
Concurrency Attacks

Junfeng Yang, Ang Cui, Sal Stolfo, Simha Sethumadhavan

{junfeng, ang, sal, simha}cs.columbia.edu
Department of Computer Science

Columbia University

Abstract

Just as errors in sequential programs can lead to se-

curity exploits, errors in concurrent programs can lead

to concurrency attacks. Questions such as whether these

attacks are feasible and what characteristics they have re-

main largely unknown. In this paper, we present a pre-

liminary study of concurrency attacks and the security

implications of real world concurrency errors. Our study

yields several interesting findings. For instance, we ob-

serve that the exploitability of a concurrency error de-

pends on the duration of the timing window within which

the error may occur. We further observe that attackers

can increase this window through carefully crafted in-

puts. We also find that four out of five commonly used

sequential defenses become unsafe when applied to con-

current programs. Based on our findings, we propose

new defense directions and fixes to existing defenses.

1 Introduction

Concurrent programs have become pervasive and critical

because of the move to multicore processors and deploy-

ment of large-scale distributed systems. These programs

continue to remain difficult to write, test, and debug than

sequential versions [23, 31], and this impediment has led

to subtle and serious errors in concurrent programs [25].

Just as errors in sequential programs can lead to secu-

rity exploits, concurrency errors may lead to concurrency

attacks which allow attackers to violate confidentiality,

integrity and availablity of systems. To defend against

these attacks, we need to better understand concurrency

errors and how they can or have been exploited. Prior

work [25] has studied properties of many concurrency

errors, but it focused on general concurrency errors, not

the exploitable ones, which our study reveals to have dif-

ferent properties.

In this paper, we present a study of concurrency at-

tacks and the security implications of concurrency errors.

We focus on four questions:

§ Do concurrency attacks occur in the wild? In the-

ory any bug—concurrent or sequential—may be ex-

ploited to compromise security but we want to know

if real-world concurrency bugs have been exploited

in practice. If concurrency attacks are not practica-

ble we need not worry about them. (Section 2).

§ What factors make concurrency errors easy to ex-

ploit? If attackers have to jump through hoops to

exploit any concurrency error, they will likely go

after other low-hanging errors. (Section 3).

§ Can we leverage these factors to improve the ef-

fectiveness of existing concurrency error detection

techniques? (Section 4).

§ How do concurrency attacks weaken existing de-

fenses such as taint tracking and intrusion detection

and how can we fix them? (Section 5).

Our study yields several interesting findings. We find

that concurrency attacks are indeed viable as evidenced

by numerous exploitable concurrency errors in the CVE

database [3]. Interestingly, few of these errors have ap-

peared in prior studies or race detection literature, sug-

gesting that the research communities may not be aware

their existence or impact. We observe that ability to

exploit a concurrency error depends on the size of the

timing window within which the error may occur which

we call the vulnerability window. Further, an attacker

can expand this window through carefully crafted in-

puts. Our study shows that many common mechanisms

in existing defenses will not work against concurrency

attacks. We propose fixes to some of these weaknesses

and also propose new defense directions.

We hope that our initial work on concurrency at-

tacks will further stress the importance of ongoing

work on better programming languages and specifi-

cations [12, 20], runtime systems [9, 10, 16, 17, 24],

and tools [18, 22, 26, 36, 38] for concurrent programs.

1



In addition, we hope that it will raise awareness of

concurrency attacks and motivate fellow researchers

to work on preventing them. The raw data includ-

ing URLs to the concurrency errors and sometimes

their exploits and our detailed categorization of the

errors studied are available at http://systems.

cs.columbia.edu/archive/pub/2012/06/

concurrency-attacks.

2 Concurrency Attacks Are Real

To construct concurrency attacks, we initially tried ex-

ploiting concurrency errors in existing benchmarks [21,

25]. Unfortunately, quite a few of these errors cannot

be triggered without manually injecting sleep() calls.

Moreover, many, such as the errors in SPLASH2, are

practically harmless from a security perspective. The

worst ones tend to cause only program crashes, not the

security exploits we want.

We then turned to the race section of the CVE

database [3], which fortunately lists many exploitable

concurrency errors besides the familiar file system Time-

of-Check-to-Time-of-Use (TOCTOU) races [27, 32, 33,

35]. We also examined the bug databases of popular soft-

ware. From these sources, we collected concurrency er-

rors that are exploitable and have detailed description,

such as a well-written error report, sample exploit code,

or a source patch. We then carefully inspected these ma-

terials to understand the cause of the errors and how they

can be exploited. Although collecting these errors is not

difficult, understanding, categorizing, and sometimes re-

producing them absorbed most of our effort.

