions or has a very small working set[7].
Sheep exhibit a high last-level cache access rate and are
satisfied with the small number of cache ways allocated
to them. Finally, rabbits also access the last-level cache
very frequently; however, they are sensitive to the num-
ber of cache ways allocated to them.

In any case, non-devils do not exhibit high cache miss
rates. Then, non-devils do not put pressure on the mem-
ory controller and the cross-chip interconnect, regardless
of the extent of each thread’s allocated memory scatter-
ing. Therefore, they are unconstrained by the execution
location and co-scheduling them in the same memory do-
main has no performance impact.

In summary, co-scheduling parallel applications is
most effective when threads in an application exhibit
high last-level cache misses and interact with each other
using a single thread’s allocated memory. In addi-
tion, memory migration is required before co-scheduling
threads in the same memory domain when the allocated
memory is scattered across NUMA nodes.

In all cases in devils, the memory usage pattern is
found to be an important requirement for co-scheduling
or memory migration decisions. Therefore, its use is ad-
vocated in analyzing the co-scheduling impact.

3 Scheduling Parallel Threads

As illustrated in the previous section, the performance
impact of co-scheduling parallel threads is deeply related
to the last-level cache miss rate and the memory usage
pattern of each thread. The last-level cache miss rate

3



can be easily obtained via general performance coun-
ters. However, it is not simple to obtain the memory us-
age pattern of each thread via the general performance
counters. In [4]’s research, the authors predict the co-
scheduling benefit using performance counters related to
the coherency protocol events in the Intel Nehalem sys-
tem. However, such performance counters cannot be
used here because these counters only accumulate the
number of events and do not indicate where cache misses
are satisfied among several NUMA nodes.

A decision was taken to adopt hardware support for
data address sampling in order to address this prob-
lem. This feature is present in recent multi-core architec-
tures, including the Intel Nehalem, Intel Itanium, IBM
POWER5, Sun UltraSparc, and AMD Family 10h pro-
cessors. The data linear address register is captured us-
ing the load latency facility of the Intel Nehalem proces-
sors when last-level cache misses occur. The captured
address is the linear address of the target of the load in-
struction. The NUMA node in which each cache miss
is satisfied can be discovered after converting the linear
address to the physical address using the page tables of
each thread. The sampling module is periodically en-
abled for low overhead, and the module is disabled for
the remaining duration. In our research, this low sam-
pling accuracy does not hamper the process of obtaining
the memory usage pattern of each thread.

Parallel thread scheduling is now explained using a
simple example.

First, parallel threads are classified according to the
cache miss rate of each thread. Devils are defined as
threads that generate more than one last-level cache miss
per 1000 instructions. The threshold value is determined
through the examination of the evaluation result.

Second, the linear address of the target of the load in-
struction for devil threads only is periodically captured
when last-level cache misses occur. The captured ad-
dress is changed to the physical address in order to de-
termine the node number. The memory usage pattern of
each thread can then be obtained by using counters for
accumulating the number of referenced nodes.

Ratio of Ratio of
Node references references

no. MPKI to node 0 to node 1
Thread 1 0 15 95% 5%
Thread 2 1 16 90% 10%
Thread 3 0 14 93% 7%
Thread 4 1 15 85% 15%

Third, suppose that there are four threads of a parallel
application scattered in two nodes, such as in the table
above. In the table, MPKI means misses per kilo instruc-
tion.

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Core Core Core

L2 L2 L2

Core Core Core

L2 L2 L2

Last-level cache

Figure 4: A schematic view of our quad-socket system
with four Intel Nehalem processors.

Finally, it can be inferred from this information that
the master thread has allocated some memory regions in
node 0 and that four threads intensively access the same
memory regions. Therefore, they are co-scheduled in
node 0. The threshold value for migration is determined
to be 80% after examination of the sample evaluation.

4 Evaluation

A state-of-the art quad-socket system with four Intel Ne-
halem EX processors was used for evaluation. Each pro-
cessor is an Intel Xeon E7540 processor with six cores
and an 18 MB last-level cache. Our system has a 4 GB
main memory per node. The CPU layout of this system
is illustrated in Figure 4. The system is hosted by Linux-
2.6.39 that is modified in order to utilize the load latency
facility of the Intel Nehalem processor.

PARSEC is chosen as a benchmark program because
it reflects the current CMP’s characteristics and has been
adopted by many system groups in both research and in-
dustry. The native PARSEC inputs are used in all exper-
iments.

Programs are run in the benchmark with four threads
using the co-scheduling method and the default Linux
scheduler, respectively. Figure 5 shows the performance
comparison between the co-scheduling method and the
default method. A bar represents the running time for
co-scheduling normalized to the default scheduling time,
and a bar lower than 1 implies better performance.

This result is analyzed as illustrated in Section 2. Each
application is classified into devils or non-devils accord-
ing to the average MPKI of all threads.

