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Abstract
Conjugate gradient is an important iterative method used
for solving least squares problems. It is compute-bound
and generally involves only simple matrix computa-
tions. One would expect that we could fully parallelize
such computation on the GPU architecture with multiple
Stream Multiprocessors (SMs), each consisting of many
SIMD processing units. While implementing a conju-
gate gradient method for compressive sensing signal re-
construction, we have noticed that large speed-up due to
parallel processing is actually infeasible due to the high
I/O cost between SMs and GPU global memory. We
have found that if SMs were linearly connected, we could
gain a 15x speedup by loop unrolling. We conclude that
adding these relatively inexpensive neighbor connections
for SMs can significantly enhance the applicability of
GPUs to a large class of similar matrix computations.

1 Introduction

The recent ubiquity of cheap, powerful GPUs, featuring
hundreds of processing units (PUs) at a cost of less than
$1 per PU, has made them a primary building block of
modern high-performance computing. Built to acceler-
ate real-time graphics rendering, GPUs are comprised
of multiple independent Stream Processors (SMs), each
consisting of many SIMD PUs. In general, they are
amenable to embarassingly data parallel tasks that re-
quire high computational throughput. Active research in
recent years has focused on adapting algorithms in var-
ious application domains to the specifics of this archi-
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tecture, and general-purpose GPU computing has found
success in diverse fields including finance and biol-
ogy [1].

However, in the process of adapting a class of sig-
nal processing algorithms for the GPU, we notice that
even in a simple case of computation on linear systems
with small input data sets, popular iterative algorithms
like conjugate gradient methods cannot be efficiently im-
plemented across multiple SMs. Fundamentally, this is
due to synchronization and I/O costs that occur when-
ever such algorithms must aggregate operands computed
by different SMs, e.g. to calculate vector norms, or sort
component magnitudes. We show that synchronization
on the current GPU architecture, either using the host
CPU, or with a barrier implemented in GPU global mem-
ory, causes running time to be dominated by the high la-
tency penalty between SMs and global memory. In this
paper, we argue that one dimensional (1D) interconnec-
tions between neighboring SMs would substantially in-
crease parallel speedup gains on future generations of
GPUs by reducing synchronization and operand aggre-
gation time.

We focus on optimizing the conjugate gradient compu-
tation to demonstrate these limitations, and showcase the
possible speedups from such suggested interconnections.
Conjugate gradient is well-known and widely-applied for
solving least squares problems and finding solutions to
sparse linear systems. It is of interest to us due to its cen-
tral role in decoding compressively sensed signals [2]. It
is compute-bound, requires mostly simple matrix opera-
tions, and for many applications of interest in compres-
sive sensing, operates on a small amount of input data
that can be stored entirely in GPU global memory. Intu-
itively, this is an ideal case for GPU acceleration.

Our paper proceeds as follows: we briefly review
the latest nVidia Fermi GPU architecture and CUDA,
its computing platform and programming model. We
present conjugate gradient, its applications, and our
strategy for acceleration using the GPU. We show how
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Figure 1: A simplified depiction of the nVidia Fermi architec-
ture. SMs have limited on-chip memory shared among their
PUs. Global memory is visible to all SMs, but while its aggre-
gate bandwidth is high (152.0 GB/sec on the 570 GTX), round
trip access latency from PUs is also high, and can vary between
400-600 clock cycles [3].

the lack of support for direct inter-SM communica-
tion causes costs associated with synchronization and
operand aggregation to dominate any multi-SM adapta-
tion of conjugate gradient. We then demonstrate gains on
potential future GPUs with 1D SM interconnections. Fi-
nally, we survey the current state of compilers for paral-
lel architectures, arguing that standard optimization tech-
niques such as loop unrolling are readily amenable to
GPUs with such interconnected SMs.

2 Background

2.1 GPU Hardware Overview

Using the nVidia GTX 570 as an example, we first briefly
describe the Fermi GPU architecture, sketched in Fig-
ure 1. The GTX 570 is comprised of 15 independent
Stream Multiprocessors (SMs), each an SIMD multipro-
cessor with 32 PUs operating at 1.4 GHz. The primary
on-chip memory for an SM is a 64 KB shared memory
pool, visible to its PUs, and organized into 32 banks so
PUs may access memory in parallel.

All SMs are connected to a 1.2 GB global memory
store. Aggregate bandwidth between the SMs and global
memory is 152 GB/s, and the round trip access latency
varies between 400-600 clock cycles from PUs [3]. The
GPU also features texture and constant memory units
with lower latency to SMs. However, since their contents
are managed by the host program on the CPU, we eschew
their use to minimize CPU intervention during program
execution, which is extremely costly due to high latency.

