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Abstract

Multicore processors are already ubiquitous and are now
the targets of hundreds of thousands of applications. Due
to a variety of reasons parallel programming has not been
widely adopted to program even current homogeneous,
known-resource multicore processors. Future multicore
processors will be heterogeneous, be increasingly less
reliable, and operate in environments with dynamically
changing operating conditions. With energy efficiency
as a primary goal, they will present even more paral-
lel execution challenges to the masses of unsophisticated
programmers. Rather than attempt to make parallel pro-
gramming more practical by chipping away at the mul-
titude of its known drawbacks, we argue that sequential
programs and their dynamic parallel execution is a better
model. The paper outlines how to achieve: (i) dynamic
parallel execution from a suitably-written statically se-
quential program, (ii) energy-efficient execution by dy-
namically and continuously controlling the parallelism,
and (iii) a low-overhead precise-restartable parallel exe-
cution.

1 Introduction

The computing landscape continues to evolve at a phe-
nomenal rate, placing new demands on hardware and
software design. A decade ago, when multicore pro-
cessors became commonplace, desktops (and traditional
servers) accounted for the bulk of computing and perfor-
mance was still the primary design objective (though en-
ergy efficiency was rapidly gaining importance). A rel-
atively small number of software vendors typically cre-
ated “shrink-wrapped” applications on desktops. Today,
mobile devices have significantly expanded computing at
the low end, and cloud computing at the high end. Multi-
core processors are being used across this spectrum. En-
ergy efficiency has now become the primary design ob-
jective. The number of software vendors has increased

dramatically, creating hundreds of thousands of applica-
tions to run on these diverse computing devices. Thus the
importance of the ease of writing programs that will run
in parallel (to achieve energy efficiency and/or perfor-
mance) on a diverse set of devices continues to increase.

Most of the computing community has responded to
the parallelism challenge by trying to increase the preva-
lence of parallel programming—to make parallel pro-
gramming synonymous with programming. There has
been a plethora of work in this direction, at all levels.
Examples include introducing parallel programming into
introductory classes so that, with the passage of time,
parallel programming will become the default [5], pro-
viding parallel languages and libraries to alleviate the
burden of parallel programming [3, 10, 11, 17, 21, 22, 33,
37], providing tools to address the complexities of paral-
lel programs (e.g., non-determinism) [9,18,24,25,41,44]
as well as models to facilitate the creation of parallel pro-
grams [21,37].

While the research community endeavors to make
parallel programming practical, the characteristics of
computing environments (both hardware and software)
as well as the likely applications of computing con-
tinue to change in meaningful ways that will make the
goal daunting. Computing hardware is already transi-
tioning from homogeneous processing cores, which are
the default assumption for parallel processing, to het-
erogeneous processing cores with disparate energy con-
sumption/performance characteristics [1]. Going further,
pushing the limits of semiconductor technology will
make computing hardware increasingly unreliable [2],
and thus the capabilities of the available pool of re-
sources will vary dynamically. Techniques to manage
heat, temperature, and energy, as well as demands of
other (statically unknown) software applications will fur-
ther increase the uncertainty in the precise knowledge
of resources available to execute a program. With more
use of techniques like server consolidation, the mix of
the different simultaneously running applications will in-
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crease and to provide differentiated levels of service it is
likely that resources (e.g., cores) available to an appli-
cation (especially a lower-priority one) will change dy-
namically and often without notice [42]. In short, it will
be unreasonable to expect the availability of a given (or
constant) number of resources (e.g., cores) to process an
application, a norm for contemporary parallel program-
ming techniques, as well as operating systems.

Coupled with the uncertainty in available hardware re-
sources will be an increasing number of programmers.
No longer will most software be written by a small
number of teams of experts. Rather, software will be
created by a multitude of programmers who will rely
on techniques, such as abstraction, encapsulation, and
modularity that have been taught for decades. They will
know about parallel algorithms and parallelism, but will
not want to write statically-parallel programs. They will
want their applications to run in a variety of different
computing scenarios without detailed (or perhaps even
any) knowledge of the multitude of different microar-
chitectures (or even ISAs), or their fault characteristics,
or the software environments on which the dynamic in-
stances of the application programs may run. Yet, to
achieve performance and energy goals, parallel execu-
tion will have to be exploited on these systems.

