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ABSTRACT 
Absolute throughput often fails to scale linearly with core count 
in chip multiprocessors (CMPs) due to contention in shared 
platform resources, including cache, memory bandwidth and 
busses. This nonlinear scaling is exacerbated by the addition of 
simultaneous multithreading (SMT) to CMPs by introducing 
resource contention at the pipeline resource level, and increasing 
the number of active threads in the system which further increases 
contention in shared resources, leading to a loss in performance 
stability and fairness.  

This work introduces and evaluates a new form of source-based 
execution rate control at the processor pipeline level, based on 
instruction fetch, instruction queue and reservation station 
partitioning between SMT threads. The efficacy of these controls 
is demonstrated through experiments with SPEC workloads on a 
modified test version of an Intel® codename Nehalem 
microprocessor. This new SMT rate control is presented as a 
critical building block to restoring the fairness and determinism in 
performance once inherent in simpler uniprocessors utilizing 
time-slicing schedulers, and is proposed for inclusion in future 
microprocessors supporting SMT.  

Categories and Subject Descriptors 
C.1 [Computer Systems Organization]: Processor Architectures; 
C.4 [Computer Systems Organization]: Performance of Systems – 
Measurement techniques, Performance attributes; B.8.0 
[Hardware]: Performance and Reliability – general. 

General Terms 
Management, Measurement, Performance, Design. 

Keywords 
Intel Nehalem (NHM), Simultaneous Multithreading (SMT), 
Chip-Multiprocessors (CMP), Performance, Power, Quality-of-
Service (QoS), Cache, Memory, Rate Control, P-States, Q-States, 
Performance Differentiation, ACPI. 

1. INTRODUCTION 
In this paper we examine and directly address shared pipeline 
resource contention in SMT platforms through the use of a new 
form of rate control mechanism at the microarchitectural pipeline 
level between SMT threads on a processor core. The first 
component of this rate control acts by re-steering the frontend 
using both biased instruction fetching and decoding. The second 
mechanism acts through the redistribution of reservation station 
entries between threads, which effectively changes the size of the 
out-of-order window that a given thread executes within. When 
combined with ACPI T-States (commonly used for thermal 

runaway control) in a novel series of heavily multithreaded tests 
performance gains of nearly 20% are realized, as demonstrated in 
Section 4.3. We further show that in the case of a heavily loaded 
system that this technique can be extended to increase total 
system throughput.  

The remaining sections are organized as follows: Section 2 details 
the need for QoS technologies at a thread level with a brief 
overview of the thread contention problem; Section 3 gives an 
overview of the proposed new SMT rate control mechanisms; 
Section 4 provides a detailed analysis of the effectiveness of the 
proposed SMT QoS mechanisms, including highly threaded cases.  

2. THE NEED FOR QoS TECHNOLOGIES 
With the introduction and proliferation of CMPs in the last 
decade, resources that were once dedicated to a particular 
hardware thread such as caches and interconnects are now shared, 
and with the addition of SMT now internal microprocessor 
resources such as reservation stations, ROB entries and execution 
units are shared as well. Traditional OS-level time-slicing thread 
prioritization methods do not suffice in light of these new 
architectures since a scheduler will simply observe that cores are 
available and schedule threads on them whether thread contention 
is an issue or not. 

2.1 CMP and SMT Scaling 
One classic method to illustrate the shared resource contention 
inherent in a system is to run an increasing number of identical 
workload threads and measure total system throughput as a 
function of the number of threads [5, 11]. Ideally throughput 
scales linearly, and in the case of compute-intense workloads that 
require little cache space such as Eon from the SPEC CPU2000 
suite (Figure 1) performance scales as expected on the quad-core 
test processor at 3.2GHz with 2-way SMT.  

A decrease in slope is evident moving from four to five threads 
and beyond as SMT contention is introduced, as is a slight 
decrease at eight threads as OS threads are forced to share 
compute time with the eighth instance of the workload and multi-
level cache contention increases. 

