
Writing data-centric concurrent programs in imperative languages

Russell Sears
Yahoo! Research

Christopher Douglas
Yahoo! Research

Abstract
Declarative languages have been proposed for use in
concurrent and distributed system development. In this
work, we argue that the primary benefits of such lan-
guages come not from their declarative nature, but in-
stead from the design patterns they espouse.

We explain how to apply these design patterns to C
and Java and present two examples: a highly concurrent
transactional storage system and a distributed storage im-
plementation. We use case studies to highlight problems
in current imperative and declarative approaches.

Compared to conventional imperative approaches, the
additional rigor imposed by our approach improves testa-
bility and enables a wider range of systematic optimiza-
tion and parallelization techniques. We inherit these
properties from the declarative languages we mimic. The
resulting implementations are structured as programs in
those languages would be: they consist of view mainte-
nance routines and asynchronous event handlers.

However, our use of manually generated code allows
us to leverage the full range of imperative programming
techniques. In particular, performance constraints some-
times force us to use techniques such as deadlock avoid-
ance, invariant weakening, and lock-free updates. Such
techniques are unavailable in current declarative run-
times; their correctness requires reasoning beyond the
capabilities of current software synthesis systems.

Over time we expect higher level languages to improve
dramatically, and we hope that some of our techniques
will inform their designs. However, our concerns are
more immediate: one of our systems is already in pro-
duction, and development of the other is underway.

1 Introduction

Increased hardware concurrency presents a major chal-
lenge to software engineers. Hardware advances increase
core counts and interconnect bandwidth, and therefore,

the relative latency of interconnects throughout the mem-
ory hierarchy. Furthermore, solid state disks have in-
creased I/O parallelism and bandwidth. Similarly, net-
work bandwidth, but not latency, continues to improve.

These trends continuously expose software concur-
rency bottlenecks, leading to a vicious cycle: the fre-
quency with which software must be revised has in-
creased dramatically and the intellectual burden associ-
ated with scaling to current hardware (and testing the
resulting system) increases each year. This exacerbates
two problems with current development processes:

• Improved testing and verification are needed to cope
with the increased complexity.

• Over the years, as new bottlenecks arise, develop-
ers must be able to modify the code and convince
themselves of the correctness of the modifications.

We begin with a high-level overview of our approach.
We then turn to a discussion of real-world case studies, in
order of increasing sophistication. The first two describe
our experiences rewriting legacy modules and focus on
concurrency issues. The last two are based on our ex-
periences building replication and caching services from
scratch; we extend the ideas to incorporate error handling
and software engineering issues. We conclude the paper
with a discussion of open research directions.

2 Overview

A number of declarative languages target system devel-
opment, and have been shown to be appropriate for state
management [21], concurrent software development [33,
47] and network protocol implementations [2, 29]. Our
work is based on the observation that programs written in
such languages are structured differently than those writ-
ten in imperative languages. Rather than adopt declara-
tive languages, we apply data-centric design patterns to
languages such as C and Java.



Data-centric designs have a number of distinguishing
properties:

1. They are factored into state maintenance logic
(models) and state transition functions (controllers)
that are invoked by external code.1 Together, mod-
els and controllers specify relational transducers
that communicate by sending and receiving tuples.

2. The model consists of two types of relations: muta-
ble base tables and read-only views. The views are
formally specified [34] using relational calculus.

3. The controller consists of guards (pre-conditions)
and state transitions (post-conditions) that are,
again, specified in relational calculus [29, 2].

4. Finally, we specify weakened invariants that hold
while the transition is executed, and therefore must
be implied by both the pre- and post-conditions. We
call such invariants during-conditions.

Having specified the system, we manually translate the
specification into imperative code. If concurrency is of
no concern we omit during-conditions and instead use
coarse-grained locks. This leads to a tedious but straight-
forward translation process and yields code comparable
to current declarative systems (Sections 3.1 and 3.2).

We have found that, for sufficiently complicated mod-
ules, this process is much faster than ad hoc approaches;
the time taken to produce a specification and perform the
translation by hand is dwarfed by the time needed to de-
bug ad hoc code. Indeed, our early case studies were not
implemented to validate the techniques presented here.
Instead, we scrapped and rewrote existing ad hoc imple-
mentations after failing to track down bugs in our origi-
nal attempts (Section 3.3).

