
USENIX HotPar 2012, Berkeley, CA.

Concurrent Predicates: Finding and Fixing
the Root Cause of Concurrency Violations

Justin E. Gottschlich Gilles A. Pokam Cristiano L. Pereira

Intel Corporation

Abstract
To reduce the complexity of debugging multithreaded pro-
grams, researchers have developed compile- and run-time
techniques that automatically detect concurrency bugs. These
techniques can identify a wide range of shared memory er-
rors, but are sometimes impractical because they produce
many false positives making it difficult to triage and repro-
duce specific bugs. To address these concerns, we introduce
a control structure, called concurrent predicate (CP), which
allows programmers to single out a specific bug by spec-
ifying the conditions that must be satisfied for the bug to
be triggered. Using bugs from a test suite of 23 programs,
applications from RADBench, and TBoost.STM, we show
how CP is used to diagnose and reproduce such bugs that
could not otherwise be reproduced using similar techniques.

1. Introduction
To reduce the complexity of debugging multithreaded pro-
grams, researchers have developed innovative ways to auto-
matically detect concurrency violations [3, 13, 16, 20]. Re-
search in this area generally focuses on systematic model
checking to exhaustively test all possible thread interleav-
ings [1, 15, 25] or random testing to overcome impractical-
ity issues caused by state-space explosion [4, 22]. Although
many bugs may be found by these automated systems, it can
be challenging for a programmer to reproduce a specific bug
he or she is interested in using such techniques because of
false positives or the emergence of non-critical bugs. Yet,
reliable bug reproduction is usually the first step to fixing
software defects. Unfortunately, without record and replay
systems [14, 18, 19], reproducing a specific bug can only
be achieved when the root cause is known; that is, when the
conditions required to expose the bug are satisfied.

To address these concerns, Schwartz-Narbonne et al. pro-
pose parallel assertions, which allows the programmer to
embed traditional-like assertions within the context of par-
allel programs that fire if a limited range of conditions or
invariants in one thread are violated by another [21]. Any
number of parallel assertions can be placed in a program,
enabling a programmer to track multiple parallel assertion
violations within a single execution. Although parallel asser-
tions do capture specific concurrency-related events, they do
not capture the thread, and more importantly, the instruction,

triggering the event. Therefore, parallel assertions fall short
of revealing root cause information of concurrency bugs.

Park and Sen resolve this issue with their novel concur-
rent breakpoint system which captures both the cause and
the effect of a given concurrency violation [17]. Once a set
of concurrent breakpoints is found to reproduce a bug, the
programmer can attempt to fix the bug because he or she
knows its root cause. After a bug fix is added to the code,
the programmer can then build confidence that the fix is cor-
rect by re-executing the program and ensuring the previously
inserted concurrent breakpoints no longer trigger.

In this paper, we present concurrent predicate (CP) a pro-
gramming control structure inspired by parallel assertions
and concurrent breakpoints that extends both ideas to pro-
vide a more complete and generalized solution to reproduce
concurrency violations. Like parallel assertions, any number
of CPs can be active within a program at a time, enabling
programmers to reproduce multiple bugs within the same ex-
ecution or to reproduce the same bug from multiple vantage
points. Like concurrent breakpoints, CP captures both the ef-
fect and root cause of multithreaded bugs and increases their
likelihood of reproduction by using programmer-supplied
delays. Yet, unlike either of them, CP provides specific a
timing guarantee in which the predicates of the program will
remain satisfied, enabling deterministic bug reproduction
within certain constraints. CP also manages non-essential
thread interference, those threads that do not contribute to
the reproduction of a bug but can obfuscate it, which is crit-
ical to reproducing complex, real-world multithreaded bugs
where interfering threads often reduce bug reproducibility.

Figure 1. An Atomicity Violation where, if calculate() re-
turns 0, the program can exhibit a divide by zero excep-
tion.

To demonstrate the usefulness of this approach, consider
the code shown in Figure 1 which assumes y is a shared
variable between Threads 1 and 2 and the program has the
invariant of y != 0. Because of an atomicity violation in
Thread 1 (between its critical sections), Thread 2 might see
y = 0, resulting in a divide by zero exception.