In the case of highly memory-intense applications such as 
CPU2000 Swim [10] performance trails off after just a few copies 
of the workload are instantiated as last-level cache space and 
memory bandwidth become the primary performance-limiting 
factors (locking and synchronization issues are nonexistent since 
the workload threads are independent). Some cache-intense 
applications such as CPU2000 Art (Figure 1) decrease in system 
throughput as more threads are added since this application 
becomes highly memory-bandwidth sensitive as the cache fills 
quickly to its maximum occupancy. These simple test cases 



 

 

illustrate that sharing of platform resources on a CMP platform 
can artificially constrain throughput, a point that will become 
even more important as core counts continue to scale upward. 

 

Figure 1. System throughput for three SPEC CPU2000 
workloads vs. active thread count. 

Total system throughput is only one aspect of the platform 
behavior, however—the primary concern of this work is the 
individual performance of a workload running on a system with 
multiple workloads executing simultaneously and with SMT 
contention.  

Though SMT implementations in industry have been shown to 
potentially improve the throughput of a system by 30% or more 
[1,2] and provide compelling power/performance benefits [2], 
they currently lack mechanisms to provide performance 
differentiation between threads.  
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Figure 2. Impact of shared platform resources (Pairwise SMT 
contention, No QoS, triple-channel DDR3-1067) 

This point is illustrated in Figure 2, showing the slowdown of a 
high-priority (HP) application due to SMT contention. In this case 
two applications share a physical core (bound to OS logical 
CPUs) but the system is otherwise idle. The workloads selected in 
this example are all from a subset of the SPEC CPU2000 suite, 
which despite its age includes several applications that still 
manage to saturate the memory bandwidth of a modern three-
channel DDR3 system [6]. The decision of which applications to 
choose when subsetting the SPEC suite is based on the work 
presented in [8,9,10] to provide a mix of compute, memory and 
cache-sensitive apps. 

If an OS scheduler places a high priority workload on OS CPU1 
(core 1, thread 0) and a different low priority workload on OS 
CPU5 (core1, thread 1), SMT and L1 and L2 cache contention are 
introduced. In situations where an OS scheduler creates such a 
condition as the non-ideal pairwise Equake-Swim case (resulting 
in the 2.14x Equake slowdown in Figure 2) it becomes very 
desirable to provide priority enforcement mechanisms to control 
the rate of each executing thread both dynamically and 
deterministically; the new SMT rate control mechanisms 
presented in later sections are key to reaching this goal. 

2.2 Shared Platform Resources 
The slowdown discussed in previous sections can be attributed 
entirely to shared resources within the platform. In the case of 
Figure 2 only one physical core is active so the two active threads 
share memory bandwidth, cache space at all levels and internal 
processor busses and pipeline resources such as reservation 
stations and functional units. The thread contention discussed 
herein is common across many other similar CMP architectures 
and is not limited to the current CPU architecture under test.  

Table 1. Details of the microarchitecture and the system 
under test. 

 

3. QoS METHODS AS A POTENTIAL 
SOLUTION 
One method to restore a deterministic performance differentiation 
between SMT threads is to make use of Quality-of-Service (QoS) 
methods to provide mechanisms for the hardware to control the 
execution rate of a given SMT hardware thread relative to another 
on the same core. Thus, an operating system scheduler or other 
entity with system-level performance information could 
redistribute pipeline resources from a lower priority application to 
a higher-priority application, providing the fundamental 
functionality required to restore deterministic performance 
differentiation between threads on SMT-enabled CMP platforms. 