The introduction of during-conditions allows us to
leverage implementation techniques that are unavailable
to existing declarative programs. However, it signifi-
cantly complicates matters; otherwise language runtimes
would incorporate such optimizations.

One must produce a specification that is both correct
and implementable using the techniques at hand. In gen-
eral, mapping from specification to code is no longer pos-
sible using current automated techniques, and may re-
quire extremely complex reasoning (e.g., [10, 30, 25, 8]).
We cover simple approaches in Sections 3.1 and 3.2, and
complex ones in Sections 3.4 and 4. It is the observa-
tion that automated techniques ultimately fail to generate
such code that leads us to avoid their use, even for simple
non-concurrent modules.

1These terms are borrowed from model-view-controller GUI pro-
gramming frameworks, which are designed to simplify asynchronous
program development [28].

∈ XidAlloced ∉ XidAlloced

∈
 X

id
D

e
a
llo

ce
d

∉
 X

id
D

e
a
llo

ce
d

∈ PageOwners

∈
 A

v
a
ila

b
le

Pa
g

e
s

Figure 1: Partial allocation policy state machine. Com-
pared to the complete relational specification (Equa-
tions 1 and 2), the state machine is unwieldy and unin-
formative.

This approach to software development works equally
well with existing code. Instead of starting with a formal
specification, we take existing modules, infer a specifi-
cation (this often reveals bugs or fundamental problems),
and reimplement the module using the above guidelines.
We treat method invocations (and return values) as tu-
ples. Depending on the legacy interface, we encode col-
umn values as method parameters or object fields.

3 Allocator case study

Our first case study is a record allocator from Stasis,
a high-performance transactional storage system [35].
The allocator manages metadata for other, higher perfor-
mance storage layouts [36, 37]. It consists of methods
that manipulate pages and generate log entries, and a pol-
icy module that tracks space allocation and deallocation,
places records on disk, and maintains invariants required
by recovery. Although its correctness is crucial, concur-
rency and processing bottlenecks in the allocation policy
have not yet become practical issues: it is protected by a
single coarse-grained mutex.

Unlike traditional allocators, transactional allocators
must isolate transactions from each other. In particular,
space that was freed by in-progress transactions cannot
be reused by other transactions.

3.1 State maintenance
We begin by specifying the allocation policy’s state,
which consists of three base tables:

AllPages: _pageid_, freespace

XidAlloced: _xid_, _pageid_

XidDealloced: _xid_, _pageid_

The ’s surrounding column names denote the pri-
mary keys of the tables. Furthermore, XidAlloced

and XidDealloced are indexed both by pageid and
by transaction id (xid). The AllPages relation con-
tains the pageid and current freespace of all pages

2



A
v
o
id

 u
n

re
co

v
e
ra

b
le

 s
ch

e
d

u
le

s

M
e
m

o
ry

 l
e
a
ks

Fi
x
 a

ss
e
rt

 f
a
ilu

re
s 

d
u

e
 t

o
u

n
im

p
le

m
e
n

te
d

 "
im

p
o
ss

ib
le

"
co

rn
e
r 

ca
se

E
x
p

o
se

 p
ri

v
a
te

 s
ta

te
 t

o
 c

a
lle

rs

R
e
w

ri
te

 u
s
in

g
 v

ie
w

 m
a
in

te
n

a
n

c
e

a
n

d
 d

is
o
rd

e
rl

y
 p

a
tt

e
rn

s

A
d

d
 fl

a
g

 t
o
 t

o
g

g
le

 b
e
tw

e
e
n

 t
w

o
v
a
lid

 r
e
u

se
 p

o
lic

ie
s

In
co

rr
e
ct

 p
o
lic

y
 /

 p
a
rt

ia
l 
re

w
ri

te
m

u
lt

ip
le

 a
ss

o
rt

e
d

 b
u

g
 fi

xe
s

Figure 2: Six years of allocation policy revisions. Most
bugs led to weeks or months of debugging effort.

known to the allocation policy. Each time a transac-
tion allocates or deallocates a record on a page, a tu-
ple is added to XidAlloced or XidDealloced, respec-
tively. When a transaction commits, its entries are re-
moved from XidAlloced and XidDealloced.