The multi-objective goal then is towrite ubiquitous
programs for which reliable, energy-efficient, parallel
execution can be achieved while remaining agnostic of
the dynamically (and potentially continuously) chang-
ing computing scenarios. We don’t believe this will be
achieved by parallel programming techniques. Rather,
we believe sequential programs and their controlled dy-
namic parallel execution presents a better alternative. A
few recent proposals have made this case [8, 23, 35], but
currently they do not take a comprehensive view of all of
the above challenges. In this paper we present a model
(§2) that seamlessly addresses all of the above aspects. It
parallelizes execution of statically-sequential programs,
and further controls the execution to accomplish perfor-
mance and energy goals in dynamically changing (§3)
and unreliable (§4) computing environments.

2 The Model

The model we propose aims to provide a practical
paradigm to compose programs in the form of sequential
programs, expressed in a familiar and established imper-
ative programming language, such as C++. We propose
to execute the programs employing dataflow execution,
since it naturally exposes all of the innate parallelism
within a program, but also control it to achieve our stated
objectives. We elaborate further below.

2.1 Composing Programs

Programmers express parallel algorithms and explicitly
orchestrate their parallel execution in traditional paral-
lel programming. They typically employ the following
three steps in the process: (i) identify appropriately-sized
computations and the data shared between them, and
compose the computations into tasks using algorithms
and data structures amenable to concurrent execution,
(ii) schedule the execution of the tasks within the pro-
gram, and (iii) ensure that only independent tasks exe-
cute concurrently. The first two steps mostly impact the
execution efficiency. The third step impacts correctness
of the program and can prove to be significantly more
challenging. Furthermore, most of the analysis and rea-
soning performed to design the programs (for efficiency
as well as correctness) are based on statically determined
worst-case scenarios, making it difficult to take advan-
tage of dynamic parallelism opportunities and account
for dynamic operating conditions of the system. Re-
cent task-based models have come to provide assistance
with the second step, such as support for design pat-
terns [21, 32, 37] which can be complex to implement
otherwise, easing some aspects of programming.

At the same time, programmers today follow modern
software engineering and object oriented (OO) design
principles [12]. For example, they leverage abstraction
and compose programs from reusable modules (in the
form of functions). Consequently functions act as self-
contained computations that manipulate “hidden” data
but communicate with each other using well-defined in-
terfaces. Manipulating global data not communicated
through the interface is often avoided and hence most
such computations are free from side-effects.

The proposed model seeks to exploit the above pro-
gramming practices followed by programmers. We ob-
serve that encapsulated functions are already well-suited
for parallel execution. Their coarser granularity makes
for a more suitable unit of computation for multicores.
Hence the model exploits function-level parallelism. We
realize not all imperative programs may follow OO prin-
ciples, due to legacy or other reasons. Hence we provi-
sion to handle the rare “poorly” composed program, as
described later. Next, of the three programming steps
identified above, we rely on the programmers to provide
for only the first step, leveraging their natural insights
into their algorithms, while the model accomplishes the
second and third steps. Thus we decouple the expression
of a parallel algorithm from its execution, easing much
of the burden on the programmers.

Programs written for the model closely resemble their
sequential versions intended to run on a uniprocessor.
For example Figure 1 shows the main loop of bzip2 [20]
(coded in a current prototype of the model, implemented
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as a run-time library), following the above design princi-
ples. Ignore thedf executemnemonic on lines 8 and 10
(artifacts of the run-time library), for now; the function
calls,compressandwrite, as they would appear in the se-
quential code, are shown in the comments on lines 7 and
9. The loop reads a block of data from an input file (line
5), compresses it (compress, line 7) and writes the results
to an output file (write, line 9), repeating the process for
all blocks. Although a program so composed is sequen-
tial, we seek to exploit its inherent parallelism, without
using explicit threads or synchronization primitives, and
hence programs in the model arestatically-sequential(as
opposed tostatically-parallelin the multithreaded mod-
els). More significantly, the model ensures the execution
proceeds as per the implied semantics that programmers
have come to expect from sequential programs. How we
do so is described next.

