

SMT QoS: Hardware Prototyping of Thread-level
Performance Differentiation Mechanisms

Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt Merten and Martin Dixon
Intel Corporation, Hillsboro Oregon

Contact Author: Andrew.J.Herdrich@Intel.com

ABSTRACT
Absolute throughput often fails to scale linearly with core count
in chip multiprocessors (CMPs) due to contention in shared
platform resources, including cache, memory bandwidth and
busses. This nonlinear scaling is exacerbated by the addition of
simultaneous multithreading (SMT) to CMPs by introducing
resource contention at the pipeline resource level, and increasing
the number of active threads in the system which further increases
contention in shared resources, leading to a loss in performance
stability and fairness.

This work introduces and evaluates a new form of source-based
execution rate control at the processor pipeline level, based on
instruction fetch, instruction queue and reservation station
partitioning between SMT threads. The efficacy of these controls
is demonstrated through experiments with SPEC workloads on a
modified test version of an Intel® codename Nehalem
microprocessor. This new SMT rate control is presented as a
critical building block to restoring the fairness and determinism in
performance once inherent in simpler uniprocessors utilizing
time-slicing schedulers, and is proposed for inclusion in future
microprocessors supporting SMT.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Architectures;
C.4 [Computer Systems Organization]: Performance of Systems –
Measurement techniques, Performance attributes; B.8.0
[Hardware]: Performance and Reliability – general.

General Terms
Management, Measurement, Performance, Design.

Keywords
Intel Nehalem (NHM), Simultaneous Multithreading (SMT),
Chip-Multiprocessors (CMP), Performance, Power, Quality-of-
Service (QoS), Cache, Memory, Rate Control, P-States, Q-States,
Performance Differentiation, ACPI.

1. INTRODUCTION
In this paper we examine and directly address shared pipeline
resource contention in SMT platforms through the use of a new
form of rate control mechanism at the microarchitectural pipeline
level between SMT threads on a processor core. The first
component of this rate control acts by re-steering the frontend
using both biased instruction fetching and decoding. The second
mechanism acts through the redistribution of reservation station
entries between threads, which effectively changes the size of the
out-of-order window that a given thread executes within. When
combined with ACPI T-States (commonly used for thermal

runaway control) in a novel series of heavily multithreaded tests
performance gains of nearly 20% are realized, as demonstrated in
Section 4.3. We further show that in the case of a heavily loaded
system that this technique can be extended to increase total
system throughput.

The remaining sections are organized as follows: Section 2 details
the need for QoS technologies at a thread level with a brief
overview of the thread contention problem; Section 3 gives an
overview of the proposed new SMT rate control mechanisms;
Section 4 provides a detailed analysis of the effectiveness of the
proposed SMT QoS mechanisms, including highly threaded cases.

2. THE NEED FOR QoS TECHNOLOGIES
With the introduction and proliferation of CMPs in the last
decade, resources that were once dedicated to a particular
hardware thread such as caches and interconnects are now shared,
and with the addition of SMT now internal microprocessor
resources such as reservation stations, ROB entries and execution
units are shared as well. Traditional OS-level time-slicing thread
prioritization methods do not suffice in light of these new
architectures since a scheduler will simply observe that cores are
available and schedule threads on them whether thread contention
is an issue or not.

2.1 CMP and SMT Scaling
One classic method to illustrate the shared resource contention
inherent in a system is to run an increasing number of identical
workload threads and measure total system throughput as a
function of the number of threads [5, 11]. Ideally throughput
scales linearly, and in the case of compute-intense workloads that
require little cache space such as Eon from the SPEC CPU2000
suite (Figure 1) performance scales as expected on the quad-core
test processor at 3.2GHz with 2-way SMT.

A decrease in slope is evident moving from four to five threads
and beyond as SMT contention is introduced, as is a slight
decrease at eight threads as OS threads are forced to share
compute time with the eighth instance of the workload and multi-
level cache contention increases.

In the case of highly memory-intense applications such as
CPU2000 Swim [10] performance trails off after just a few copies
of the workload are instantiated as last-level cache space and
memory bandwidth become the primary performance-limiting
factors (locking and synchronization issues are nonexistent since
the workload threads are independent). Some cache-intense
applications such as CPU2000 Art (Figure 1) decrease in system
throughput as more threads are added since this application
becomes highly memory-bandwidth sensitive as the cache fills
quickly to its maximum occupancy. These simple test cases

illustrate that sharing of platform resources on a CMP platform
can artificially constrain throughput, a point that will become
even more important as core counts continue to scale upward.