These tables are represented using red-black trees
that implement an ordered set API, but any stan-
dard data structure would suffice. XidAlloced and
XidDealloced each have two indexes, yielding two red-
black trees per relation. AllPages is only indexed by
pageid and is represented by one tree. In addition to the
base tables, we maintain two materialized views:

AvailablePages: _pageid_, freespace

PageOwners: xid, freespace, _pageid_

AvailablePages is the set of pages with free space
that can be reused by any transaction. In other words,
it contains the rows of AllPages with no entries in
XidAlloced or XidDealloced:

{p ∈ AllPages :

p /∈ XidAlloced∧ p /∈ XidDealloced} (1)

PageOwners is a set of (page, transaction) pairs that
tracks pages that transactions should continue to use (and
can safely use) for future allocations:

{p ∈ XidAlloced : ∀q ∈ XidDealloced∪XidAlloced :

p.page = q.page⇒ p.xid = q.xid} (2)

PageOwners excludes pages with multiple entries in
XidAlloced not for correctness, but to group related
records (ones allocated by the same transaction) on disk,
which reduces contention and improves locality [8].

To date, we have found that relational calculus expres-
sions such as these clearly capture the runtime invari-
ants of the systems we build, matching previous find-
ings [2, 6, 42].

We have attempted to specify systems using state ma-
chines (Figure 1), but found that the results were too un-
wieldy to reason about or implement, and that they were
not particularly amenable to verification techniques. The
problem is that, for each additional table in our relational
specification, the number of states in the analogous state
machine doubles. In our allocator example pages can be
in XidAlloced, XidDealloced, AvailablePages and
PageOwners, leading to 24 = 16 potential states. Even
with the combinatorial explosion, these states do not cap-
ture sufficient detail about the state of the system, such
as which transactions caused the page to transition to its
current state.

A rich literature covers the techniques surrounding
materialized view maintenance in relational settings [13,
34]. There, the primary challenge is to choose an appro-
priate update strategy given an expected workload. We
have found that humans are reasonably good at choosing
between various update strategies and manually trans-
lating view specifications into imperative code. We use
coding conventions to facilitate the translation.

Helper methods maintain relations by atomically
adding and removing tuples from the relevant trees.
All modifications are performed against the base tables.
Methods that modify base tables also perform material-
ized view maintenance, making it easy to confirm that
the views are correctly maintained. For example, the fol-
lowing method adds a tuple to the AllPages relation:

allPages_add(allocation_policy * ap,

pageid_t pageid, size_t freespace) {

allPages_pageid_freespace tup = {

pageid, freespace

};

int existed = set_add(tup, ap->allPages_pageid);

if(!existed) {

int existed2 =

availablePages_add(ap, pageid, freespace);

assert(!existed2);

}

return existed;

}

Note the use of naming conventions and types: rela-
tions’ trees are named relation key1 key2 ... and
struct type names encode the relation name and
schema.

Furthermore, note that the method does not make any
assumptions about the order in which it is called rela-
tive to other view maintenance functions. Section 3.3
explains why avoiding such assumptions is crucial.

The method relies on an invariant not mentioned
above: XidAlloced and XidDealloced are subsets of
AllPages.2 Also, the assert verifies a logical conse-
quence of AvailablePages’s specification. With these

2This invariant is maintained by the other allocation policy con-
trollers, not by relying upon callers’ good behavior.

3



observations, it is easy to see that the method implements
the specification. Similar analysis of the other methods
shows the views are correctly maintained.

3.2 State transition functions
This section explains how we specify and implement
state transition functions that translate from module APIs
to calls into the state maintenance code described above.

A number of declarative languages translate from
state machine specifications to efficient implementations.
Furthermore, state machine verification is well stud-
ied [17], as are problems of direct interest to us, such
as state reachability in networks of communicating au-
tomata [12].

Rather than working directly with state machines,
we prefer to specify systems using relational transduc-
ers [41]. This has a number of advantages: the relations
and views we specify above correspond directly to trans-
ducer states, state transition specifications are written in
relational calculus, the same language as view specifi-
cations, and, as above, translations from specification to
imperative code are straightforward.