1 . .
2 op_set−>insert ( OpFile ) ; / / F i l e wr s e t
3 wh i le ( blockBegin < fileSize −1) {
4 blockBegin += updateBlock ( blockBegin ) ;
5 block = new block_t ( InFile , Length ) ;
6 block_set−>insert ( block ) ;
7 / / compress( b lock )
8 d f e x e c u t e( block_set , &compress ) ;
9 / / w r i t e ( OpFi le , b lock )
10 d f e x e c u t e( op_set , block_set , &write ) ;
11 }
12 . .

Figure 1: Main loop of bzip2 coded in the model.

2.2 Executing Programs

The model treats a function as a unit of computation. It
relies on the programmers to identify “dataflow” func-
tions suitable for concurrent execution based on the
knowledge of their algorithm, e.g., functionscompress
andwrite in Figure 1. To execute a program the model
sequences through it, a function (rather than an instruc-
tion) at a time, and attempts the function’s concurrent
execution with other functions. Hence before executing
the function we first need to ascertain its “operands”. We
also raise the granularity of an operand from an individ-
ual register or memory location to an object, which usu-
ally forms a basic unit of data in modern programs. A
function’s input operands (read set) and output operands
(write set), also collectively called itsdata set, are readily
available from its interface (e.g., the parameters tocom-
pressandwrite functions on lines 7 and 9 in Figure 1).
Often objects in these sets may be unknown statically.
Therefore, the model relies on the programmer to pro-
vide the computation that formulates the read and write
sets and pass them to the function. For example, the ob-
ject OpFile is included in the write set and the object
block is included in the read set of the functionwrite on

line 9. At run-time, before the function is invoked, the
model computes the read and write sets, by dereferenc-
ing pointers, allowing us to handle data referenced using
pointers (e.g., the dynamic instances of the objectblock
on line 5 in Figure 1) and pointer arithmetic.

We use the identity of the objects in the data set to
establish the data dependence between functions, in con-
trast to independence as is established in the statically-
parallel model. In particular, we determine if the func-
tion currently being processed is dependent on any prior
function(s) that are still executing. If not, it is scheduled
for execution. If so, its execution is suspended until its
dependences are resolved. In either case, we continue to
process the subsequent program.

A “poorly” composed function, e.g., one with un-
known side effects or a third-party function, may make
it difficult to ascertain its data set. In such a case the
model can resort to its sequential execution, precluding
the need to determine its precise data dependences, and
hence its data set.

F1: {B, C} {A}!
F2: {E} {D}!
F3: {D} {F}!
F4: {B} {G}!
F5: {H} {E}!
F6: {?} {?}!
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Figure 2: (a) Dynamic function invocations.
F:{wr set}{rd set} modifies (reads) objects in its
write (read) set. (b) Dataflow graph of the functions.

Consider a program composed of dynamic invoca-
tions of functions along with their dynamically computed
write and read sets as shown in Figure 2a. Figure 2b
shows the data dependence between the invocations, e.g.,
F3 writes objects D, and thus has a WAR dependence on
F2 which reads D. Likewise F4 has a WAW dependence
on F1, and F5 has a RAW dependence on F2. The data set
of F6 cannot be ascertained and hence its dependences
are unknown. As it processes the program the model dis-
covers these dependences dynamically and honors them
to maintain the sequential appearance of the static pro-
gram. The model further strives to realize the optimum,
i.e., the dataflow, schedule of execution in which inde-
pendent functions F1 and F2 may execute concurrently,
F3 may execute concurrently with F1, F4 and F5 but
only after F2 has completed, F4 may execute concur-
rently with F2, F3 and F5 but only after F1 has com-
pleted, and F5 executes after F2 has completed, possibly
in parallel with F1, F3 and F4. This is in contrast to the
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statically-parallel model in which a programmer would
have to conservatively account for the dependences, rea-
soning about all the possible execution schedules and in-
teractions between the computations, an error-prone pro-
cess that can stump even experts [27]. No longer is the
onus on the programmer to orchestrate an efficient exe-
cution schedule.