Figure 1. System throughput for three SPEC CPU2000
workloads vs. active thread count.

Total system throughput is only one aspect of the platform
behavior, however—the primary concern of this work is the
individual performance of a workload running on a system with
multiple workloads executing simultaneously and with SMT
contention.

Though SMT implementations in industry have been shown to
potentially improve the throughput of a system by 30% or more
[1,2] and provide compelling power/performance benefits [2],
they currently lack mechanisms to provide performance
differentiation between threads.

SMT Contention: Effect of adding a
thread the SMT core + introducing L2 contention

1

1.2

1.4

1.6

1.8

2

2.2

e
q

u
ak

e

s
w

im

vp
r

lu
cas

b
zip

2

g
cc

art

eo
n

m
cf

g
zip

High-Priority Application (CPU2000 Subset)

H
P

 A
p

p
 S

lo
w

d
o

w
n

 (
F

a
c

to
r)

LP Art
LP Bzip2
LP Eon

LP Equake
LP GCC
LP Gzip
LP Lucas
LP MCF

LP Swim
LP VPR

Geomean
1.43x

Figure 2. Impact of shared platform resources (Pairwise SMT
contention, No QoS, triple-channel DDR3-1067)

This point is illustrated in Figure 2, showing the slowdown of a
high-priority (HP) application due to SMT contention. In this case
two applications share a physical core (bound to OS logical
CPUs) but the system is otherwise idle. The workloads selected in
this example are all from a subset of the SPEC CPU2000 suite,
which despite its age includes several applications that still
manage to saturate the memory bandwidth of a modern three-
channel DDR3 system [6]. The decision of which applications to
choose when subsetting the SPEC suite is based on the work
presented in [8,9,10] to provide a mix of compute, memory and
cache-sensitive apps.

If an OS scheduler places a high priority workload on OS CPU1
(core 1, thread 0) and a different low priority workload on OS
CPU5 (core1, thread 1), SMT and L1 and L2 cache contention are
introduced. In situations where an OS scheduler creates such a
condition as the non-ideal pairwise Equake-Swim case (resulting
in the 2.14x Equake slowdown in Figure 2) it becomes very
desirable to provide priority enforcement mechanisms to control
the rate of each executing thread both dynamically and
deterministically; the new SMT rate control mechanisms
presented in later sections are key to reaching this goal.

2.2 Shared Platform Resources
The slowdown discussed in previous sections can be attributed
entirely to shared resources within the platform. In the case of
Figure 2 only one physical core is active so the two active threads
share memory bandwidth, cache space at all levels and internal
processor busses and pipeline resources such as reservation
stations and functional units. The thread contention discussed
herein is common across many other similar CMP architectures
and is not limited to the current CPU architecture under test.

Table 1. Details of the microarchitecture and the system
under test.

3. QoS METHODS AS A POTENTIAL
SOLUTION
One method to restore a deterministic performance differentiation
between SMT threads is to make use of Quality-of-Service (QoS)
methods to provide mechanisms for the hardware to control the
execution rate of a given SMT hardware thread relative to another
on the same core. Thus, an operating system scheduler or other
entity with system-level performance information could
redistribute pipeline resources from a lower priority application to
a higher-priority application, providing the fundamental
functionality required to restore deterministic performance
differentiation between threads on SMT-enabled CMP platforms.

System Throughput vs. Concurrent Threads
(4C/8T Intel Nehalem, SPEC CPU2000 Workloads)

4.704.714.77

4.84

4.53
4.22

3.99

2.92

1.99

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 3 4 5 6 7 8 12 16

Number of Workload Instances (Active Threads)

N
o

rm
a

liz
e

d
 S

y
s

te
m

 IP
C

 (
T

h
ro

u
g

h
p

u
t)

art
eon
swim

Dedicated Cores

SMT Contention

OS Scheduler
Contention

3.1 Resource Control vs. Rate Control
Previous attempts to control thread contention and restore
guarantees of execution speed and QoS broadly fall into two
categories: (1) those focusing on controlling resource partitioning
between threads, such as cache space, and (2) those focusing on
controlling execution speed of individual threads to limit resource
request generation and thus thread contention (rate control).
Previous work has largely concluded that resource control
requires careful control of all resource levels in the hierarchy (L2,
L3, etc.) to prevent priority inversion, and rate control is generally
preferable [6]. In this paper a new form of rate control is
presented, which has the significant advantage that it provides
variable balance between threads within an SMT core, potentially
allowing a scheduler to make intelligent biased resource decisions
and enforce them.