The method that handles completed transactions pro-
vides a concise example. Formally, and then in C:

transaction complete(xid) :

XidAlloced := {p ∈ XidAlloced : p.xid 6= xid}

XidDealloced := {p ∈ XidDealloced : p.xid 6= xid}

void transaction_complete(allocation_policy * ap,

transaction_id xid) {

pageid_t *pids; int count; // OUT params

xidAlloced_select_by_xid(ap, xid, &pids, &count);

for(int i = 0; i < count; i++) {

xidAlloced_remove(ap, xid, pids[i]);

}

free(pids);

// Same for xidDealloced.

}

3.3 Experiences
Figure 2 summarizes the changes made to the allocation
policy since it was introduced in Stasis revision 598. In
some sense, the initial version was data-centric; it main-
tained sets at runtime and inferred the states of pages
based on the sets they were present in. However, it mixed
view maintenance and event handler logic, and was writ-
ten in an orderly style; the calling code never performed
certain transitions, so these transitions were left unimple-
mented. Other transitions were explicitly disallowed.

This led to three of the five bugs discovered before the
design was scrapped, and created problems in the rest of
the allocator implementation.

As one might imagine, allocator bugs are extremely
difficult to track down. Each revision was tested exten-
sively before being committed to source control. Most
bugs that made it past testing persisted for years and took
weeks to track down after manifesting.

Revision 1222 is a rewrite of the allocation policy. It
implemented a correct policy, but not the policy required
by Stasis’ logging discipline. This was detected and fixed
almost immediately, in revision 1227.

Ultimately, the rewrite was not due to a bug in the
allocation policy, but instead due to a bug in a related
module. At that point, we were unable to reason about
the allocation policy’s correctness, and opted to rewrite
it from scratch. Doing so took a few days, and (more
importantly) we have not had significant problems with
this module since the rewrite. The current code is easier
to read and understand than the previous iteration, and it
helped expose the related bug.

The new allocation policy consists of three relations,
two views and seven controller methods, and is imple-
mented with red-black trees and 500 lines of code. Each
method can be verified in isolation; the longest method
is 32 lines of code.

3.4 Introducing concurrency
This section explains how we could modify the allo-
cation policy to make use of finer-grained concurrency
control. Rather than use a mutex to protect the allo-
cation policy’s state, we rely upon test-and-set opera-
tions exposed by concurrent data structure implementa-
tions [20, 32]. The difficulty is that each change to the
allocation policy’s state results in multiple index opera-
tions, allowing other threads to observe partial updates.

For instance, XidAlloced is backed by two indexes.
We could implement updates by carefully ordering in-
dex operations. One index (say the one keyed by xid,

pageid) would represent ground truth; the other would
accelerate lookups into the first, yielding the following
during-conditions:

XidAlloced = XidAlloced xid pageid

XidAlloced xid pageid ⊆ XidAlloced pageid xid

Of course, the controller implementation can rely on
facts implied by the specification:

p /∈ XidAlloced pageid xid⇒ p /∈ XidAlloced

We would maintain these weakened invariants by
inserting into XidAlloced pageid xid before
XidAlloced xid pageid and performing deletions in
the opposite order.

Operations that manipulate multiple tuples require
similar attention. Removing the mutex that protects

4



transaction complete would prevent it from be-
ing atomic, leading to the following during-condition:
“The absence of a page from XidAlloced and
XidDealloced implies that no active transaction has al-
located / deallocated from the page.”

The analogous statement in the current specification
is an if-and-only-if; we have reduced a set equality to a
logical implication.

4 Buffer manager case study

The allocation policy deals exclusively with in-memory
state. In contrast, the Stasis buffer manager interacts with
disks and allows many I/O operations to be outstand-
ing at once while preventing requests for unrelated data
from interfering with each other. Furthermore, accessing
cached data should be as fast as possible.

The mismatch in performance between disk and in-
memory operations significantly complicates the design:
short-running operations must not be blocked by unre-
lated long-running operations and, therefore, observe the
system’s state when such operations are in process.

We could deal with this by introducing additional
states (“reading” and “writing” in the case of page
buffers), further complicating the specification.