System Throughput vs. Concurrent Threads 
(4C/8T Intel Nehalem, SPEC CPU2000 Workloads)
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3.1 Resource Control vs. Rate Control 
Previous attempts to control thread contention and restore 
guarantees of execution speed and QoS broadly fall into two 
categories: (1) those focusing on controlling resource partitioning 
between threads, such as cache space, and (2) those focusing on 
controlling execution speed of individual threads to limit resource 
request generation and thus thread contention (rate control). 
Previous work has largely concluded that resource control 
requires careful control of all resource levels in the hierarchy (L2, 
L3, etc.) to prevent priority inversion, and rate control is generally 
preferable [6]. In this paper a new form of rate control is 
presented, which has the significant advantage that it provides 
variable balance between threads within an SMT core, potentially 
allowing a scheduler to make intelligent biased resource decisions 
and enforce them. 

3.2 New SMT Rate Control Mechanisms 
Several new hardware SMT rate control mechanisms are 
introduced in this paper, some of which have been studied in 
simulation in the past. Previous research has relied heavily on 
simulators such as SMTSIM and the use of Instruction Fetch and 
Instruction Queue throttling to control the redistribution of 
pipeline resources between threads, and many of these papers 
have then gone on to study various instruction fetch or resource 
distribution algorithms to provide performance differentiation 
such as IFETCH [5], or they extend fetch policies with cache 
profiling and prediction (such as DCache Warn, [12]). The type of 
Instruction Fetch (IF) and Instruction Queue (IQ) throttling 
provided on the Intel test system is similar to that used in past 
simulation-based work and is also somewhat similar to the type 
implemented in the IBM POWER5 Architecture [3,4], but the 
Reservation-Station (RS) based rate throttling approach advocated 
in this paper and has only been briefly studied previously (in 
simulated environments such as in [7, 14, 15]) and not in 
hardware. This feature is not commonly available on Nehalem-
based products, and is only present on specialized test processors. 
To our knowledge the RS-based throttling approach has never 
been tested on real hardware before. The following sections 
present an overview of the rate control mechanisms, followed by 
a proposed unified standards-based architecture and supporting 
experimental results. 

3.2.1 Instruction Fetch Throttling 
Modern instruction fetch (IF) unit implementations such as that 
used in the Intel frontend (Figure 3) monitor threads and fetch 
instructions for the next ready thread, avoiding fetching 
instructions for a thread which is stalled waiting on long-latency 
memory requests or slow pipeline execution units. Though 
efficient, this method provides no guarantee of the number of 
instructions fetched for a particular thread, and thus no notion of 
thread priorities. 

The instruction fetch algorithm described above can be 
augmented to enable QoS priority levels by simply weighting the 
unit to fetch favoring one thread over another with a 
programmable N:M ratio, still favoring a ready thread over a 
stalled one. The Nehalem IF unit includes such a feature, which 
allows programmable ratios with 7 levels of granularity, from 1:7 
to 7:1 in fractional 0.125 linear increments (unlike the exponential 
knobs provided in the POWER5 [3]). Note that the middle state, 

1:1, is the default state of the processor as it boots. Henceforth for 
simplicity we denote the ratios as fractions expanded in decimal 
form, such as 0.125 to define a ratio of 1/8.  

A simplified view of the pipeline is shown in Figure 3 (based on 
[13]) to illustrate how the instruction fetch (IF) and other QoS 
mechanisms are implemented. 
 

 

Figure 3. Basic pipeline structure, including the functional 
units in which Instruction Fetch (IF), Instruction Queue (IQ) 

and Reservation Station (RS) SMT QoS are implemented.  
(Adapted from [13]) 

3.2.2 Instruction Queue Throttling 
Another useful place to implement SMT QoS rate control 
mechanisms is in the Instruction Queue (IQ), where x86 
instructions wait to be decoded into the internal format used 
within modern x86 processors. The location of the IQ unit in the 
pipeline is shown in Figure3. The specific implementation simply 
favors picking instructions out of the queue for one thread or 
another in a programmable M:N ratio in precisely the same way 
as the previously discussed IF throttling mechanism. Since IF and 
IQ throttling are most effective when used together, generally we 
combined them and discuss their additive impact together. 