3.2 New SMT Rate Control Mechanisms
Several new hardware SMT rate control mechanisms are
introduced in this paper, some of which have been studied in
simulation in the past. Previous research has relied heavily on
simulators such as SMTSIM and the use of Instruction Fetch and
Instruction Queue throttling to control the redistribution of
pipeline resources between threads, and many of these papers
have then gone on to study various instruction fetch or resource
distribution algorithms to provide performance differentiation
such as IFETCH [5], or they extend fetch policies with cache
profiling and prediction (such as DCache Warn, [12]). The type of
Instruction Fetch (IF) and Instruction Queue (IQ) throttling
provided on the Intel test system is similar to that used in past
simulation-based work and is also somewhat similar to the type
implemented in the IBM POWER5 Architecture [3,4], but the
Reservation-Station (RS) based rate throttling approach advocated
in this paper and has only been briefly studied previously (in
simulated environments such as in [7, 14, 15]) and not in
hardware. This feature is not commonly available on Nehalem-
based products, and is only present on specialized test processors.
To our knowledge the RS-based throttling approach has never
been tested on real hardware before. The following sections
present an overview of the rate control mechanisms, followed by
a proposed unified standards-based architecture and supporting
experimental results.

3.2.1 Instruction Fetch Throttling
Modern instruction fetch (IF) unit implementations such as that
used in the Intel frontend (Figure 3) monitor threads and fetch
instructions for the next ready thread, avoiding fetching
instructions for a thread which is stalled waiting on long-latency
memory requests or slow pipeline execution units. Though
efficient, this method provides no guarantee of the number of
instructions fetched for a particular thread, and thus no notion of
thread priorities.

The instruction fetch algorithm described above can be
augmented to enable QoS priority levels by simply weighting the
unit to fetch favoring one thread over another with a
programmable N:M ratio, still favoring a ready thread over a
stalled one. The Nehalem IF unit includes such a feature, which
allows programmable ratios with 7 levels of granularity, from 1:7
to 7:1 in fractional 0.125 linear increments (unlike the exponential
knobs provided in the POWER5 [3]). Note that the middle state,

1:1, is the default state of the processor as it boots. Henceforth for
simplicity we denote the ratios as fractions expanded in decimal
form, such as 0.125 to define a ratio of 1/8.

A simplified view of the pipeline is shown in Figure 3 (based on
[13]) to illustrate how the instruction fetch (IF) and other QoS
mechanisms are implemented.

Figure 3. Basic pipeline structure, including the functional
units in which Instruction Fetch (IF), Instruction Queue (IQ)

and Reservation Station (RS) SMT QoS are implemented.
(Adapted from [13])

3.2.2 Instruction Queue Throttling
Another useful place to implement SMT QoS rate control
mechanisms is in the Instruction Queue (IQ), where x86
instructions wait to be decoded into the internal format used
within modern x86 processors. The location of the IQ unit in the
pipeline is shown in Figure3. The specific implementation simply
favors picking instructions out of the queue for one thread or
another in a programmable M:N ratio in precisely the same way
as the previously discussed IF throttling mechanism. Since IF and
IQ throttling are most effective when used together, generally we
combined them and discuss their additive impact together.

3.2.3 Reservation Station Partitioning
One of the most critical microarchitectural pipeline resources are
the Reservation Stations (RS), the decoupled storage array used to
hold operands just before issuing them to the execution units. The
number of reservation stations allocated to a given thread plays a
large role in determining its effective instruction window, which
directly relates to how much out-of-order benefit a thread can
achieve. Some threads will also stall in the RS if they issue too
many concurrent memory requests, which is one of the most
compelling benefits of QoS partitioning of reservation stations.