Instead, we opt to hide the additional transitions be-
hind fine-grained mutexes. A bucket mutex protects the
hashtable bucket that maps from pageid to the buffer.
While holding the bucket lock, we atomically manipu-
late various pieces of in-memory state associated with
the page, and then lock the page. We release the bucket,
and, if necessary, initiate page I/O.

Although this technique is general-purpose, it re-
quires non-standard functionality from the underlying
data structure: all data structure operations are split into
two phases. The first phase locates any existing data and
obtains the appropriate mutex; the second either com-
pletes or cancels the operation, and releases the mutex.

Our buffer manager also incorporates protocols that
vary lock orders depending on related page states. De-
termining that such protocols are correct requires careful
reasoning about the related state invariants and transition
functions. Automatic generation of such protocols is still
beyond the state of the art (Section 6).

5 Network case studies

Our final two case studies are the replication protocol and
metadata caching service of Walnut [11], a distributed
storage system under development at Yahoo!. Unlike
our other case studies, these systems are asynchronous:
in order to make a request, the system sends a message.
When a response arrives, a callback is invoked. As in the

underlying network, message delivery is best effort (at
most once), and most failures are treated as timeouts. We
implement this by disallowing controller (and network
transport) methods that return values or throw non-fatal
exceptions. Such asynchrony eliminates the major prob-
lems with RPC: error-handling at the call site, and the
latency of synchronous remote method invocations [43].

It also allows us to manipulate scheduling of compu-
tation during testing and at runtime without changing the
event handling logic. This simplifies the use of auto-
mated testing tools [38, 39], and enables optimizations
such as SEDA’s thread pool sizing [44] and Cilk’s work-
stealing [9]. Furthermore, it hides framework-specific in-
terfaces such as futures [7] behind clean APIs, preventing
them from obfuscating the protocol implementation.

These network protocols are the first data-centric sys-
tems that we have built within multi-member teams. Al-
though the specifications provide detailed descriptions of
system semantics, they are unapproachable by people un-
familiar with the overall system design. One solution is
to provide sequence diagrams that illustrate the ordering
and flow of messages and events in various scenarios.
Indeed, we naturally arrange controller methods in such
orders, as doing so improves program readability.

6 Related work

A number of languages, libraries and programming lan-
guage tools inspired our work.

Dataflow systems such as MapReduce [16],
Dryad [23] and Click [27] achieve parallelism by
restricting programs to conform to predefined dataflows
and concurrency models, making them inappropriate
for system implementation work. Concurrency control
mechanisms such as lock managers and multi-version
concurrency control allow SQL queries to safely perform
arbitrary reads and writes. These mechanisms rely on
transaction rollback and cope poorly with contention,
leading to unpredictable latencies and throughput
collapse [1, 19, 33].

A recent study of existing imperative programs finds
that most systems resort to ad hoc synchronization prim-
itives, and that, unlike mutexes, such techniques are ex-
tremely error prone. In particular, it is difficult to locate,
let alone verify, the use of many such primitives with-
out proper documentation. This leads to maintainability
problems and bugs [46]. We address these concerns by
isolating the use of such primitives to modules with well-
defined concurrency semantics.

Languages such as Deputy [14] and CQual have ex-
plicit support for pre-conditions and post-conditions, and
statically guarantee that functions have desirable proper-
ties such as memory safety. Such techniques are closely

5



related to our work; one possibility is to extend their
analysis to support concurrency control annotations.

Orth’s [45] authors propose dividing program state
into “orthogonal” relations, views and state transition
logic, which would be statically optimized by the com-
piler. Later representation synthesis languages [21] use
relational view definitions and application traces to gen-
erate optimized C code. We extend this to concurrent
software, and borrow the idea of disorderly program-
ming [3] to correctly manipulate the underlying state, re-
gardless of application control flow. Furthermore, our
approach does not require specialized languages or de-
velopment tools.

The Overlog [29], Dedalus [4] and Bloom [3] lan-
guages extend Datalog for asynchronous distributed sys-
tem development. Although their syntax is beyond the
scope of this paper, the following Overlog rule is equiv-
alent to the definition of AvailablePages above:

AvailablePages(pageid,freespace) :-

AllPages(pageid,freespace),

notin XidAlloced(_,pageid),

notin XidDealloced(_,pageid);

Like our work, programs written in these languages
are naturally factored into view and controller logic.
Techniques that parallelize their evaluation fall into three
categories: concurrency control (discussed above), static
partitioning and static monotonicity checks.