The model begins program execution, similar to a
sequential program, by sequencing through it on an
available processor, executing operations and seeking
dataflow functions. When such a function is encoun-
tered, it attempts to execute it concurrently with currently
executing function(s), and the program continuation, i.e.,
remainder of the sequential program past the function,
dependences permitting. The process is repeated with
the program continuation on an available processor and
thus the program execution unravels in parallel with its
computations. As the program is unraveled, we con-
trol the amount of parallelism that is unwound, to re-
alize a diverse range of objectives. It permits manage-
ment of resources to prevent deadlocks, improve execu-
tion efficiency, and realize precise-restartable execution,
of which the latter two we further discuss in §3 and §4.

Here we briefly describe our current runtime-library
prototype of the model. To use the library programmers
identify dataflow functions through adf executelibrary
call, e.g., on lines 8 and 10 in Figure 1. The proto-
type tracks the objects being accessed by the functions
to manage data dependences. In particular, it tracks a
function’s start and completion of its access to an ob-
ject. Programmers annotate the objects shared between
functions when the objects are declared. They also group
them into write and read sets, e.g., on lines 2 and 6, Fig-
ure 1, and pass them to the function as arguments via
df execute(lines 8 and 10).

The prototype employs a token protocol to identify
and manage the data dependences. It associates tokens
with objects and assigns each object as many read tokens
as the machine’s data width will permit and a single write
token. Read tokens are used to manage consumption of
the object while the write token is used to manage its
production. When the execution encounters a dataflow
function, it requests read (write) tokens for objects in the
functions read (write) set; it is ready for execution only
after it has acquired all its tokens. Upon completion, it
relinquishes the tokens which are then passed to the sus-
pended function(s), if need be. When a suspended func-
tion has acquired its requisite tokens, it can be scheduled
for execution.

The prototype uses the work-first principle and lazy
task creation to discover work only when a resource
is idle to optimize utilization [7]. Work deques and
randomized work-stealing are used to balance the load.
As the program is sequenced, dependent functions are

shelved, and they are introduced into the deques after
their dependences have resolved [23].
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Figure 3: Example dataflow schedule of execution.

Figure 3 shows a possible execution schedule of the
functions in Figure 2a on a system with two cores. The
execution first encounters F1 and schedules it for execu-
tion. Next F2 is processed, and since it is independent,
it too is scheduled for execution, concurrently with F1
(time t1, Figure 3). However, F3, encountered next, is
suspended due to its dependence on F2, and likewise so
are F4 and F5. After F1 completes (end of timet1) F4 is
scheduled for execution (timet2) since its dependences
have now resolved. Similarly other invocations are ex-
ecuted as shown in the figure. When F6 is encountered
(identified by the programmer as one with an unknown
data set) the model ensures that F6 executes only after
all the preceding functions have completed. Execution
past F6 proceeds only after F6 completes.

Thus by suspending dependent functions until their
dependences have resolved, and executing other dy-
namic independent functions in the meantime we achieve
dataflow execution from a statically-sequential program.
The execution of such suitably-written programs is race-
free, relieving the programmer from reasoning about
aspects of execution such as the memory consistency
model of the underlying hardware.

Execution of the bzip2 example in Figure 1 will un-
fold so that dynamic instances of thecompressfunctions
will execute concurrently, since they operate on disjoint
data. Dataflow execution automatically sets up a 3-stage
pipeline of computations in which a block is read from
the file, compressed and written to the output file, with-
out requiring the programmer to resort to special design
patterns (e.g., pipeline parallelism [32]). Further, the dy-
namic invocations of thewrite function automatically se-
rialize, since they write to the same object (the file han-
dle), in the program order, achieving in-order file writes,
precluding the need for any special handling.

Statically-sequential applications (blackscholes, bar-
neshut, bzip2, dedup, histogram, and reverse index) from
standard benchmark suites, developed using the model
and run on three stock multicore machines, an 8-thread
Intel Nehalem-based machine, a 16-core and a 32-core
AMD Opteron-based machines, achieved speedups (har-
monic mean) similar to their Pthread versions on the
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Nehalem machine and over 20% better on the AMD
Opteron machines (Figure 4).
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Figure 4: Harmonic mean of speedups achieved for vari-
ous applications on an 8-thread, a 16-core and a 32-core
machine. PT = Pthread, DF = dataflow.