2.2 CUDA Overview

The above system is exposed to application programmers
through nVidia’s CUDA language and compiler [3]. Data
parallel functions are coded in CUDA’s C-like syntax,
and are termed kernels. Upon launch, the GPU replicates
a kernel’s instructions into multiple data independent
blocks, and assigns them to SMs. At each SIMD SM,
kernel instructions execute simultaneously on the PUs,
forming parallel execution threads. SMs are generally
overscheduled with multiple batches of threads, called
warps; this allows I/O latencies to be hidden by swap-
ping out warps whose threads are waiting on operands.

In CUDA, execution synchronization is supported
only at the lowest level, for threads. When branching and
I/O serialization cause threads to fall out of step, paral-
lelism is reduced, so CUDA’s syncthreads() primi-
tive restores proper execution order. In order for the GPU
to schedule and load balance kernel execution over SMs,
blocks are assumed independent, and so no synchroniza-
tion is supported among SMs. However, the host-CPU
may launch multiple kernels at once to pipeline launch
overhead, and a stream identifier is provided to enforce
kernel execution order; kernels launched into the same
stream will execute in serial, while those in different
streams may execute asynchronously.

Throughout, global memory is the only persistent re-
source that is visible to all threads and all blocks. A pro-
gram on the host CPU is responsible for managing data
transfer to and from global memory, as well as kernel
launches.

2.3 Conjugate Gradient Algorithm and
Applications

The conjugate gradient (CG) computation on normal
equations, our target for acceleration, is an efficient and
numerically stable algorithm that can be used to solve
least squares problems [4]. Its steps are shown in Al-
gorithm 1. CG forms its least-squares estimation by it-
eratively refining search direction vectors and updating
a residual vector. The most compute intensive steps are
matrix-vector multiplications (steps 3 and 7). The re-
maining steps are a series of simple vector additions and
scalar multiplications. However, the scalar multipliers α

and β are computed from vector norms of the results of
steps 3 and 7. We will see that, if we accelerate the ma-
trix vector multiplications by parallelizing across SMs,
aggregating their results to calculate norms will be costly.

Conjugate gradient is a widely-applied optimization
algorithm in many communities, including scientific
computing, signal and image processing, and machine
learning. It is of particular interest to us due to its role
in reconstructing compressively sensed signals [2]. In
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Algorithm 1 Conjugate Gradient on Normal Equations
Input: vector y, matrix A, initial approximation vector x0
Output: vector xi

1: r0 = y−Ax0; s0 = p0 = AT r0; γ0 = ‖s0‖2
2

2: while γi > tol do
3: qi = Api
4: α = γi/‖qi‖2

2
5: xi+1 = xi +α pi
6: ri+1 = ri−αqi
7: si+1 = AT ri+1
8: γi+1 = ‖si+1‖2

2
9: β = γi+1/γi

10: pi+1 = si+1 +β pi
11: end while

compressive sensing applications, such as those in med-
ical imaging, security, spectrum sensing, and wireless
sensor networks, faster signal reconstruction translates
directly into application-level gains [5][6][7]. For exam-
ple, in CS-based spectrum sensing, faster decoding leads
directly to the ability to scan a wider frequency band
within a given delay budget [8]. GPUs are a potentially
cost-effective, portable accelerator that would make an
immediate impact for these applications.

2.4 Dense Linear Algebra on GPUs
Currently, dense linear algebraic computation is sup-
ported on the GPU primarily by CUBLAS, a package
maintained by nVidia to incorporate improvements from
the research community. It includes routines for ma-
trix and vector operations that can be decomposed into
independent blocks for batched execution over multiple
SMs, but it relies on CPU coordination when results must
be aggregated [9]. The implementation of CG provided
with CUBLAS uses these routines to implement Algo-
rithm 1, and stages the iteration loop on the CPU [10].

CUBLAS’s routines are intended as generic build-
ing blocks for linear algebra-heavy algorithms, at the
expense of sub-optimal runtime. For example, since
CPU-to-GPU communication can exhibit up to 11 µs la-
tency, coordinating on the host machine provides pro-
gramming flexibility, but introduces large delays. As
recently acknowledged by other authors, achieving best
performance on the GPU in general requires minimizing
CPU intervention [11].

3 Accelerating CG with Multiple SMs

As discussed in Section 2.3, solving a least squares prob-
lem using CG requires many iterations of the loop in Al-
gorithm 1, whose most compute-intensive steps (3 and
7) are matrix-vector multiplications. Fortunately, these
are parallelizable, and our strategy for acceleration on

the GPU is to decompose A and AT row-wise, and group
the resulting vector multiplications into different blocks.
The results must then be aggregated to compute scalar
multipliers in steps 4 and 8, as depicted in Figure 2.