Partitioning finds updates that cannot conflict. When
applied to databases [15, 18, 24], these techniques lever-
age runtime data, aggressively partition, and fall back to
more expensive synchronization when necessary. Such
techniques are workload dependent, and often rely upon
transactional or other non-standard primitives, making
them difficult to apply outside of database environments.

Monotonicity checks such as CALM [3] examine the
structure of logic computations, and infer that certain
computations (such as those without negation or aggre-
gation) are embarrassingly parallel [5]. Such techniques
can be applied directly to our specifications.

Each of these three techniques is promising, but none
is applicable in all circumstances. We know of no declar-
ative environment that incorporates the range of available
techniques. Building such a runtime would be challeng-
ing, to say the least.

We believe the close relationship between these logic
languages and our approach opens up the possibility of
improved testability for imperative programs. Recent
work on unit testing in Bloom demonstrates that thor-
ough tests can be implemented with minimal effort [22].
Furthermore, a wide range of automated testing tech-
niques for imperative languages are based upon theorem
provers with knowledge of first order logic, and have
been applied to small programs [38]. We suggest a two-
tier approach to testing, where the specification is proven

correct, and then each imperative method is shown to im-
plement the corresponding portion of the specification.
This mirrors the approach taken by existing large scale
software verification efforts [26].

Finally, software synthesis takes declarative ap-
proaches one step further, and uses techniques such as
constraint solvers and theorem provers to generate ex-
ecutable programs from incomplete specifications [31,
40]. Such systems could be used to “flesh out” speci-
fications of our during-conditions, and also to automat-
ically generate portions of the view and controller logic
that are beyond the capabilities of other declarative tech-
niques. Since the focus is on generating method bodies
during compilation, such tools can be applied to compu-
tationally hard program generation tasks.

7 Conclusion

Our data-centric imperative software designs are based
on formal specifications that mimic programming styles
from declarative networking. Our specifications extend
those languages with during-conditions which provide
for weakened invariants while updates are in progress.

Manual translation of specifications to code provides
developers with the full range of imperative concurrency
control primitives. Our specifications are written with
varying degrees of rigor, as we have focused our devel-
opment efforts on the most problematic modules.

This “pay as you go” approach to data-centric software
development has greatly improved our development pro-
cess. For sufficiently complicated modules, the up front
cost of writing specifications is more than paid for during
testing and debugging. Furthermore, we have success-
fully retrofitted existing systems with data-centric mod-
ules, and have interfaced data-centric servers with a num-
ber of event and threading frameworks.

Although we currently develop without the aid of spe-
cialized tools, automatic verification of data-centric code
should be significantly easier than verification of tradi-
tional system implementations: method implementations
are extremely stylized, and abstract away complicated
control flow and other intra-module dependencies. Fur-
thermore, though our specifications are currently writ-
ten for humans, they could easily be written in machine-
readable forms for the purposes of formal verification
and automated testing. Similarly, it may be possible to
build software synthesis tools to generate sets of feasible
during-conditions, or to translate from our concurrency
control sketches to imperative code.

Data-centric programming has greatly aided our ef-
forts to build highly concurrent, production quality sys-
tems; we believe that further research and improved tool-
ing will yield significant improvements.

6



8 Acknowledgments

We would like to thank Philip Bohannon, Tyson Condie,
Raghu Ramakrishnan and the anonymous reviewers;
their suggestions greatly improved the presentation of
this work. Much of this work was done during our in-
teractions with Joe Hellerstein’s group during the de-
velopment of Overlog and Dedalus. Markus Weimer
coined the term during-condition. Patrick Quaid reverse-
engineered sequence diagrams from our code. Michi
Mutsuzaki and Jianjun Chen graciously tolerated our
sometimes pedantic objections to idiomatic language
constructs. Daniel Wilkerson, Ras Bodik and Eran Ya-
hav provided feedback and references to related work.

References
[1] AGRAWAL, R., CAREY, M. J., AND LIVNY, M. Concurrency

control performance modeling: Alternatives and implications.
ACM Transactions on Database Systems (1987).