3.2.3 Reservation Station Partitioning 
One of the most critical microarchitectural pipeline resources are 
the Reservation Stations (RS), the decoupled storage array used to 
hold operands just before issuing them to the execution units. The 
number of reservation stations allocated to a given thread plays a 
large role in determining its effective instruction window, which 
directly relates to how much out-of-order benefit a thread can 
achieve. Some threads will also stall in the RS if they issue too 
many concurrent memory requests, which is one of the most 
compelling benefits of QoS partitioning of reservation stations.  



 

 

In the case of the test processor each of the 36 reservation stations 
can either be assigned to Thread0, Thread1, or marked as shared. 
A set of mask registers controls the allocation, with a granularity 
of two RS.  

Note that in later plots a notation of “X-Y-Z” is adopted to denote 
the number of reservation stations devoted to Thread0 (X), 
Thread1 (Y) or marked as shared (Z). The default allocation case 
as the machine boots guarantees 8 entries for Thread0 and 28 
shared entries, denoted as 8-0-28 in this abbreviated notation. 

4. SMT QoS EVALUATION 
An evaluation of the instruction fetch (IF), instruction queue (IQ) 
and reservation station (RS) SMT QoS mechanisms provided in 
the test processor follows. The benchmark applications selected 
are from the SPEC CPU2000 suite and were run entirely to 
completion. Variation between runs is low—typically less than 
3%.  The next section details combined IF and IQ QoS results. An 
examination of RS QoS follows, then all three QoS mechanisms 
are combined additively. 

4.1 Combined Instruction Fetch and 
Instruction Queue Results 
Combining IF and IQ QoS into a single mechanism where settings 
for both are moved in lockstep re-steers the entire front-end; 
individual IF and IQ sensitivity studies are omitted in the interest 
of brevity. As shown in Figure 3, it is possible to realize a 20% 
performance gain in Eon while reducing the performance of the 
low-priority thread by roughly 40% through the use of IF/IQ SMT 
QoS.  

 

Figure 4. CPU2000 Eon, a compute-bound workload, shows 
moderate sensitivity to combined IF and IQ SMT QoS. 

Note that memory-intense Swim (Figure 5) shows little 
sensitivity to either mechanism since the front-end is still 
sufficiently wide (4 or more instructions nearly all the way from 
fetch to the execution engines) that even throttling heavily so that 
it only receives 1/8 bias (such that it only receives an instruction 
in the decode stage every other cycle) is not sufficient to stop it 
from clogging the memory subsystem and L2 cache.  

 

Figure 5. CPU2000 Swim shows little sensitivity to combined 
IF/IQ SMT QoS. (Note: Fine axis scale) 

Examining combined IF and IQ results with two threads of a more 
common workload (GCC) in SMT contention yields similar 
results to Eon, where a performance gain of 15% is possible for 
the high-priority thread, while the low-priority thread suffers a 
20% performance loss. 

4.2 Reservation Station Scaling 
As the system boots, a total of 8 RS entries are reserved for 
thread0 and 28 are shared (denoted 8-0-28 using the notation 
defined in Section 3.2.3).  
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Figure 6. Reservation stations allocated to each Eon thread vs. 
runtime. Note that the bars in the background represent the 
static RS partitioning count for easy visualization, and the 

cases on the end where the workload runs alone represent the 
baseline cases. 

Shown in the background of each RS result plot are bars which 
represent the number of RS partitioned to each thread. In the case 
of the right and left-most bars only a single workload is run, so 
this represents the runtime of the application alone, which 
provides the normalization point for all data in the plots.  
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Examining the results in Figure 6, where two instances of the 
CPU2000 workload Eon (a ray-tracing workload) are run together 
with SMT contention as more reservation stations are allocated to 
the thread on CPU1 its runtime reduces significantly and in a 
rather predictable exponential fashion. When only 4 reservation 
stations are allocated to Eon it requires over 3x the runtime as 
when run alone, and when statically allocated a total of 32 RS 
entries it has nearly the same runtime as the case where it runs 
alone, despite the background eon instance being present. 