These errors range across four main OS environments,

including Windows, MacOS X, Linux, and Apple iOS.

These errors are from a diverse set of 23 real-world pro-

grams, including kernels such as the Linux, system li-

braries such as GNU Libc, and user-space programs such

as KDE, Apache, and Chrome. We hope this diversity in-

creases the coverage and value of our dataset.

In the remaining of this section, we present five exam-

ples of exploitable concurrency errors.

Linux. Figure 1 shows an example concurrency er-

ror that corrupts pointer data in the Linux kernel. This

violation is quite serious: a working exploit of this vi-

olation enables a local user to gain root access or ex-

ecute arbitrary code within ring 0 [6, 29]. Specif-

ically, this violation occurs as follows. To load a

shared library in ELF format, a process issues sys-

tem call uselib(), which subsequently calls function

load elf binary() (Figure 1). This function cor-

rectly holds the semaphore mmap sem the first time it

modifies the current process’s memory map structures

(line 2–4). However, when it modifies these data struc-

tures the second time by calling do brk() (line 7), it

does not hold the right semaphore. Thus, another thread

1 : load elf library(. . .) {
2 : down write(&current−>mm−>mmap sem);

3 : error = do map(. . .); // CORRECT

4 : up write(&current−>mm−>mmap sem);

5 : . . .

6 : if(bss > len)

7 : do brk(. . .);

8 : }
9 : do brk(. . .) {
10: struct mm struct * mm = current−>mm;

11: . . .

12: vma = kmem cache alloc(. . .);

13: . . . // initialize vma

14: // ERROR! link vma to possibly stale mm!

15: vma link(mm, vma, . . .); // link vma onto mm

16: }

Figure 1: Linux kernel memory map corruption.

1 : nptl setxid (struct xid command *cmdp)

2 : {
3 : lll lock (stack cache lock);

4 : // signal all threads on list to set user id.

5 : // a thread is represented as a stack

6 : list for each (runp, &stack used)

7 : {
8 : struct pthread *t = list entry (runp, struct pthread, list);

9 : if (t == self)

10: continue;

11: setxid signal thread (cmdp, t);

12: }
13: lll unlock (stack cache lock);

14: // ERROR: does not wait for other threads to acknowledge

15: }
16: allocate stack(. . .) { // called when a new thread is created

17: lll lock (stack cache lock);

18: list add (&pd−>list, &stack used);

19: lll unlock (stack cache lock);

20: }

Figure 2: Glibc setuid race.

in the same process may be modifying the memory map

structures concurrently while this do brk() call is run-

ning, causing kernel memory corruption.

Glibc. Figure 2 shows a concurrency error that cor-

rupts the user identities, and allows privilege escalation

attacks [4]. This bug is caused by Glibc’s default thread

library, nptl, not handling setuid() atomically. In

Linux, each kernel thread has its own set of user iden-

tities (user ID, effective user ID, etc). However, POSIX

standards require that all other threads in the same pro-

cess have identical user identities. Thus, when one thread

calls setuid(), nptl has to ensure that all threads in

the current process call setuid(). It does so using

function nptl setxid() in Figure 2, which iterates

through a list of all threads and signals each thread to call

setuid() (line 6–12). However, this function releases

the lock stack cache lock protecting the thread list,

before it waits for all threads to finish setting their identi-

2

http://systems.cs.columbia.edu/archive/pub/2012/06/concurrency-attacks
http://systems.cs.columbia.edu/archive/pub/2012/06/concurrency-attacks
http://systems.cs.columbia.edu/archive/pub/2012/06/concurrency-attacks


1 : bool FastCopy (MonoArray *src, MonoArray* dest, int length){
2 : // Checks that the type of dst[i] derive from src[i]

3 : for (i = 0; i < length; ++i)

4 : if(!safe cast(type of(src[i]), type of(dest[i])))

5 : return FALSE;

6 :

7 : //ERROR: another thread might run

8 : // dst[0] = object with incompatible type;

9 :

10: // directly copy the bytes with memcpy()

11: for (i = 0; i < length; ++i)

12: memcpy(dest[i], src[i], size of(ObjPtr));

13: return TRUE;

14: }

Figure 3: Moonlight fast array copy race.

fiers. A new thread may be created, and still have the old

user identifiers. Since setuid() is often called to drop

privileges, a thread skipping setuid() can thus result

in privilege escalation.