[2] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K.,
HELLERSTEIN, J. M., AND SEARS, R. Boom analytics: ex-
ploring data-centric, declarative programming for the cloud. In
EuroSys (2010), pp. 223–236.

[3] ALVARO, P., CONWAY, N., HELLERSTEIN, J., AND MARCZAK,
W. R. Consistency analysis in bloom: a CALM and collected
approach. In CIDR (2011), pp. 249–260.

[4] ALVARO, P., MARCZAK, W., CONWAY, N., HELLERSTEIN, J.,
MAIER, D., AND SEARS, R. Dedalus: Datalog in time and
space. Datalog Reloaded (2011), 262–281.

[5] AMELOOT, T. J., NEVEN, F., AND DEN BUSSCHE, J. V.
Relational transducers for declarative networking. CoRR
abs/1012.2858 (2010).

[6] ASHLEY-ROLLMAN, M., DE ROSA, M., SRINIVASA, S., PIL-
LAI, P., GOLDSTEIN, S., AND CAMPBELL, J. Declarative pro-
gramming for modular robots. Workshop on Self-Reconfigurable
Robots/Systems and Applications at IROS (2007).

[7] BAKER, H., AND HEWITT, C. Incremental garbage collection of
processes. Tech. Rep. 454, MIT AI Lab, Dec. 1978.

[8] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: A scalable memory allocator for mul-
tithreaded applications. ACM SIGPLAN Notices 35, 11 (2000),
117–128.

[9] BLUMOFE, R., ET AL. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed Computing 37, 1
(1996), 55–69.

[10] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DOVICH, N. An analysis of Linux scalability to many cores. In
OSDI (2010), pp. 1–8.

[11] CHEN, J., DOUGLAS, C., MUTSUZAKI, M., QUAID, P., RA-
MAKRISHNAN, R., RAO, S., AND SEARS, R. Walnut: A unified
cloud object store. In Sigmod (2012).

[12] CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. Au-
tomatic verification of finite-state concurrent systems using tem-
poral logic specifications. ACM Trans. Program. Lang. Syst. 8
(April 1986), 244–263.

[13] CONDIE, T., CHU, D., HELLERSTEIN, J., AND MANIATIS, P.
Evita raced: metacompilation for declarative networks. Proceed-
ings of the VLDB Endowment 1, 1 (2008), 1153–1165.

[14] COOPRIDER, N., ARCHER, W., EIDE, E., GAY, D., AND
REGEHR, J. Efficient memory safety for TinyOS. In Proceed-
ings of the 5th international conference on Embedded networked
sensor systems (2007), ACM, pp. 205–218.

[15] CURINO, C., ZHANG, Y., JONES, E. P. C., AND MADDEN, S.
Schism: a workload-driven approach to database replication and
partitioning. PVLDB 3, 1 (2010), 48–57.

[16] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data
processing on large clusters. In OSDI (2004).

[17] DEUTSCH, A., SUI, L., AND VIANU, V. Specification and
verification of data-driven web services. In Proceedings of
the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems (2004), ACM, pp. 71–82.

[18] GANGULY, S., SILBERSCHATZ, A., AND TSUR, S. A frame-
work for the parallel processing of datalog queries. In SIGMOD
(ACM Press, 1990), pp. 143–152.

[19] GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. The
dangers of replication and a solution. In In Proceedings of the
1996 ACM SIGMOD International Conference on Management
of Data (1996), pp. 173–182.

[20] HANKE, OTTMANN, AND SOISALON-SOININEN. Relaxed bal-
anced red-black trees. In CIAC: Italian Conference on Algorithms
and Complexity (1997).

[21] HAWKINS, P., AIKEN, A., FISHER, K., RINARD, M., AND SA-
GIV, M. Data representation synthesis. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language de-
sign and implementation (2011), ACM, pp. 38–49.

[22] HELLERSTEIN., P. BloomUnit: Declarative testing for dis-
tributed programs. In DBTest (2012).

[23] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. In EuroSys (2007).

[24] JONES, E. P. C., ABADI, D. J., AND MADDEN, S. Low
overhead concurrency control for partitioned main memory
databases. In SIGMOD Conference (2010), A. K. Elmagarmid
and D. Agrawal, Eds., ACM, pp. 603–614.