2.3 Sequential Semantics

The semantics of statically-sequential programs plays a
key role in accomplishing our goals, which we summa-
rize here. Since it processes computations in the program
order the model is sequentially determinate [4], which
ensures in any execution of a program with the same in-
puts, an object is assigned the same sequence of values.
This makes programs easy to reason about, and their ex-
ecution predictable and repeatable, key distinctions from
the statically-parallel model. It also eases coding of se-
quential operations such as I/O. It further permits con-
trolling the execution while ensuring forward progress.
Finally, despite requiring user-assistance, it retains much
of the simplicity of the well established and understood
sequential programming.

We refer readers to [23] for a detailed exposition on
the model and the prototype implemented to evaluate it.

3 Continuous Adaptation of Parallel Exe-
cution for Time- and Energy-Efficiency

Utilizing resources efficiently in dynamically changing
environments is going to be one of the key challenges go-
ing forward. The key to effective utilization lies in under-
standing thedynamic factorsthat impact the execution of
the program (workload and execution environment char-
acteristics) and appropriatelyadaptthe application’s par-
allel execution based upon those factors. While expos-
ing too little parallelism can underutilize the resources,
exposing excessive parallelism can lead to contention
for resources, potentially leading to time- and energy-
inefficient execution.

Statically-parallel models are ill-suited for such envi-
ronments as their recipe for exposing the application’s

parallelism to the operating environment is written into
the static program. This requires the programmer to pre-
pare the application ahead of time to facilitate the process
of adaptation in the execution environment. Several re-
cent papers propose to dynamically vary the degree of
parallelism [15, 16, 26, 28, 29, 36, 40] without any pro-
grammer involvement, but they all have several draw-
backs. To summarize, they require offline analysis and
learning with hints from the compiler, employ metrics
and mechanisms that are tightly coupled to a particular
set of resources or environment, focus mainly on array-
based (data parallel) programs and require third parties
to specify mechanisms for a given environment. More
importantly, they cannot efficiently performContinuous
Parallelism Adaptation (CPA)in response to changing
conditions. Doing so can require suspending, resuming
or introducing computations into the environment and in-
judicious choice of computations in this process can lead
to deadlocks, especially for programs with arbitrary de-
pendence patterns (e.g., Cholesky decomposition). Since
these proposals do not maintain any ordering informa-
tion, they require complex dependence tracking algo-
rithms to ensure that the resulting execution is indeed
deadlock free, before regulating the parallelism. How-
ever, guided by the total sequential order, our model can
perform CPA for the duration of the program’s lifetime
without requiring such complex algorithms. The model
is able to ensure forward progress by dynamically con-
structing dependences between functions as and when
they are discovered in the lexical program order and ex-
ecuting them in a dataflow fashion.

To determine how much parallelism to deploy at any
given time, aGoodness of Parallelism (GoP)metric cor-
relates the instantaneous efficiency of the program to the
instantaneous degree of parallelism. As the program exe-
cution unfolds (§2.2) the model computes the GoP at pe-
riodic intervals. If the efficiency has dropped, we predict
it is due to contention to some resource in the environ-
ment and alleviate the contention by decreasing the de-
gree of parallelism deployed in the next time step. Sim-
ilarly, if the efficiency has improved, we predict that the
environment has more resources to offer and increase the
degree of parallelism in the next time step to further im-
prove the efficiency. If the efficiency remains the same,
we predict that the environment is currently operating
at its optimum and maintain the current degree of par-
allelism.

A current prototype of continuous parallelism adap-
tation, on a stock 4-core (8-thread) Intel Core i7 2600
(Sandy Bridge) workstation, computes GoP by reading
energy counters and tracking tasks/instructions executed,
and makes parallelism control decisions every 100 mil-
liseconds. The net result is up to 50% higher time- and
energy-efficiency over the state-of-the-art task parallel
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systems across a variety of dynamic execution environ-
ments.