Moonlight. Figure 3 shows an atomicity error [7]

that allows an attacker to silently violate type safety in

Moonlight, a Silverlight browser plugin implementation

of the Mono open-source .NET framework. To speed

up the array copying process, the FastCopy()method

first checks that the types of the destination element and

the source element are compatible (line 3–5) and, if so,

performs a fast element-wise memcpy() instead of a

slow copy implemented as CLR instructions. However,

the type check and the copy are not implemented as one

atomic step, allowing an attacker to change the destina-

tion array after the type check, compromising type safety.

For instance, the attacker can create a new type with the

same field layout, except that all fields in this new type

are public, thus gaining access to the private fields in

the original object.

MSIE. Another example is the MSIE R6025 ex-

ploit [2] which allows an attacker to launch a code injec-

tion attack to Microsoft Internet Explorer (IE) through a

malicious webpage. Specifically, when IE opens the ma-

licious page in multiple windows, the Javascript code in

the page calls the appendChild() method to append

a DHTML element of one window to an element of an-

other. A race in appendChild() can corrupt a func-

tion pointer in the heap. To reliably exploit this function

pointer corruption, the attacker sprays the heap by re-

peatedly invoking the DHTML createComments()

function, before calling appendChild().

iOS. Our study also reveals physical proximity at-

tacks, a unique class of attacks carried out in human-

time. Such attacks typically exploit concurrency errors

in the user interface (UI) logic. There have been several

demonstrated vulnerabilities in the UI logic of Apple’s

iOS that allow attackers to bypass the passcode protec-

tion screen by executing a timed sequence of physical

F
re

q
u
e
n
c
y
 o

f 
E

x
p
lo

it
s

Duration of Vulnerable Window

Mem-Race Vulns (ns)
File-Race Vulns (ms)

Physical-Proximity-Race Vulns (seconds)

Figure 4: Our study suggests a likely tri-modal distri-

bution of the duration of the vulnerable window for all

concurrency attacks. Intuitively, this distribution can be

broken into at least three distinguishable ranges, corre-

sponding to concurrency errors culminating in memory,

file, and physical proximity based exploit.

actions. Consider the latest vulnerability in iOS version

4. When presented with a passcode screen, an attacker

can hit the “Emergency Call” button, enter a malformed

phone number such as “###”, and then quickly hit the

screen lock button to bypass the passcode screen. Sev-

eral other physical proximity attacks which exploit UI

race conditions have been identified [1, 5, 8].

3 Observations of Concurrency Attacks

Vulnerable window duration heavily affects ex-

ploitability. In our analysis, we find that the exploitabil-

ity of a concurrency error heavily depends on the du-

ration of its vulnerable window—the timing window in

which the concurrency error may occur. Figure 4 shows

a tri-modal distribution of the vulnerable window dura-

tion suggested by our study.

Out of the 46 concurrency errors we studied, three al-

low physical proximity attacks. These errors have vul-

nerable windows measured in human time. Exploiting

them is easy because attackers simply need to manually

trigger a sequence of UI events. Of the 46 errors we

studied, 13 allow file system TOCTOU attacks. These

races have vulnerability windows measured in quanta of

disk access time. This relatively large vulnerable win-

dow duration makes file races also easy to exploit: at-

tackers typically re-run a command a few times (possi-

bly using a shell script). Majority of the studied errors

allow memory data to be corrupted or inconsistently ex-

posed. The vulnerable windows of these errors are mea-

sured in quanta of memory access time. These errors

are harder to exploit than the previous two classes of er-

rors because attackers have to make the offending events

occur within small timing windows. In addition, hard-

ware cache leases or CPU time slices are often larger

than these small windows, masking the errors.

Nonetheless, our study shows that the third class of

errors can also be exploited using two styles of attacks.