In order to show how implementing CG on the GPU
leads to a significant I/O bottleneck, we first model the
idealized I/O cost of Algorithm 1. We examine the to-
tal number of operands that must be loaded from global
memory into SM shared memory for access by PUs. This
ignores the upload cost from the CPU, which is fixed and
independent of GPU architecture. We also assume that
the cost of fetching operands into PUs from SM shared
memory is negligible. The I/O cost is then:

TI/O = [(2MN +N)+λ (2N +2M)]/g (1)

Since A and AT are reused in successive iterations, we
load A, AT , and x0 once. This accounts for 2MN +N to-
tal operands when A is M×N. Then, in each iteration,
we store computed vectors s and p to global memory and
subsequently refresh them. Over λ iterations, this ac-
counts for λ (2N +2M) operands. In Equation 1, g is the
pipeline rate between global and shared memories.

Matrix-­‐Vector	
  
Mult	
  
Block	
  1	
  

Matrix-­‐Vector	
  
Mult	
  
Block	
  2	
  

Matrix-­‐Vector	
  
Mult	
  

Block	
  15	
  

SM	
  	
  1	
   SM	
  	
  2	
   SM	
  	
  15	
  

Vector	
  Norm	
  
&	
  Update	
  

	
  

Matrix-­‐Vector	
  
Mult	
  
Block	
  1	
  

Matrix-­‐Vector	
  
Mult	
  
Block	
  2	
  

Matrix-­‐Vector	
  
Mult	
  

Block	
  15	
  

…	
  

…	
  

CG	
  Line	
  3	
  

CG	
  Line	
  7	
  

CG	
  Lines	
  	
  
4-­‐6	
  

…	
  

Figure 2: A flow diagram showing the data dependency of
steps in CG. Matrix-vector multiplications are parallelizable,
but vector norms require aggregating results, leading to a need
for barrier synchronization and operand exchange.

3.1 CPU Staging

Since CUDA does not support inter-SM synchronization,
iterative algorithms must be implemented by launching
subsequent iterations as ordered kernels in a common
stream, the strategy taken by CUBLAS. This means that
the contents of caches and shared memory are flushed
and reloaded for every kernel, and reusable operands are
not persistent across iterations. For CG, we incorporate
the cost of reloading A and AT into Equation 1, and the
penalty becomes apparent:

T ′I/O = [(2MN +N)+λ (2MN +2N +2M)]/g (2)
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The I/O cost given by Equation 2 is 18x worse when
M = 128, N = 256, and λ = 20. Emprically, λ = 20
iterations are often required for CG convergence in this
setting, though at λ = 10, the I/O cost is still 9x higher
than the ideal case.

3.2 Global Memory Barrier
For reusable operands to be persistent, we must unroll
CG into a single kernel and implement a barrier for syn-
chronization and operand exchange within the lifetime
of a block. We first do this using global memory, the
only resource for communication among SMs without
CPU involvement in the current architecture. Using a
simple kernel that evalulates Aλ u over λ iterations, we
then study kernel performance. Structurally, this kernel
is similar to CG in that elements of A may be reused, and
that the most recently updated u must be aggregated at
every iteration. For the results presented, A is a 384×384
element matrix of single-precision floats, the largest that
can be accomodated by the current shared memory size.
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Figure 3: The operation of our software barrier at a single
SM with two warps. The lock incurs two sources of delays:
context switching delay, and atomic access delay. Note that
CUDA’s atomicInc() function returns the lock’s value prior
to its value being changed.

Our barrier works as follows: after guaranteeing the
visibility of interim results to other SMs, we enter the
barrier and use CUDA’s atomicInc() function to atom-
ically increment a counter in global memory, busy wait-
ing while checking the counter value. Currently, CUDA
supports a threadfence() primitive that guarantees
the visibility of memory updates independently by warp,
therefore each warp must check in at the barrier. This
is important because as the number of warps is tuned to
optimize I/O throughput, we will show that relying on
global memory for synchronization will result in an ex-
orbitant performance penalty for large numbers of warps.
Figure 3 illustrates barrier operation at an SM scheduled
with two warps.

If we examine the operand I/O of our test kernel, we
see that it is sharply reduced when compared to a corre-
sponding CPU-staged implementation, as was our goal.
For both methods, A is loaded in 5888 cycles on aver-
age, close to the theoretical lower bound. The vector u is
loaded in an average of 688 cycles, which is dominated
by the 600 cycle latency penalty to global memory. The
total observed operand I/O is reduced from 131,520 to
19,648 cycles using the global memory barrier. These
results are summarized in Figure 6. Extrapolating to CG,
which requires two matrix loads, and two vector loads
per iteration, we project a 7x reduction in operand I/O
time, a reduction that can be further improved by reduc-
ing the latency of operand exchanges.