Parallel assertions will reproduce this bug, but it will not
capture the root cause. Concurrent breakpoints, on the other
hand, will capture both the effect and the root cause. Yet,
because concurrent breakpoints does not manage thread in-
terference, if multiple threads were to simultaneously exe-
cute Thread 1’s code, y could be set to 1 immediately af-
ter it was set to 0 by another thread, effectively eliminating
any chance to reproduce the bug. Secondly, because concur-
rent breakpoints does not provide a timing guarantee, Thread
1’s breakpoint might timeout after it has been concurrently
satisfied with Thread 2. Thread 1 might then subsequently
execute its second critical section performing y = 1 before
Thread 2 reports the bug, resulting in a bug report that in-
cludes unsatisfied conditions. As we describe in Section 3,
the CP control structure handles both of these concerns.

1.1 Non-Essential Thread Interference and Timing
Guarantees

An observation we made when designing CP is that while
only a few threads may contribute to a bug, often times many
threads contribute to the obfuscation of such bugs, by per-
turbing the program state once a bug’s conditions have been
satisfied. As a result, careful attention must be paid to en-
sure these non-essential, interfering threads do not further
obscure already obscure bugs. Although our experiments
demonstrate that most concurrency violations can be cap-
tured with only two threads (some exceptions exist), they
also show that a system that intends to reproduce concur-
rency violations must specifically have measures in place to
manage, that is, eliminate, interference from threads that do
not contribute to the bug. In Section 3, we discuss the three
variants of the CP control structure, each of which manages
varying degrees of thread interference, and show how CP
eliminates thread interference for a modified divide by zero
bug as is summarized in Figure 1.

Additionally, systems like CP must provide a timing guar-
antee regarding the duration of time in which the conditions
required to reproduce a bug will remain satisfied. Without
such a guarantee, programmers will not fully understand
how such systems behave or how to effectively utilize them.
We call such a timing guarantee self stability, a notion lifted
from Dinsdale-Young et al., and describe it in more detail in
Section 3 [2]. Figure 2 illustrates this guarantee, at a high-
level. Unlike the works of parallel assertions and concur-
rent breakpoints, the CP system guarantees that the divide
by zero defect is deterministically reproduced if (i) the pro-
gram state that is necessary to reproduce the bug is reached
in Thread 1 (i.e., y == 0) and (ii) the CP control structure
in Thread 2 is waiting for notification of this program state

Figure 2. An Overview of How CP Controls a Program’s
Execution to Reproduce a Divide By Zero Exception.

from Thread 1. 1 Under such conditions, CP will always re-
produce the bug.

2. The CP Control Structure
In this section we illustrate how CP is programmed to re-
produce the divide by zero bug shown in Figures 1 and 2.
We first present the CP control structure, including a brief
discussion of its compound statements and parameters, and
then show the code that is added to the original program. In
order to limit the initial example’s complexity, our first CP
solution does not manage thread interference. In Section 3,
we present a second CP solution for a modified divide by
zero bug that manages an unlimited amount of thread inter-
ference.

cp(state, priority, control, retryTime,

retryIfFalse, predicate)

{

pre { /* serialized multi-ops */ }

if_satisfied { /* serialized multi-ops */ }

else { /* serialized multi-ops */ }

post { /* unserialized multi-ops */ }

}

Figure 3. The Concurrent Predicate Control Structure.

The CP control structure syntax is shown in Figure 3. The
pre, if_satisfied, and else compound statements are
serialized with respect to all concurrently executing CPs. For
example, if thread, T1 is executing the pre portion of a CP,
no other threads may execute either the pre, if_satisfied
or else portions of their CP until T1 completes its execution
of pre. This behavior enables self stability, as described in
Section 3.2. The compound statements that are part of CP’s
control structure are as follows.
1 This assumes no outside interference, as described in Section 3.2.

• pre: a compound statement that is executed when a CP’s
control structure is entered. pre is executed before any of
CP’s control structure parameters are evaluated, and be-
fore any of the other compound statements are executed.

• if_satisfied: a compound statement that is executed
once it is approved by the CP system.

• else: a compound statement that is executed only if the
CP does not execute its if_satisfied.

• post: a compound statement that is executed before the
CP control structure is exited. This compound statement
executes immediately after if_satisfied or else.

For completeness, the following list includes the defini-
tions of each of CP’s parameters. However, the only param-
eters that are essential to understand the examples presented
in this paper are: state, control, and predicate, the first,
third, and final parameter of CP.