In the case of the test processor each of the 36 reservation stations
can either be assigned to Thread0, Thread1, or marked as shared.
A set of mask registers controls the allocation, with a granularity
of two RS.

Note that in later plots a notation of “X-Y-Z” is adopted to denote
the number of reservation stations devoted to Thread0 (X),
Thread1 (Y) or marked as shared (Z). The default allocation case
as the machine boots guarantees 8 entries for Thread0 and 28
shared entries, denoted as 8-0-28 in this abbreviated notation.

4. SMT QoS EVALUATION
An evaluation of the instruction fetch (IF), instruction queue (IQ)
and reservation station (RS) SMT QoS mechanisms provided in
the test processor follows. The benchmark applications selected
are from the SPEC CPU2000 suite and were run entirely to
completion. Variation between runs is low—typically less than
3%. The next section details combined IF and IQ QoS results. An
examination of RS QoS follows, then all three QoS mechanisms
are combined additively.

4.1 Combined Instruction Fetch and
Instruction Queue Results
Combining IF and IQ QoS into a single mechanism where settings
for both are moved in lockstep re-steers the entire front-end;
individual IF and IQ sensitivity studies are omitted in the interest
of brevity. As shown in Figure 3, it is possible to realize a 20%
performance gain in Eon while reducing the performance of the
low-priority thread by roughly 40% through the use of IF/IQ SMT
QoS.

Figure 4. CPU2000 Eon, a compute-bound workload, shows
moderate sensitivity to combined IF and IQ SMT QoS.

Note that memory-intense Swim (Figure 5) shows little
sensitivity to either mechanism since the front-end is still
sufficiently wide (4 or more instructions nearly all the way from
fetch to the execution engines) that even throttling heavily so that
it only receives 1/8 bias (such that it only receives an instruction
in the decode stage every other cycle) is not sufficient to stop it
from clogging the memory subsystem and L2 cache.

Figure 5. CPU2000 Swim shows little sensitivity to combined
IF/IQ SMT QoS. (Note: Fine axis scale)

Examining combined IF and IQ results with two threads of a more
common workload (GCC) in SMT contention yields similar
results to Eon, where a performance gain of 15% is possible for
the high-priority thread, while the low-priority thread suffers a
20% performance loss.

4.2 Reservation Station Scaling
As the system boots, a total of 8 RS entries are reserved for
thread0 and 28 are shared (denoted 8-0-28 using the notation
defined in Section 3.2.3).

Slowdown vs. Reservation Stations alloc.
to each thread :: EON/EON :: IF/IQ Default
Norm'd to each workload running alone

4 6 8 10 12
16

30 32
3636

32
28 26 24

20
16

12 10 8
4

0

28262420

0

30

6

0

0.5

1

1.5

2

2.5

3

3.5

4

0
-3

6
-0

4
-3

2
-0

6
-3

0
-0

8
-2

8
-0

1
0

-2
6

-0

1
2

-2
4

-0

1
6

-2
0

-0

N
O

 Q
o

S

2
0

-1
6

-0

2
4

-1
2

-0

2
6

-1
0

-0

2
8

-8
-0

3
0

-6
-0

3
2

-4
-0

3
6

-0
-0

Reservation Stations Partitioned to Thread
(CPU5 - CPU1 - Shared)

S
lo

w
d

o
w

n
 (

fa
c

to
r)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

%
R

S
 A

llo
c. T

o
 T

h
read

RS for CPU1 (4IF/IQ)
RS for CPU5 (4IF/IQ)
Eon Runtime (CPU5)
Eon Runtime (CPU1)

Figure 6. Reservation stations allocated to each Eon thread vs.
runtime. Note that the bars in the background represent the
static RS partitioning count for easy visualization, and the

cases on the end where the workload runs alone represent the
baseline cases.

Shown in the background of each RS result plot are bars which
represent the number of RS partitioned to each thread. In the case
of the right and left-most bars only a single workload is run, so
this represents the runtime of the application alone, which
provides the normalization point for all data in the plots.