3



First, an attacker can retry many times to increase the

probability of success. The MSIE error described in the

previous section falls into this category, whose exploit

repeatedly triggers the racing appendChild() calls

in different threads. However, an excessive number of

retires may be detected using, for instance, anomaly de-

tectors, so we expect that this style of attack may not

be as dangerous as the second style of attack, where

attackers can use carefully crafted input to enlarge the

vulnerability window. For instance, the exploit of the

moonlight error in Figure 3 enlarges the vulnerabil-

ity window by copying a large array, increasing the

number of iterations of the type check loop (line 3–

5). As another example, the exploit of the Linux er-

ror in Figure 1 enlarges the vulnerable window by trig-

gering blocking operations such as disk access. Specif-

ically, do brk calls kmem cache alloc to allocate

memory. In normal case when there is free memory,

kmem cache alloc returns immediately, and the vul-

nerability window (line 10–15) is small. However, the

exploit of this error allocates a large amount of memory

to drive the system into low memory state, so that the

call to kmem cache alloc has to swap used memory

to disk to make room for this new allocation request. The

vulnerable window thus lasts as long as a disk access,

making it highly likely to corrupt the memory map.

Concurrency errors in API methods are particu-

larly prone to concurrency attacks. The reasons are

two fold. First, an API, such as the system call interface

or the Silverlight runtime interface, often coincides with

a protection boundary. That is, the application code of-

ten cannot access sensitive data directly. Instead, it has

to do so through the API methods. To corrupt this sen-

sitive data, an attacker has to exploit the errors in the

API methods. The Linux and the moonlight errors are

two examples illustrating this point. Second, an API is

typically provided to support third-party, potentially un-

trusted programs. Leveraging this support, attackers can

carefully craft malicious code of her choice to run on

top of and programmatically exploit the buggy API. The

Linux, the moonlight, and the MSIE errors are exam-

ples illustrating this point; their exploits were carefully

crafted to retry an attack or force events to occur in a

dangerous temporal order.

Concurrency attacks are more than just TOCTOU

attacks. Our goal is to bring attention to general concur-

rency attacks that target errors in concurrent programs.

These attacks are much broader than the TOCTOU at-

tacks studied by previous work [27, 32, 33, 35]. The

reasons are threefold.

First, the TOCTOU attacks in previous work target pri-

marily the file system interface. This interface allows

users to check file permissions and use file data but does

not directly support transactions that make the check and

the use atomic. An attacker may thus exploit this limita-

tion to gain illegal file accesses. In contrast, the concur-

rency attacks we study target many different program-

ming interfaces such as a language runtime interface or

the load/store memory interface, corrupt not just file data

but general shared program data, and lead to effects more

serious than illegal file accesses.

Second, the TOCTOU races in previous work exhibit

one specific interleaving pattern: atomicity violations

where the check and the use is not atomic. In contrast,

our study reveals simple read-write or write-write races,

or execution order violations [25] where a set of accesses

is supposed to occur in a fixed order, but no synchroniza-

tions enforce the order.

Third, as a natural fallout of the first two reasons, tech-

niques proposed by previous TOCTOUwork are too spe-

cific to detect or prevent general concurrency attacks.

For instance, while launching a TOCTOU attack requires

concurrent executions, the vulnerable program may be

purely sequential, so TOCTOU detectors (e.g., [35]) may

not need to reason about concurrency at all. Similarly,

TOCTOU detectors may mediate all file system calls

without high runtime overhead (e.g., [33]), but it would

be prohibitive to mediate all load or store instructions to

detect memory races.

4 Implications on Detection Techniques

It is unfortunate that existing concurrency-error detec-

tion techniques have not reached the maturity of sequen-

tial tools. Dynamic detectors are not good for detecting

security vulnerabilities because they tend to cover only

the executions or code run. Static detectors tend to give

many false positives burying the true errors.

Fortunately, leveraging the observations we made in

the previous section, we can improve the effectiveness

of these detection techniques. One idea is to prioritize

detection towards the API methods at protection bound-

aries. These API methods must correctly protect sen-

sitive data in face of abuses from arbitrarily malicious

programs. In addition, errors in the API methods may

have particularly bad impact as they may be used by a

wide range of programs. A related idea is to prioritize

detection toward sensitive data, such as user identities

(corrupted by the glibc error), function pointers (MSIE),

type data (Moonlight), process memory map (Linux).