• state: an instance of ConcurrentPredicateState,
highlighted as CP state in Figure 4, that must be created
for each multithreaded bug and shared across the CPs
that are necessary to reproduce the bug. state has the
following fields:

N: the programmer supplied number of CPs that, along
with the to_satisfy field, is used to determine if
verify(), shown in Algorithm 1, returns true.

to_satisfy: the programmer supplied conditional
operator (e.g., ==, <, >, !=) that is applied to N and
used in verify(), shown in Algorithm 1.

satisfied: a set of thread IDs which have a pred-
icate held as true. This is internally updated by the
CP system as shown in Algorithm 1.

• priority: a non-unique priority of the CP, where 0 is the
highest priority. When multiple CPs’s if_satisfied

are to be executed, the CP with the highest priority goes
first. In the event of a tie, there is no ordering guarantee.

• control: a boolean that, if true, once predicate and
verify() are also found to be true, if_satisfied
will execute. If control is false, and the value of
predicate remains true, the CP will wait until retryTime
has been exhausted and then execute else.

• retryTime: the minimum number of milliseconds a
CP will be retried before exiting when predicate and
verify() remain false. CPs are guaranteed to wait at
least as long as retryTime if predicate and verify()
have not yet returned true, but they may wait longer.

• retryIfFalse: a boolean that, if true, will cyclically
re-evaluate its predicate even when predicate is
false. Otherwise, the CP will exit its control structure
as soon as predicate is found to be false.

• predicate: user-supplied condition that must return
true for the CP’s if_satisfied to be executed.

When a CP’s verify(), shown in Algorithm 1, and its
predicate and control are true, along with it having the
highest priority amongst active CPs, it will be allowed
to execute its if_satisfied operations. The CPs that are
sufficient to reproduce the divide by zero bug are shown
in Figure 4. The programmer first creates a shared instance
of ConcurrentPredicateState and then adds CP control
structures (highlighted in Figure 4) to control the forward
progress of the program based on its current state (i.e., y ==
0).

Algorithm 1 Verify
1: procedure VERIFY(st)
2: S ← st .satisfied .size
3: N ← st .N
4: if st .to satisfy ≡ no predicates ∧ S ≡ 0 then return true
5: else if st .to satisfy ≡ less than N ∧ S < N then return true
6: else if st .to satisfy ≡ greater than N ∧ S > N then return

true
7: else if st .to satisfy ≡ equal to N ∧ S ≡ N then return true
8: else if st .to satisfy ≡ active predicates ∧ S ≡

st .in predicates then return true
9: end if

return false
10: end procedure

Figure 4. An Overview of the CP Control Structures
Used to Reproduce the Divide by Zero Exception.

3. Design and Algorithm
CP has three variants: general (cp()), serial (cp_serial()),
and serial(id) (cp_serial(id)). The three CP variants are
meant to be used together to reproduce complex heisenbugs
that cannot (easily) be reproduced by using only one.

For our experiments, the most commonly used type, refer-
enced in Figure 4, is the general CP (cp). Its high-level algo-
rithm is described in Algorithm 2. We say that the general CP
is fully concurrent because an unbounded number of threads
can be concurrently active in it. Both the serial and serial(id)
versions of CP do not exhibit this behavior, which is the key
difference between them and the general CP. In particular,
the serial CP limits its concurrent execution to one thread at
a time, while serial(id) limits its concurrent execution to one
thread per unique id. By constraining the amount of possible
concurrency, the serial CPs aim to reduce a bug to its most

Algorithm 2 The CP Run-Time Algorithm

Require: state is shared memory for all threads.
Require: threadId is the ID of the active thread.

1: procedure CP(state, priority, control , retryTime, retryIfFalse,
predicate)

2: Lock state.mutex
3: executeIfSatisfied ← false
4: Execute pre-execution operations
5: Insert threadId into state.in predicate
6: if control then
7: Insert (threadId , priority) into state.priorities
8: end if
9: Unlock state.mutex