As shown in the below table, devils consist of can-
neal, facesim, fluidanimate, streamcluster, and x264;
non-devils consist of blackscholes, bodytrack, and swap-
tions. In Figure 5, each bar of non-devils that consist
of blackscholes, bodytrack, and swaptions approaches

4



0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

bla
ck
sch
ole
s	
  

bo
dy
tra
ck
	
  

ca
nn
ea
l	
  

fac
es
im
	
  

flu
ida
nim

ate
	
  

str
ea
mc
lus
ter
	
  

sw
ap
7o
ns
	
  

x2
64
	
  

Time	
  of	
  co-­‐scheduling/
Time	
  of	
  default	
  

Figure 5: The running time of the case of co-scheduling
normalized to the time of the case of default scheduling.

1 because they have no co-scheduling performance im-
pact. In the case of devils, only canneal and streamclus-
ter have a significant performance improvement when
threads are co-scheduled.

Applications MPKI Classification
blackscholes 0.1545 Non-devil

bodytrack 0.2237 Non-devil
canneal 22.6062 Devil
facesim 1.1320 Devil

fluidanimate 0.9352 Near-devil
streamcluster 16.2745 Devil

swaptions 0.0032 Non-devil
x264 1.7703 Devil

To address the performance improvement and decline
of threads in devils, we compare the memory usage pat-
tern of each thread of both streamcluster and fluidani-
mate.

In the case of streamcluster, when threads are sched-
uled by the Linux scheduler, the scheduler scatters
threads across nodes in order to achieve load balance.
Streamcluster threads exhibit the following pattern. In
the table below, RRN denotes the ratio of references to
nodes n.

RRN 0 RRN 1 RRN 2 RRN 3
Thread 1 0.1% 99.2% 0.7% 0%
Thread 2 0% 99.3% 0.6% 0.1%
Thread 3 0.5% 97.8% 1.5% 0.2%
Thread 4 0.3% 98.6% 1.1% 0%

From this table, we can infer that streamcluster has a
master thread that primarily allocates some memory re-
gions, and other client threads interact with the master
thread. Therefore, the co-scheduling method is effective.

In the case of fluidanimate, when threads are sched-
uled by the Linux scheduler, they exhibit the following

pattern.

RRN 0 RRN 1 RRN 2 RRN 3
Thread 1 2.1% 92.2% 1.2% 4.5%
Thread 2 0% 53.8% 1.4% 44.8%
Thread 3 7.1% 47.2% 45.5% 0.2%
Thread 4 46.7% 47.2% 5.9% 0.2%

From this table, we can infer that each thread in flu-
idanimate interacts with other threads using the other
threads’ allocated memory while accessing its own local
memory. In this case, memory migration is required be-
fore co-scheduling threads in the same memory domain.

By using the simple scheduler described in Section
3, maximum performance improvement of canneal and
streamcluster can be achieved when six threads are co-
scheduled using the native inputs. The running time of
the co-scheduling case is reduced by up to 20%, as com-
pared to the default Linux scheduler.

5 Conclusion

In this paper, the performance of parallel threads was
found to be deeply related to the last-level cache miss rate
and the memory usage pattern of each thread. Therefore,
the memory usage pattern is advocated as an important
requirement for scheduling parallel threads. Further, we
hope that our research will contribute to NUMA-aware
contention management algorithms.

In the future, we plan to develop a more sophisti-
cated scheduling algorithm on the NUMA platform, inte-
grating our memory usage pattern research into existing
cache contention and sharing research.

6 Acknowledgments

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 2011-0029848).

References
[1] BIENIA, C., KUMAR, S., SINGH, J., AND LI, K. The parsec

benchmark suite: Characterization and architectural implications.
In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques (2008), ACM, pp. 72–
81.

[2] BLAGODUROV, S., ZHURAVLEV, S., FEDOROVA, A., AND KA-
MALI, A. A case for numa-aware contention management on mul-
ticore systems. In Proceedings of the 19th international confer-
ence on Parallel architectures and compilation techniques (2010),
ACM, pp. 557–558.

[3] JIANG, Y., SHEN, X., CHEN, J., AND TRIPATHI, R. Analysis and
approximation of optimal co-scheduling on chip multiprocessors.
In Proceedings of the 17th international conference on Parallel

5



architectures and compilation techniques (2008), ACM, pp. 220–
229.

[4] KAMALI, A. Sharing aware scheduling on multicore systems.
Master’s thesis, Simon Fraser University (2010).

[5] MAJO, Z., AND GROSS, T. Memory management in numa multi-
core systems: Trapped between cache contention and interconnect
overhead. In Proceedings of the international symposium on Mem-
ory management (2011), ACM, pp. 11–20.

[6] TAM, D., AZIMI, R., AND STUMM, M. Thread clustering:
sharing-aware scheduling on smp-cmp-smt multiprocessors. ACM
SIGOPS Operating Systems Review 41, 3 (2007), 47–58.

[7] XIE, Y., AND LOH, G. Dynamic classification of program mem-
ory behaviors in cmps. In the 2nd Workshop on Chip Multiproces-
sor Memory Systems and Interconnects (2008), Citeseer.

[8] ZHANG, E., JIANG, Y., AND SHEN, X. Does cache sharing on
modern cmp matter to the performance of contemporary multi-
threaded programs? In ACM SIGPLAN Notices (2010), vol. 45,
ACM, pp. 203–212.

6