Another idea is to rank the error reports of static de-

tectors based on the vulnerable window duration so that

developers priortize inspection of errors that are more

dangerous, i.e., easier to exploit. For instance, if a vul-

nerable window of code may block, such as issuing as

a disk or network I/O, or may loop an input-dependent

number of iterations, then the corresponding error should

be ranked high. Identifying code that may block is rel-

4



// thread t1 thread t2

taint[x] = taint[bad];

taint[x] = taint[good];

x = good;

x = bad;

Figure 5: Data race renders taint tracking unsafe.

atively straightforward: we can annotate the leaf oper-

ations that may block, then flag any function that may

transitively call these operations as blocking. To identify

input-dependent loop bounds, we may use taint analysis

or symbolic execution to track where user inputs flow.

5 Implications on Defense Techniques

Security researchers have developed many defenses that

prevent security exploits at runtime. However, they tend

to assume only sequential programs. We thus want to

understand (1) which defense techniques are still effec-

tive against concurrency attacks and (2) for those that are

ineffective, how to fix them.

In this section, we attempt to answer these questions

by analyzing a plethora of defense techniques [11, 14,

15, 19] from the research literature. Instead of describing

how each of these defenses is weakened, we first extract

five commonmechanisms that underlie many of these de-

fense tools such as memory safety tools, taint trackers,

and intrusion detection systems. We then analyze how

each mechanism is affected by concurrency.

Metadata tracking. Techniques such as taint track-

ing or memory safety enforcement track program data

with metadata, such as taint tags or array bounds. If the

tracked program has a data race, the race may manifest

on the metadata owned by the defense technique, render-

ing it unsafe. Figure 5 illustrates this problem using a

contrived example. The original code has a race on vari-

able x: thread t1 assigns a tainted bad value to x and

thread t2 assigns a untainted good value to x. The in-

terleaving in the figure can cause the taint tag of x to be

inconsistent with the value of x. That is, at the end of the

execution, the tag of x indicates that x is untainted, but

the value of x is bad.

Software checks. Many techniques rely on software

checks to validate untrusted data. For instance, a taint

tracker checks that a piece of data is untainted before us-

ing it in a dangerous operation; a memory safety tool

checks that a pointer is within bounds before deferenc-

ing it; and a type checker ensures type safety (such the

fast copy type check in Figure 3). These techniques, if

unaware of concurrency, are prone to general TOCTOU

attacks if the check and the use are not made atomic

against concurrently running code. Software checks on

stack data are typically not affected by concurrency er-

rors because stack data is rarely shared.

Anomaly detection. Typical anomaly detection sys-

tems work by learning normal program behaviors, then

detect deviations from the learned behaviors. Compli-

cations arise at both steps for concurrency attacks. For

instance, if an anomaly detector learns behaviors only

with respect to a single thread in a multithreaded system,

it may miss anomalies involving multiple threads. On

the flip side, if the anomaly detector models behaviors

of all threads, the model may become overly complex

and noisy. For instance, multiple threads may issue con-

current system calls, making the n-gram model [19] too

noisy. In other words, we lack simple and accurate mod-

els for the behaviors of concurrent programs. (Content-

based anomaly detection techniques [30] may still work.)

Hardware checks. Some techniques rely on hard-

ware checks. For instance, several defense techniques

prevent code injection attacks by marking pages non-

executable via the NX bit. These techniques should work

in concurrent models because the check is performed

atomically by the hardware at the time of use.

Randomization. Address Space Randomization or

instruction set randomization work by hindering the im-

pact step. They should be equally effective for both con-

currency and sequential attacks.

To summarize, three out of the five mechanisms dis-

cussed above are weakened by concurrency. Although

fixing anomaly detection for concurrent programs may

be difficult, fixing metadata tracking and software checks

appear viable using standard approaches. For instance, a

defense technique can use locks to enforce atomicity; it

can also make a local copy of a piece of shared data,

then perform the check and the use on the local data for

atomicity. However, these fixes may introduce high per-

formance overhead, and how to make them practical re-

mains an open research challenge.

6 Related Work

Since we have discussed related work on attacks and

defenses throughout this paper, this section focuses on

related empirical studies of software errors and attacks.

Previous work studied a large number of operating sys-

tem errors [13]. The study focuses on sequential errors

detected by an automated static analysis tool. Recently,

Lu et al. studied many concurrency errors from real soft-

ware such as MySQL and Apache [25]. Their analysis

focuses on interleaving and memory access characteris-

tics of concurrency errors, whereas ours focuses on the

security, exploit, and defense aspects of the concurrency

errors. Jalbert et al. created the RADBench concurrency

error suite and proposed an approach to make them easy

to reproduce [21].