10: while retryTime > 0 do
11: beginTime ← Clock()
12: Lock state.mutex
13: if predicate then
14: Insert theadId into state.satisfied
15: else
16: Remove theadId from state.satisfied
17: end if
18: if verify(state) ∧ predicate then
19: executeIfSatisfied ← true
20: if ¬control then
21: No-Op
22: else if control ∧ priority ≡ state.top priority then
23: Remove theadId from state.satisfied
24: Remove theadId from state.in predicates
25: Remove (theadId , priority) from state.priorities
26: Execute if_satisfied operations
27: Unlock state.mutex
28: Break
29: end if
30: end if
31: Unlock state.mutex
32: if ¬retryIfFalse then
33: Break
34: end if
35: SLEEP(1)
36: endTime ← Clock()
37: retryTime ← retryTime − (endTime − beginTime)
38: end while
39: Lock state.mutex
40: if ¬executeIfSatisfied then
41: Execute else operations
42: end if
43: Remove theadId from state.satisfied
44: Remove theadId from state.in predicates
45: Remove (theadId , priority) from state.priorities
46: Unlock state.mutex
47: Execute post-execution operations
48: end procedure

basic components and eliminate additional and non-essential
thread contention. Due to space limitations, we only include
the algorithmic details for the general CP.

3.1 Managing Non-Essential Thread Interference
As discussed in Section 1, a feature that sets our CP design
apart from prior works is that it can manage non-essential
thread interference by limiting concurrency for certain re-
gions of code that would otherwise interfere with the sys-
tem’s ability to reproduce a bug. This is illustrated in Fig-

ure 5, which revisits the divide by zero bug presented in Fig-
ure 1 of Section 1, where Thread 1 is replaced by Threads
1 ... N-1. Without some mechanism to prevent non-essential
thread interference, this minor modification to the problem
results in a decrease of the probability of reproducing the
bug. In general, the greater N, the less likely the bug will
occur due to thread interference.

CP handles this interference by restricting each of the 1 ...
N-1 threads to serial execution by using the cp_serial con-
trol structure. The operations that might interfere amongst
the threads are placed within the pre and post sections of
the cp_serial control structure, thereby eliminating their
potential for concurrent interference. Thread N’s code is
managed by the fully concurrent cp, because (i) its code
can only be accessed by one thread and (ii) even if multi-
ple threads could execute the code, because of its read-only
nature, such concurrent executions would not interfere with
one another. Finally, because cp and cp_serial can execute
concurrently, the bug is still reproducible once the necessary
predicates are satisfied.

12 Intel Confidential – Internal Only

Binary
Compilation
Technology

Threads 1...N-1

cp_serial(s, 0, false, 1000, false,

 y == 0)

{

 pre { lock(); y=calc(); unlock(); }

 post

 {

 lock();

 if (y == 0) y = 1;

 unlock();

 }

}

Thread N

cp(s, 0, true, 1000,

 true, y == 0)

{

 if_satisfied

 {

 lock();

 a = x / y;

 unlock();

 }

 else { /* same */ }

}

ConcurrentPredicateState s;

s.N = 2;

s.to_satisfy = equal_to_N;

Figure 5. Using CP to Reproduce the Divide by Zero
Exception While Eliminating Thread Interference.

3.2 Self Stability
A key characteristic of our CP design is in the self stability
it guarantees for the if_satisfied or else sequence of
operations that execute after its predicate and verify()

conditional checks have returned true or false. The lifted
notion of self stability that we use for CP originates from
Dinsdale-Young et al. [2]. Informally, Dinsdale-Young et al.
define self stability as a property of an execution that ensures
that once a predicate condition has, or has not, been satisfied
it remains in that state for operations that are dependent upon
it. In essence, the predicate state and their associated post-
operations are free from outside interference until the post-
operations have completed their execution.

Dinsdale-Young et al. use self stability in a theoretical
setting for their formalism of a disjoint logic. Our use of self
stability is notably different, although the notion is the same.
We use it to guarantee that predicates that have captured a
precise program state are preserved until the post-operations

(i.e, if_satisfied and else) that rely on such predicates
are executed without predicate perturbation; that is, without
the predicates’ evaluation changing between the time they
were initially checked and the time the final if_satisfied
or else operation of the CP control structure is executed.

By ensuring this limited form of self stability, concur-
rency bugs can be deterministically reproduced, within cer-
tain limitations, once their associated predicates have been
satisfied. Without self stability, approaches like CP can still
reproduce concurrency bugs that are largely state-dependent,
but cases will arise when the state that is required to repro-
duce a bug is captured and lost again before the operations
that reveal the effect of the bug have been executed.

CP’s self stability is achieved in the following manner.
Assuming a CP’s control is true, once its predicate and
verify() have been satisfied, or they have not been satis-
fied and the CP has timed out, the CP is given permission
to execute its if_satisfied or else operations, respec-
tively. During this time, other CPs that are active, that is, cur-
rently being executed, are prevented from making forward
progress. This prevents the active CPs from changing the
predicate state in which the original CP’s if_satisfied
or else operations are based.