[25] JOUKOV, N., TRAEGER, A., IYER, R., WRIGHT, C., AND
ZADOK, E. Operating system profiling via latency analysis. In
Proceedings of the 7th symposium on Operating systems design
and implementation (2006), USENIX Association, pp. 89–102.

[26] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd Symposium on Operating Systems Prin-
ciples (22nd SOSP’09), Operating Systems Review (OSR) (Big
Sky, MT, Oct. 2009), ACM SIGOPS, pp. 207–220.

[27] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans. Com-
put. Syst. 18, 3 (August 2000), 263–297.

[28] KRASNER, G. E., AND POPE, S. T. A description of the model-
view-controller user interface paradigm in the Smalltalk-80 sys-
tem. Journal of Object Oriented Programming (1988).

[29] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing declarative over-
lays. In SOSP (2005), pp. 75–90.

[30] MICHAEL, M. M. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS) PDS-15, 6 (June 2004), 491–504.

[31] MORGENSTERN, A., AND SCHNEIDER, K. Program sketch-
ing via CTL* model checking. In SPIN (2011), A. Groce and
M. Musuvathi, Eds., vol. 6823 of Lecture Notes in Computer Sci-
ence, Springer, pp. 126–143.

7



[32] PUGH, W. Concurrent maintenance of skip lists. Technical Re-
port CS-TR-2222, University of Maryland, College Park, June
1990.

[33] RAMAKRISHNAN, R., AND GEHRKE, J. Database Management
Systems. McGraw Hill, 2003.

[34] ROSS, K., SRIVASTAVA, D., AND SUDARSHAN, S. Material-
ized view maintenance and integrity constraint checking: Trading
space for time. In ACM SIGMOD Record (1996), vol. 25, ACM,
pp. 447–458.

[35] SEARS, R., AND BREWER, E. Stasis: Flexible transactional stor-
age. In OSDI (2006).

[36] SEARS, R., CALLAGHAN, M., AND BREWER, E. Rose: com-
pressed, log-structured replication. VLDB (2008).

[37] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A general pur-
pose log structured merge tree. In SIGMOD (2012).

[38] SEN, K. Concolic testing. In 22nd International Conference
on Automated Software Engineering (ASE 2007) (Nov. 2007),
pp. 571–572.

[39] SIMSA, J., BRYANT, R., AND GIBSON, G. A. dBug: Systematic
testing of unmodified distributed and multi-threaded systems. In
SPIN (2011), A. Groce and M. Musuvathi, Eds., vol. 6823 of
Lecture Notes in Computer Science, Springer, pp. 188–193.

[40] SOLAR-LEZAMA, A., ARNOLD, G., TANCAU, L., BODIK, R.,
SARASWAT, V., AND SESHIA, S. Sketching stencils. ACM SIG-
PLAN Notices 42, 6 (June 2007), 167–178.

[41] SPIELMANN, M. Verification of relational tranducers for elec-
tronic commerce. In PODS (2000), ACM, pp. 92–103.

[42] SZEKELY, B., AND TORRES, E. A Paxon evaluation of P2, 2005.

[43] TANENBAUM, A. S., AND VAN RENESSE, R. A critique of the
remote procedure call paradigm. In Proc. of the EUTECO 88
Conf. (Vienna, Austria, Apr. 1988), R. Speth, Ed., North-Holland,
pp. 775–783.

[44] WELSH, M., CULLER, D., AND BREWER, E. SEDA: an archi-
tecture for well-conditioned, scalable Internet services. Operat-
ing Systems Review 35, 5 (Dec. 2001), 230–243.

[45] WILKERSON, D. S., AND GOLDSMITH, S. F. Orth: Orthogonal
programming. Unpublished, July 2005.

[46] XIONG, W., PARK, S., ZHANG, J., ZHOU, Y., AND MA, Z.
Ad hoc synchronization considered harmful. In OSDI (2010),
vol. 10, pp. 163–176.

[47] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
Ú., GUNDA, P. K., AND CURREY, J. DryadLINQ: A system
for general-purpose distributed data-parallel computing using a
high-level language. In OSDI (2008), pp. 1–14.

8