Watson presented a specific concurrency attack

5



against system call interposition [34]. Sender and Vider-

gar presented a toy example of concurrency attacks in

web applications in Blackhat ’08 [28]. These studies are

not based on real concurrency errors; nor did they an-

alyze broadly the detection and defense implications of

the concurrency attacks.

7 Discussion

In this paper we catalogued concurrency attacks in the

wild and presented their characteristics. We studied 46

different types of exploits and categorized them based

on the duration of the vulnerabilities. We also observed

that the risk of concurrency attacks is proportional to the

duration of the vulnerability window, and further that at-

tackers may be able to dilate the vulnerability windows

to facilitate attack.

Our study of concurrency attacks and existing de-

fenses inspire us to look for new, effective defense tech-

niques. The reasons are three-fold. First, we note that

some existing defense techniques such as taint track-

ing may fail to work in the presence of concurrency er-

rors. Second, there are very few effective defense tech-

niques for concurrency attacks that corrupt scalar data.

Finally, based on our analysis of the wide spectrum of

the concurrency-error exploits, a single mechanism is un-

likely to defend against all types of concurrency attacks.

Consequently, two challenging research questions

arise from our study. First, can we develop defense

mechanisms which can mitigate all concurrency errors

regardless of vulnerability window duration? Second,

given an arbitrary program, can we identify, with some

confidence, the most likely type of concurrency vulnera-

bility to exist in a region of the program, assuming that a

vulnerability does exist?

An important requirement is that defense mechanisms

against concurrency attacks should not require a priori

knowledge of the existence of particular concurrency er-

rors. Traditionally, randomization techniques have been

used to successfully mitigate unknown errors. For in-

stance, address space randomization and instruction set

randomization are often the “universal last resort” to mit-

igate many traditional sequential attacks. We believe that

timing randomization techniques may be able to defend

against unknown concurrency attacks.

Acknowledgement

We thank Madan Musuvathi and the anonymous review-

ers for providing many helpful comments. John Gal-

lagher helped in the initial stages of this work [37]. This

work was supported in part by AFRL FA8650-11-C-

7190 (DARPAMRC), FA8650-10-C-7024, and FA8750-

10-2-0253 (DARPA CRASH); NSF CNS-1117805,

CNS-1054906 (CAREER), CCF-1054844 (CAREER),

CNS-1012633, and CNS-0905246; ONR N00014-12-1-

0166; and a Sloan fellowship. This paper’s opinions,

findings, conclusions, and recommendations are those of

the authors and do not necessarily reflect the views of the

US Government.

References

[1] CVE-2010-1754. http://www.cvedetails.
com/cve/CVE-2010-1754.

[2] MSIE javaprxy.dll COM object exploit. http://
www.exploit-db.com/exploits/1079.

[3] Common vulnerabilities and exposures database.
http://cvedetails.com.

[4] RHBA-2009:1634-1. http://rhn.redhat.

com/errata/RHBA-2009-1634.html.

[5] CVE-2008-0034. http://www.cvedetails.
com/cve/CVE-2008-0034.

[6] CVE-2004-1235. http://www.cvedetails.
com/cve/CVE-2004-1235.

[7] CVE-2011-0990. http://www.cvedetails.
com/cve/CVE-2011-0990.

[8] CVE-2010-0923. http://www.cvedetails.
com/cve/CVE-2010-0923.

[9] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: a compiler and runtime
system for deterministic multithreaded execution.
In Fifteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’10), pages 53–64, 2010.

[10] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. No-
vark. Grace: Safe and efficient concurrent program-
ming. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA ’09), 2009.

[11] E. Bhatkar, D. C. Duvarney, and R. Sekar. Ad-
dress obfuscation: an efficient approach to combat
a broad range of memory error exploits. In Pro-
ceedings of the 12th USENIX Security Symposium,
pages 105–120, 2003.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Don-
awa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Conference
on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’05), pages
519–538, 2005.

[13] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. En-
gler. An empirical study of operating systems er-
rors. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages
73–88, Nov. 2001.