This guarantee, however, does not safeguard a CP’s exe-
cution from threads whose executions are outside the lexical
scope of a CP control structure. The programmer can prevent
these threads from interfering by adding CPs to all program
locations that might mutate the shared data accessed within
a given predicate. When following this method, we have not
encountered any self stability issues that prevent a concur-
rency bug from being reproduced once its predicates have
been satisfied.

4. Experience with CP
Due to space limitations, we only provide a brief synopsis of
the bugs we reproduced and fixed with CP.

4.1 CP Test Suite
The CP test suite currently consists of 23 concurrency bugs
that range from violations as simple as accessing unpro-
tected shared variables in two or more threads to complex
tests such as multiple threads dynamically acquiring a range
of mutexes in a random order that have a low probability of
causing a deadlock. CP is capable of reproducing all concur-
rency violations in our test suite, resulting in a 5× to over
a 1000× improvement in the likelihood of reproducing the
targeted bug when compared to the original program.

4.2 RADBench
We have successfully applied CP to three of the ten bugs
listed in the RADBench concurrency violation test suite:
SpiderMonkey-1, NSPR-2, and NSPR-3 [12]. 2 In addition

2 Thus far, we have been 100% successful applying CP to RADBench. We
plan to apply CP to the remaining 7 bugs, soon.

to reproducing these concurrency violations, we have also
identified new ways to reproduce NSPR-3, which were not
included in the original description of the bug. We believe
this demonstrates that CP reduces the complexity of bug
manifestation such that, once the CPs that are sufficient to
reproduce a bug are found, a programmer can more easily
understand the root cause of a bug. This enables him or
her to reason about other root causes that may have been
overlooked and, perhaps, not covered with a particular bug
fix.

4.3 TBoost.STM
TBoost.STM is a C++ software transactional memory (STM)
[10, 23] library that provides a simple C++ programming in-
terface for transactional memory [6, 7, 11]. TBoost.STM is
open source and freely available on the web. We have used
CP to reproduce and fix three complex concurrency vio-
lations in TBoost.STM as shown in Figure 6. At the time
we began using CP with TBoost.STM, the three bugs we
describe in Section 4.3.2 were open and their root cause
was unknown. By utilizing the approach described in Sec-
tion 4.3.1, we were able to identify each bug’s root cause and
then provide a fix for each of them. TBoost.STM’s source
code has been updated to include all of our fixes.

4.3.1 Using CP
Parallel programs, like any other class of programs, have de-
fects that are generally found by observing unwanted effects.
Therefore, when we first began investigating a concurrency
violation, we generally placed a CP at the location of the
bug’s effect, what we refer to as the effect CP, as is done
in Thread 2 of the divide by zero example of Figure 4 be-
cause these locations are generally known when the bug is
first observed. To identify the root cause of a concurrency
violation, which is generally not known when the bug is ob-
served, we used a divide-and-conquer-like approach. Identi-
fying the root cause of a bug can be challenging, however,
we found that the following techniques generally reduced
such difficulty.

First, root causes of concurrency violations are always
writes to shared memory. Therefore, read operations should
not be considered as root cause candidates. Next, because we
generally made no attempt to find the exact location of the
root cause on our initial CP placement, we attempted to find
the root cause CP, the CP placed after a thread performs the
root cause behavior (Thread 1 in Figure 4), by placing CPs
at the locations that seemed the most unlikely to simulta-
neously trigger with the effect CP. This approach generally
reinforced our understanding of the program and helped us
quickly eliminate cases that seemed obviously correct. In the
case of TBoost.STM-2, this approach immediately led us to
the root cause, because our assumptions were incorrect.

Last, and perhaps most importantly, our experience with
CP demonstrated that no matter how complex the bug, when
the CPs for a given bug were placed at the correct locations,

ti
m

e

T1 T2 T3

denied CM
request

call to CM
abort request

dtor w/ tx on aborted list

no commit time

no commit time

(a) TBoost.STM-1: Order Violation.

ti
m

e

T1 T2

call
make_isolated()

no call to
permission_to_abort()

call
make_isolated()

Requires
iAggr CM
strategy

(b) TBoost.STM-2: Livelock.

ti
m

e

T1 T2

call
commit_tx()

write step 1:
swap write object

pointer

call
def_write()

TBoost.STM
data race on
TX dirty bit

write step 2:
clear write object

dirty bit

check ownership of
object in T1’s step 1.