4.3 Expanding to 4 Cores and 8 Threads 
In the case of Figure 7 four instances of Art contend with four 
instances of Swim. Through the use of SMT QoS it is possible to 
bias against the Swim instances and redistribute more shared 
platform resources to Art, which uses them more efficiently, 
leading to a total system throughput gain of up to 1.09x. Note that 
in the figure the test cases on the abscissa simply denote all of the 
SMT QoS combinations possible, sweeping through RS and IF/IQ 
settings, where IF/IQ are moved in lockstep, then the data is 
sorted by total system IPC and normalized to the no-QoS (full 
contention) case.  

In analyzing the settings that produce a net positive system 
throughput improvement the average IF/IQ setting is 0.483, with 
an average of 20.7 RS allocated to the HP app, 10.3 RS allocated 
to the LP app, and 5.0 shared. Though not meaningful by 
themselves, these statistics indicate that RS repartitioning is 
largely responsible for the cases where a net throughput gain is 
observed. For cases that show a negative system throughput 
benefit the overarching trend is that these cases allocate more 
reservation stations to Swim instead of Art, so in a real scheduler 
implementation it would be critical to give more reservation 
stations to the application that uses them the most effectively. 
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Figure 7. Four instances of Art contending with four instances 
of Swim with various SMT QoS settings. In cases where we 
allocate more reservation stations to Art, system throughput 
increases, by up to 9%, while the performance of the high-

priority application improves by nearly 20%. 

 

4.4 Experimental QoS Results Summary 
IF and IQ throttling work well when grouped and moved in 
lockstep. The usefulness of combined IF/IQ throttling is limited 
since memory-intense workloads can still fill memory queues and 
starve compute-bound and other workloads. A more generally 
applicable (and novel) throttling mechanism is RS partitioning, 
which allows a high degree of granularity and affects both 
compute and memory-bound workloads in a similar manner. 
When combined IF/IQ/RS SMT QoS can be quite powerful, and 
can even provide a significant system IPC (throughput) boost 
when a system is heavily loaded. The addition of features such as 
ROB partitioning could further increase the utility of this feature, 
allowing the degree of out-of-order execution of a thread to be 
finely controlled. Note that these results vary somewhat from 
those presented in [3] by Boneti et. al. due to the substantial 
differences in microarchitectural features, layout and 
implementation between the Intel Nehalem test chip and the IBM 
POWER5. 

5. CONCLUSIONS 
While the performance of multithreaded applications theoretically 
scales linearly with core count, experimentally this is not the case 
due to contention within the shared resources of a platform, 
including cache space and memory bandwidth. Adding SMT to a 
processor, while beneficial in terms of power-to-performance 
ratios, can increase the number of active threads on a system, 
further exacerbating the shared resource issue. Traditional 
solutions such as over-provisioning memory bandwidth and cache 
space are insufficient to remedy the problem since mobile and 
consumer segments will not tolerate the added cost, die area and 
power consumption. This necessitates the introduction of QoS-
inspired solutions, namely instruction fetch, instruction queue and 
reservation station based methods, which enable practical thread-
level priorities. Under heavily loaded system conditions an 
improvement in system throughput of up to 9% is possible using a 
combination of IF/IQ/RS SMT QoS and performance 
improvements of over 20% are possible for the highest-priority 
threads. The proposed architecture was validated and 
demonstrated with experiments on a test version of an Intel 
Nehalem microprocessor. Further work remains in improving and 
expanding current scheduling algorithms to make use of these 
new capabilities and “closing the loop” by providing detailed 
performance feedback information to a system or user agent to 
consistently improve the quality of SMT QoS enforcement 
decisions passed down to the hardware. 
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