SMT Contention: Eon/Eon Combined IF/IQ
Sensitivity vs. CPU1 / CPU5 / System IPC

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.125

0.250

0.375

0.500

0.625

0.750

0.875

Combined IF/IQ Settings (IF=IQ, moved in lockstep)

IP
C

 (
N

o
rm

al
iz

ed
 t

o
 t

h
e

n
o

-Q
o

S
 c

as
e) CPU1_Norm'd_IPC_vs_No_QoS_case

CPU5_Norm'd_IPC_vs_No_QoS_case

SYS_IPC_Norm'd_vs_No_QoS_case

Bias

SMT Contention: Swim/Swim Combined IF/IQ
Sensitivity vs. CPU1 / CPU5 / Sys. IPC

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0.125

0.250

0.375

0.500

0.625

0.750

0.875

Combined IF/IQ Settings (IF=IQ, moved in lockstep)

IP
C

 (
N

o
rm

al
iz

ed
 t

o
 t

h
e

n
o

-Q
o

S
 c

as
e) CPU1_Norm'd_IPC_vs_No_QoS_case

CPU5_Norm'd_IPC_vs_No_QoS_case

SYS_IPC_Norm'd_vs_No_QoS_case

Bias

Examining the results in Figure 6, where two instances of the
CPU2000 workload Eon (a ray-tracing workload) are run together
with SMT contention as more reservation stations are allocated to
the thread on CPU1 its runtime reduces significantly and in a
rather predictable exponential fashion. When only 4 reservation
stations are allocated to Eon it requires over 3x the runtime as
when run alone, and when statically allocated a total of 32 RS
entries it has nearly the same runtime as the case where it runs
alone, despite the background eon instance being present.

4.3 Expanding to 4 Cores and 8 Threads
In the case of Figure 7 four instances of Art contend with four
instances of Swim. Through the use of SMT QoS it is possible to
bias against the Swim instances and redistribute more shared
platform resources to Art, which uses them more efficiently,
leading to a total system throughput gain of up to 1.09x. Note that
in the figure the test cases on the abscissa simply denote all of the
SMT QoS combinations possible, sweeping through RS and IF/IQ
settings, where IF/IQ are moved in lockstep, then the data is
sorted by total system IPC and normalized to the no-QoS (full
contention) case.

In analyzing the settings that produce a net positive system
throughput improvement the average IF/IQ setting is 0.483, with
an average of 20.7 RS allocated to the HP app, 10.3 RS allocated
to the LP app, and 5.0 shared. Though not meaningful by
themselves, these statistics indicate that RS repartitioning is
largely responsible for the cases where a net throughput gain is
observed. For cases that show a negative system throughput
benefit the overarching trend is that these cases allocate more
reservation stations to Swim instead of Art, so in a real scheduler
implementation it would be critical to give more reservation
stations to the application that uses them the most effectively.

CPU1 / CPU5 / System IPC vs. Aggregated IF/IQ/RS
Settings (CPU2000 Art/Swim, 8T SMT Contention)

0.6

0.7

0.8

0.9

1

1.1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Combined IF/IQ/RS Settings (maps to system config)

S
ys

 I
P

C
 (

N
o

rm
'd

 t
o

 t
h

e
n

o
-Q

o
S

 c
as

e)

Art IPC vs. No-QoS Case
Sw im IPC vs. No-QoS Case
System IPC vs. No-QoS Case

Figure 7. Four instances of Art contending with four instances
of Swim with various SMT QoS settings. In cases where we
allocate more reservation stations to Art, system throughput
increases, by up to 9%, while the performance of the high-

priority application improves by nearly 20%.

4.4 Experimental QoS Results Summary
IF and IQ throttling work well when grouped and moved in
lockstep. The usefulness of combined IF/IQ throttling is limited
since memory-intense workloads can still fill memory queues and
starve compute-bound and other workloads. A more generally
applicable (and novel) throttling mechanism is RS partitioning,
which allows a high degree of granularity and affects both
compute and memory-bound workloads in a similar manner.
When combined IF/IQ/RS SMT QoS can be quite powerful, and
can even provide a significant system IPC (throughput) boost
when a system is heavily loaded. The addition of features such as
ROB partitioning could further increase the utility of this feature,
allowing the degree of out-of-order execution of a thread to be
finely controlled. Note that these results vary somewhat from
those presented in [3] by Boneti et. al. due to the substantial
differences in microarchitectural features, layout and
implementation between the Intel Nehalem test chip and the IBM
POWER5.