(c) TBoost.STM-3: Data Race.

Figure 6. Three TBoost.STM Concurrency Violations Reproduced and Fixed with CP.

they triggered almost immediately. That meant that if the
CPs were not placed at the correct locations, only a few
executions were generally needed to verify this. Trusting the
CP system when CPs did not trigger, indicating our guesses
were incorrect, was perhaps the most challenging part of our
process. This is because our programmer’s intuition did not
want us to discard some of our root cause guesses, as we
strongly believed we had found the root cause of the bug.

4.3.2 TBoost.STM Bugs
TBoost.STM-1 is an order violation that leads to a program
crash and requires both a specific schedule and state of three
transactions, T1, T2, and T3, each of which concurrently exe-
cute across three threads. T1 requests to abort conflicting in-
flight transactions and is denied permission, leaving a shared
container populated with the unaborted transactions, the crit-
ical program state information that causes the crash. T2, a
transaction that must be referenced on the shared container
T1 accessed, is then aborted resulting in a dangling pointer in
the shared container. T3 then requests to abort its conflicting
transactions, which contains a deallocated reference to T2,
thereby resulting in a program crash. Concurrency violation
tools that only perturb schedules are unlikely to reproduce
TBoost.STM-1 because the specific order of the events that
lead to the bug occur with high frequency. It is only when
these events are coupled with the precise state, as described
above, that the program crash occurs.

TBoost.STM-2 is a livelock that is caused when two
transactions simultaneously request permission to become
irrevocable, that is, not abortable [5, 26]. Before a transac-
tion can be made irrevocable, it must abort all active transac-
tions. This bug was caused by an inverted conditional check
inside the TBoost.STM’s contention manager (CM) [9, 24],
which grants or denies a transaction permission to abort ac-
tive transactions. The bug would only occur if the iAggr CM
was used [8], because iAggr always grants a transaction per-
mission to abort revocable transactions. By using the iAggr
CM strategy and having the inverted conditional check, both
transactions are continually denied permission to abort each
other and end up spinning in a while loop requesting per-

mission indefinitely. As before, only capturing the specific
thread orderings would not cause TBoost.STM-2’s liveness
condition because the iAggr CM must be active. This is han-
dled with CP by including a check for the CM within the
predicate for one of the two necessary CPs.

TBoost.STM-3 is a value-based data race that results in
an inconsistent view of memory and occurs with exception-
ally low frequency (≈ 1/10, 000, 000 transactions). The bug
occurs when one transaction, T1, is in the process of updat-
ing its written data to global memory, while another trans-
action, T2, concurrently checks if the same shared memory
location is within its write set. The bug rarely occurs because
T2 must access the same memory location that is being up-
dated by T1 precisely between T1’s pointer std::swap()
and its subsequent one byte assignment and T2 must not have
already written to the location, so it will not be within its
write set, thereby returning an incorrect result on its check
for ownership. As with the other two TBoost.STM bugs,
TBoost.STM-3 cannot be reproduced by simply perturbing
the threads’ schedules. Instead, it requires that T1 and T2 ac-
cess the same shared memory location and that T2’s write set
does not contain such a memory element. Once the CPs were
in place to reproduce this bug, TBoost.STM-3 occurred with
a frequency of ≈ 1/100 transactions, a five order of magni-
tude improvement (i.e., a 10, 000× increase in likelihood),
over the original execution.

5. Conclusion
In this paper, we presented concurrent predicate (CP), a pro-
gramming control structure that facilitates the reproduction
of concurrency violations by capturing the program state
and producing the specific schedule required to reproduce
bugs. We discussed how CP manages interference from other
threads and provides an important guarantee, called self sta-
bility, that ensures the conditions required for bugs are not
perturbed for a specific temporal bound. We used bugs from
a test suite of 23 programs, applications from RADBench,
and TBoost.STM, to show how CP diagnosed and repro-
duced bugs that could not otherwise be reproduced using
similar techniques.

References
[1] L. A. Clarke. A system to generate test data and symbolically

execute programs. IEEE Trans. Softw. Eng., 2:215–222, May
1976.