6

http://www.cvedetails.com/cve/CVE-2010-1754
http://www.cvedetails.com/cve/CVE-2010-1754
http://www.exploit-db.com/exploits/1079
http://www.exploit-db.com/exploits/1079
http://cvedetails.com
http://rhn.redhat.com/errata/RHBA-2009-1634.html
http://rhn.redhat.com/errata/RHBA-2009-1634.html
http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2004-1235
http://www.cvedetails.com/cve/CVE-2004-1235
http://www.cvedetails.com/cve/CVE-2011-0990
http://www.cvedetails.com/cve/CVE-2011-0990
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-0923


[14] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
Proceedings of the Seventh USENIX Security Sym-
posium, 1998.

[15] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer over-
flow vulnerabilities. In Proceedings of the 12th
USENIX Security Symposium, 2003.

[16] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable de-
terministic multithreading through schedule mem-
oization. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[17] H. Cui, J. Wu, J. Gallagher, H. Guo, and
J. Yang. Efficient deterministic multithreading
through schedule relaxation. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), Oct. 2011.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and
K. Olynyk. Effective data-race detection for the
kernel. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[19] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In
Proceedings of the 1996 IEEE Symposium on Se-
curity and Privacy (SP ’96), 1996.

[20] ISO. C++0x Standards, ISO/IEC 14882:2011.

[21] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. Rad-
bench: a concurrency bug benchmark suite. In
Proceedings of the 3rd USENIX conference on Hot
topic in parallelism (HOTPAR ’11), 2011.

[22] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit.
Automated atomicity-violation fixing. In Proceed-
ings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementa-
tion (PLDI ’11), 2011.

[23] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[24] T. Liu, C. Curtsinger, and E. D. Berger.
DTHREADS: efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), 2011.

[25] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world con-
currency bug characteristics. In Thirteenth Interna-
tional Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS ’08), 2008.

[26] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language De-
sign and Implementation (PLDI ’07), 2007.

[27] M. Payer and T. R. Gross. Protecting applications
against TOCTTOU races by user-space caching of
file metadata. In Proceedings of the Eighth Inter-
national Conference on Virtual Execution Environ-
ments (VEE ’12), pages 215–226, 2012.

[28] S. Sender and A. Vidergar. Concurrency attacks in
web applications. Blackhat ’08.

[29] P. Starzetz. uselib() privilege elevation. http://
www.isec.pl/vulnerabilities/

isec-0021-uselib.txt.

[30] S. J. Stolfo, F. Apap, E. Eskin, K. Heller, S. Her-
shkop, A. Honig, and K. Svore. A comparative
evaluation of two algorithms for windows registry
anomaly detection. J. Comput. Secur., 13:659–693,
July 2005.

[31] H. Sutter and J. Larus. Software and the concur-
rency revolution. ACM Queue, 3(7):54–62, 2005.

[32] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva.
Portably solving file TOCTTOU races with hard-
ness amplification. In Sixth USENIX conference on
File and Storage Technologies(FAST ’08), 2008.

[33] E. Tsyrklevich and B. Yee. Dynamic detection and
prevention of race conditions in file accesses. In
Proceedings of the 12th USENIX Security Sympo-
sium, 2003.

[34] R. N. M. Watson. Exploiting concurrency vulnera-
bilities in system call wrappers. In Proceedings of
the first USENIX workshop on Offensive Technolo-
gies (WOOT ’07), 2007.

[35] J. Wei and C. Pu. TOCTTOU vulnerabilities in
UNIX-style file systems: an anatomical study. In
Fourth USENIX conference on File and Storage
Technologies(FAST ’05), 2005.

[36] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound
and precise analysis of parallel programs through
schedule specialization. In Proceedings of the
ACM SIGPLAN 2012 Conference on Programming
Language Design and Implementation (PLDI ’12),
2012.

[37] J. Yang, A. Cui, J. Gallagher, S. Stolfo, and
S. Sethumadhavan. Concurrency attacks. Technical
Report CUCS-028-11, Columbia University.

[38] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz,
G. Jin, S. Lu, and T. Reps. ConSeq: detecting
concurrency bugs through sequential errors. In
Sixteenth International Conference on Architecture
Support for Programming Languages and Operat-
ing Systems (ASPLOS ’11), pages 251–264, 2011.

7

http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt
http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt
http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt

	1 Introduction
	2 Concurrency Attacks Are Real
	3 Observations of Concurrency Attacks
	4 Implications on Detection Techniques
	5 Implications on Defense Techniques
	6 Related Work
	7 Discussion