4 Precise-Restartable Execution

Future computer systems, built from nanoscale devices,
will be unreliable [2]. Additionally, to manage resources
guided by metrics such as utilization and revenue mod-
els, they will abort and/or migrate applications [30, 43].
Precise-restartable execution is desirable in such systems
for a variety of objectives such as program debugging,
fault-tolerant execution or to halt and resume a program
at a different time, possibly on another system.

To restart a program after it has been interrupted, it
is essential to identify the precise point in the program
where it halted and establish the architectural state re-
flective of execution up to that point so that the pro-
gram may be resumed without discarding all of the com-
pleted work. Doing so for statically-parallel programs is
complicated. When a statically-parallel program, devoid
of an order between its computations, abruptly halts, it
is difficult to establish a single “point” in the program
where it was interrupted. Further, parallel execution in-
trinsically disperses the program state among multiple
processors. Hence determining a restart “point” of such
a program, creating and establishing its corresponding
architectural state can either require a complex system-
wide online coordination, or an offline analysis that can
be inconclusive [13, 19]. Researchers have proposed
hardware [6,34,39] and/or software [13,14,31] schemes
to implement this functionality at the cost of increased
system complexity, and performance, energy and storage
overheads. However, the model we propose leverages
the implicit ordering in statically-sequential programs to
greatly simplify the process and considerably reduce the
associated overheads, as described below. (We treat all
program interruptions, e.g., due to faults, as “exceptions”
in this discussion.)

Parallel execution of a statically-sequential program
can be made precisely-restartable after a computation ex-
cepts, if we know: (i) the order of the currently executing
computations in the program, (ii) the objects they may
have modified and (iii) the state of those objects prior
to start of the computations. When a computation ex-
cepts its order can be used to associate a precise point in
the program with the exception. Objects modified by the
excepting computation and those younger to it can be re-
stored using the state from prior to their start, causing the
program state to reflect that of its sequential execution up
to the exception.

To track computations and the state they may mod-
ify, we draw inspiration from the Reorder Buffer (ROB)
and History Buffer mechanisms proposed to achieve pre-
cise interrupts in modern superscalar processors [38]. As

we sequence through the program we track creation and
completion of computations by logging them in a ROB-
like structure, called the Reorder List (ROL). To maintain
the history of the state a computation may alter, before
it executes we make copies of the objects it may mod-
ify, i.e., its mod set(a user-provided set similar to the
computation’s write set and processed similarly to iden-
tify the objects in it). When an exception occurs the or-
der of the computation and those younger to it is deter-
mined by their position in the ROL. Computations older
to the excepting computation are allowed to complete.
Program state modified by the remaining computations
can be restored using the copies of their mod sets. Once
the excepting condition is mitigated the program may re-
sume from the excepting computation. Thus we realize
precise-restartable parallel execution, analogous to that
of sequential programs (and hence also ease other aspects
of parallel systems such as debugging).

A checkpoint created by incrementally checkpointing
the state after each computation successfully completes,
using its mod set, represents the state of the entire pro-
gram up to the completion of the computation. The pro-
gram may be resumed at another time or on a different
system using this checkpoint (and the identity of the last
checkpointed computation). Note that in this process
no cross-computation coordination is needed, conserv-
ing time and energy.

A current software prototype of the model incurs a per-
formance overhead of 0.4% to 4.2% and energy overhead
of 0% to 2.7% (when no exceptions occur) to support
precise-restartability, on a 16-core AMD 8350 Opteron
machine. When exceptions occur at an aggressive rate
of one every second, an additional 2% to 160% time and
energy overhead is incurred to recover and execute the
applications (listed in §2.2) to completion.

5 Conclusion

The industry is rapidly deploying multicore processors in
systems ranging from mobile devices to exascale com-
puters. Parallel programming for these unreliable sys-
tems and their dynamically changing operating envi-
ronments pose significant challenges to everyday pro-
grammers in the effort to improve productivity and to
achieve error-free, efficient execution of their programs.
In this paper we have argued that these challenges can be
met by statically-sequential programs and their dynam-
ically controlled dataflow execution. We showed how
performance- and energy-efficient parallel execution of
suitably-written sequential programs can be achieved on
unreliable parallel systems. We believe this work takes
a significant stride in meeting the current and emerging
parallel processing challenges.
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