However, the overall runtime using the global memory
barrier is worse, underscoring the poor performance of
synchronizing via global memory. As illustrated in Fig-
ure 3, there are two sources of delay in the barrier that
affect runtime: context switching time between warps,
and access delay to the lock. These delays compound
as a function of the number of warps, as shown in Fig-
ure 4. For example, with a single warp at each SM, the
barrier delay averages 1250 cycles, or only two round-
trip times to global memory, as expected. However, with
eight warps, the barrier delay is already 10,000 cycles.
Since our test kernel requires 32 warps to achieve max-
imum I/O throughput, the resulting runtime using the
synchronization barrier is an order of magnitude worse:
1.4×106 cycles vs. 2.8×105 cycles for the CPU-staged
kernel, due to high barrier overhead.
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Figure 4: The number of cycles spent in the lock at each SM
as a function of the number of warps. As warps are added to
pipeline I/O, the software barrier becomes more costly, over-
whelming I/O cost at only eight warps.

3.3 Hardware-Supported Neighbor Syn-
chronization

Low latency synchronization and operand exchange can
be achieved with relatively simple neighbor connections
between SMs, allowing us to realize runtime speedups
by reducing operand I/O. While fast all-to-all SM com-
munication is expensive and does not scale well with the
number of SMs, connections between neighbor SMs are
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Figure 5: Our proposed 1D SM-interconnection architecture
adds only inexpensive connections between adjacent SMs and
the appropriate buffers to support operand exchange.

relatively cheap and scale easily. Furthermore, any all-
to-all communication using a centralized memory unit
must ultimately service one request at a time, causing
access delay to vary signficantly, especially under high
load. This effect is apparent in our global memory bar-
rier. However, with simple neighbor communication, lo-
cal connections serve only two SMs, and many connec-
tions can operate in parallel.

Our proposed architecture is shown in Figure 5. In it,
we make the following assumptions: each pair of adja-
cent SMs is connected by a full duplex local bus with
152GB/s bandwidth, equal to that of the global mem-
ory bus; ingress and egress buffers are added for data
exchange with dedicated slots to store 32 single preci-
sion floating point operands from each SM; an additional
buffer is added to store control flags; and latency between
SMs is on the order of 10 cycles, which is half of the ob-
served latency between PUs and the current L2 cache.
In this design, only operand buffers need to be scaled
when more SMs are added, since we assume they are
large enough to hold operands from all SMs, in order to
propagate operand updates with a single transfer.

To emulate the synchronization and exchange process
when only neighbor communication is possible, we simi-
larly implement this barrier using buffers in global mem-
ory, and augment the busy-wait loop to propagate control
flags and data to neighbors. We then plug in the previ-
ous assumptions to estimate the expected performance.
Traversing the linear topology end-to-end requires 14
transfers, and transferring the contents of the data and
control buffers takes 17 cycles, leading to a total synchro-
nization and operand exchange time of only 240 cycles
per iteration. As shown in Figure 6, the resulting imple-
mentation of our test kernel would have a 15x reduction
in total I/O over the CPU-staged method. When we ex-
trapolate to CG, we achieve a similar reduction in I/O
of 15x. At the dimensions used in our test kernel, CG’s
lower bound for computation is roughly 26,000 cycles
meaning that the implementation is now compute bound
and could be sped up with additional computational re-
sources.
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Figure 6: The contribution of synchronization and data ex-
change costs to total runtime for our test kernel

4 Implications for Future GPUs

We have shown that fast synchronization and operand ex-
change between SMs are important in order to properly
leverage loop unrolling in iterative algorithms. With-
out such support, current GPU architectures from both
nVidia and ATI/AMD induce heavy operand I/O, reduc-
ing compute-to-I/O ratio, and therefore available paral-
lel processing opportunities. As future generations of
GPUs scale computational resources, inter-SM commu-
nication would alleviate these I/O limitations at low hard-
ware cost. For a large class of iterative parallelizable al-
gorithms, these steps are necessary to achieve the benefit
of additional computational power.

With neighbor interconnections already a feature of
some other parallel processors (e.g. the Cell Broadband
Engine [12], and [13]), efficient use of loop unrolling has
been a standard compiler optimization in the literature.
Discussions of this capability include [14] and [15]. It is
therefore reasonable to expect that this optimization can
be readily integrated into the CUDA compiler.

5 Conclusion

GPUs are an attractive many-core platform due to their
cost, availability, and scalable architecture; however
without low-latency hardware-supported intercommuni-
cation between SMs, they are ineffective for accelerat-
ing a large class of iterative parallelizable algorithms.
Given the capabilities of existing compilers and common
parallel processors, and the myriad waiting applications
such as those relying upon high-performance compres-
sive sensing decoding, the GPU architecture itself is cur-
rently the biggest bottleneck to these applications. We
have shown that simply adding cheap neighbor intercon-
nections will lead to significant gains and allow gen-
eral purpose GPU computing to accelerate similar matrix
computations.
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