[2] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson,
and V. Vafeiadis. Concurrent abstract predicates. In Proceed-
ings of the 24th European conference on Object-oriented pro-
gramming, ECOOP’10, pages 504–528, Berlin, Heidelberg,
2010. Springer-Verlag.

[3] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In Proceedings of
the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–16, Berkeley, CA, USA,
2010. USENIX Association.

[4] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed au-
tomated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM.

[5] J. E. Gottschlich and J. Chung. Optimizing the concurrent
execution of locks and transactions. In Proceedings of the
24th International Workshop on Languages and Compilers for
Parallel Computing (LCPC), September 2011.

[6] J. E. Gottschlich, J. G. Siek, P. J. Rogers, and M. Vachharajani.
Toward simplified parallel support in C++. In Proceedings
of the Fourth International Conference on Boost Libraries
(BoostCon). May 2009.

[7] J. E. Gottschlich, J. G. Siek, M. Vachharajani, D. Y. Win-
kler, and D. A. Connors. An efficient lock-aware transactional
memory implementation. In Proceedings of the Fourth Inter-
national ACM Workshop on ICOOOLPS. In conjunction with
ECOOP. July 2009.

[8] J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An ef-
ficient software transactional memory using commit-time in-
validation. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO), April 2010.

[9] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory
of transactional contention managers. In M. K. Aguilera and
J. Aspnes, editors, PODC, pages 258–264. ACM, 2005.

[10] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for dynamic-sized
data structures. In Proceedings of the symposium on princi-
ples of distributed computing, pages 92–101, New York, NY,
USA, 2003. ACM.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceed-
ings of the International Symposium on Computer Architec-
ture. May 1993.

[12] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. Radbench: a
concurrency bug benchmark suite. In Proceedings of the 3rd
USENIX conference on Hot topic in parallelism, HotPar’11,
pages 2–2, Berkeley, CA, USA, 2011. USENIX Association.

[13] P. Joshi and K. Sen. Predictive typestate checking of mul-
tithreaded java programs. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software

Engineering, ASE ’08, pages 288–296, Washington, DC,
USA, 2008. IEEE Computer Society.

[14] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:
a software-hardware interface for practical deterministic mul-
tiprocessor replay. In Proceedings of the 14th international
conference on Architectural support for programming lan-
guages and operating systems, ASPLOS ’09, pages 73–84,
New York, NY, USA, 2009. ACM.

[15] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic
testing tool for concurrent software, 2007.

[16] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent
programs. In OSDI, pages 267–280, 2008.

[17] C. S. Park and K. Sen. Concurrent breakpoints. PPoPP ’12,
New York, NY, USA, 2012.

[18] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: a framework for deterministic replay and repro-
ducible analysis of parallel programs. In Proceedings of the
8th annual IEEE/ACM international symposium on Code gen-
eration and optimization, CGO ’10, pages 2–11, New York,
NY, USA, 2010. ACM.

[19] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai,
J. Gottschlich, J. Ha, and Y. Wu. Coreracer: A practical mem-
ory race recorder for multcore x86 processors. In Proceed-
ings of the 44th International Symposium on Microarchitec-
ture (MICRO), December 2011.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15:391–411, November
1997.

[21] D. Schwartz-Narbonne, F. Liu, T. Pondicherry, D. August, and
S. Malik. Parallel assertions for debugging parallel programs.
In Formal Methods and Models for Codesign (MEMOCODE),
2011 9th IEEE/ACM International Conference on, pages 181
–190, july 2011.

[22] K. Sen. Effective random testing of concurrent programs. In
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ASE ’07,
pages 323–332, New York, NY, USA, 2007. ACM.

[23] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the Principles of Distributed Computing. Aug
1995.

[24] M. F. Spear, L. Dalessandro, V. Marathe, and M. L. Scott. A
comprehensive strategy for contention management in soft-
ware transactional memory. In PPoPP, Feb. 2009.

[25] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking
programs. In Proceedings of the 15th IEEE international con-
ference on Automated software engineering, ASE ’00, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[26] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable trans-
actions and their applications. In SPAA, 2008.

	Introduction
	Non-Essential Thread Interference and Timing Guarantees

	The CP Control Structure
	Design and Algorithm
	Managing Non-Essential Thread Interference
	Self Stability

	Experience with CP
	CP Test Suite
	RADBench
	TBoost.STM
	Using CP
	TBoost.STM Bugs

	Conclusion