5. CONCLUSIONS
While the performance of multithreaded applications theoretically
scales linearly with core count, experimentally this is not the case
due to contention within the shared resources of a platform,
including cache space and memory bandwidth. Adding SMT to a
processor, while beneficial in terms of power-to-performance
ratios, can increase the number of active threads on a system,
further exacerbating the shared resource issue. Traditional
solutions such as over-provisioning memory bandwidth and cache
space are insufficient to remedy the problem since mobile and
consumer segments will not tolerate the added cost, die area and
power consumption. This necessitates the introduction of QoS-
inspired solutions, namely instruction fetch, instruction queue and
reservation station based methods, which enable practical thread-
level priorities. Under heavily loaded system conditions an
improvement in system throughput of up to 9% is possible using a
combination of IF/IQ/RS SMT QoS and performance
improvements of over 20% are possible for the highest-priority
threads. The proposed architecture was validated and
demonstrated with experiments on a test version of an Intel
Nehalem microprocessor. Further work remains in improving and
expanding current scheduling algorithms to make use of these
new capabilities and “closing the loop” by providing detailed
performance feedback information to a system or user agent to
consistently improve the quality of SMT QoS enforcement
decisions passed down to the hardware.

6. ACKNOWLEDGMENTS
The authors would like to thank the Intel Oregon CPU
Architecture Team (ORCA) and Nehalem implementation teams,
especially Santhosh Srinath, Morris Marden, John Holm, Glenn
Hinton and Matt Merten (also an author), who conceived of and
implemented the hardware mechanisms, as well as helped provide
test hardware.

7. REFERENCES
[1] Intel Corporation. "First the Tick, Now the Tock: Next

Generation Intel Microarchitecture (Nehalem),"
http://www.intel.com/pressroom/archive/reference/whitepape
r_nehalem.pdf

[2] D. Marr et. al., " Hyper-Threading Technology Architecture
and Microarchitecture," in the Intel Technology Journal, Vol.
6, Issue 1,
http://developer.intel.com/technology/itj/index.htm

[3] C. Boneti, A. Buyuktosunoglu, F. J. Cazorla, C. Cher, R.
Gioiosa, and M. Valero. “Software-Controlled Priority
Characterization of POWER5 Processor”, (ISCA), 2008.

[4] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,
and J. B. Joyner. “POWER5 System Microarchitecture”.
IBM Journal of Research and Development, 2005.

[5] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo
and R. L. Stamm. “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading
Processor”, ISCA, 1996.

[6] A. Herdrich et. al., “Rate-Based QoS Techniques for
Cache/Memory in CMP Platforms”, ICS'09.

[7] S. E. Raasch and S. K. Reinhardt. “The Impact of Resource
Partitioning on SMT Processors”, 12th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2003.

[8] A. Jaleel. “Memory Characterization of Workloads Using
Instruction-Driven Simulation”. Intel Corporation, Web
Copy: http://www.glue.umd.edu/~ajaleel/workload

[9] D. Chandra, et al, “Predicting inter-thread cache contention
on a chip multiprocessor architecture”, 11th Int’l Symp. on
High Performance Computer Architecture (HPCA), Feb,
2005

[10] Pointers to all SPEC CPU2000 material and results:
http://www.spec.org/cpu/

[11] H. Tsao, “IBM @eServer p5 570 Server Consolidation Using
POWER5”, White Paper, IBM Corporation

[12] F. J. Cazorla, E. Fernández, A. Ramirez, and M. Valero.
“DCache Warn: An I-Fetch Policy to Increase SMT
Efficiency”, International Parallel and Distributed Processing
Symposium (IPDPS), 2004.

[13] R. Singhal, “Inside Intel Next Generations Nehalem
Microarchitecture”, presented at the Intel Developer Forum
in Shanghai (IDF), Spring 2008.

[14] S. Choi and D. Yeung. "Learning-Based SMT Processor
Resource Distribution via Hill-Climbing", International
Symposium on Computer Architecture (ISCA), 2006.

[15] F. J. Cazorla, A. Ramirez, M. Valero and E. Fernández.
"Dynamically Controlled Resource Allocation in SMT
Processors", MICRO-37, 2004.

[16] M. Merten, S. Srinath, M. Marden, J. Holm and G. Hinton.
“Providing quality of service via thread priority in a hyper-
threaded microprocessor”, United States Patent Number
8,095,932, issued 2007.

