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Abstract

Today’s multi-cores and future many-cores are
NUMA architectures with complex cache hierarchies
and multiple memory channels. Depending on the
topologies of these memory networks we find every-
thing from true data sharing with shared caches to
distributed memory architectures which just pretend
to be physical shared memory systems. In fact, most
many-cores are hybrid systems that exhibit the char-
acteristics of both distributed systems and SMPs. In
this paper we argue in favor of middleware platforms
for many-cores. We will discuss the needed function-
ality in contrast to common distributed system mid-
dleware and present micro benchmarks on several ar-
chitectures to substantiate our claims.

1 Introduction

The numbers of cores explode in today’s architectures
and we might expect single board systems or even
single CPUs with core counts above 1000 soon [15].
When we have a look at hardware diagrams we’ll find
complex cache hierarchies and multi-hop internal net-
works with highly varying latencies. In fact, even
though all commercial architectures like the AMD In-
terlagos (16 cores), the upcoming Intel Knights Cor-
ner (over 50 cores plus hyperthreads) or the Tilera
TilePro100 (100 cores) still provide cache coherency,
these CPUs are nevertheless distributed hardware
systems by nature and merely pretend to be shared
memory systems. Programs that do not take the pe-
culiarities of such architectures into account are likely
to run into a variety of pitfalls. In particular, naive
sharing leads to severe problems which caused the
designers of the Corey [3] operating system to give
applications control over the sharing semantics of OS
services such that the cost of sharing can be avoided
when it is not needed.

The designers of Barrelfish [17] followed an even
more radical approach: the multikernel architecture
of Barrelfish is based on shared nothing semantics
even on hardware systems that allow some means
of sharing. It turned out that in several scenar-
ios shared accesses through remote procedure call
(RPC) mechanisms based on shared memory mes-
sage passing could yield better performance than di-
rect shared memory accesses [1]. The reasons for this
effect can be credited to the applied function ship-
ping approach. RPCs cause a high degree of cache
utilisation at the server’s core and effectively elimi-
nate lock contention or cache thrashing. The authors
of [18] offload certain critical sections and synchroni-
sation mechanisms to dedicated faster cores to speed
up parallel computations.

Function shipping approaches can be considered
as an effective means for many-core programming
and should not been neglected. However, even
though these topics have been discussed in the dis-
tributed computing community for decades the situ-
ation in homogenous many-cores is substantially dif-
ferent from loosely coupled and possibly heteroge-
neous distributed systems. In this paper we discuss
the needed characteristics of middleware layers for
many-cores and substantiate our findings with micro
benchmarks for a variety of architectures.

2 Cross-Core Method Calls

Most distributed systems are constructed around the
notion of distributed objects. The object paradigm
combines communication and computation in a sin-
gle, easy to understand model that allows data to
be addressed without caring about the location. The
term distributed means in the context of many-cores
that even though any thread might be able to access
objects directly in its address space only the core that
is responsible for a specific object will (usually) touch

1



it directly. All other cores apply cross core invocation
(CCI) mechanisms to access shared resources with
minimized cache thrashing and lock contention.

CCI mechanisms are semantically similar to remote
procedure calls (RPC) or remote method invocation
(RMI). However, unlike common RMI mechanisms
they primarily have to provide ultra-low latencies.
Complex parameter marshalling mechanisms are usu-
ally not needed, because fast CCI callbacks and hard-
ware sharing facilities are available on many-cores.

RMI mechanisms for distributed systems were de-
signed for relatively slow networks that connect fast
computers. Such scenarios are rather forgiving to
software inefficiencies because the network latencies
usually dominate overall invocation costs drastically.
On many-cores where we find ultra-fast networks
but also less powerful cores the situation is inverted
and low-overhead mechanisms become a priority to
achieve low latency. Thus, middleware platforms that
were primarily designed for parallel processing are a
good starting point and, in particular, C++ template
libraries like ABC++ [14], MTTL [11] or Taco [13]
(amongst others) already provide useful invocation
mechanisms. Taco was easy to port to many-core
processors and, hence, will serve as reference for our
discussion. However, these mechanisms are not re-
stricted to C++ and can of couse be implemented
differently, e.g. like in X10 [5].

01 // create "Account" object @ core where

02 ObjectPtr<Account> obj;

03 obj = allocate<Account>(where )(args );

04

05 // call "transfer" asynchronously

06 obj->apply(m2f(&Account::transfer, 80));

07

08 // synchronous method call

09 int r = obj->invoke(m2f(&Account::balance));

10

11 // deferred synchronous method call

12 Future<int> sync; // future result

13 obj->apply(m2f(&Account::withdraw, 17), sync);

14 ...

15 r = sync; // implicitly wait for result

Figure 1: Basic CCI Mechanisms

In Taco each thread can create (fig. 1, line 3) and
access instances of arbitrary C++ classes on other
cores by means of template based CCI mechanisms.
Objects being managed at other cores are referenced
by global object pointers (fig. 1, line 2) which are small
tuples that consist of a core number and a pointer to
the object’s state. These pointers support polymor-
phism according to C++ type rules and can be passed

as parameters to implement true reference semantics.
Since global pointers are much smaller than e.g. se-
rialized proxy objects, most CCI messages fit into a
single cache line on most architectures. The state of a
frequently accessed object will only reside inside the
cache of the responsible core and will never move into
a cache that is private to another core as long as it is
accessed solely through CCIs. Thus we have a deter-
ministic means for cache control which is orthogonal
to cache coherence algorithms and will perform cor-
rectly even on machines without any hardware cache
coherence like the experimental Intel SCC [19]. Par-
allelism is provided through asynchronous (fig. 1, line
6) and deferred synchronous calls (fig. 1, line 13). In
the latter case future objects [10] are used (fig. 1,
line 12) to wait implicitly for the arrival of the result
from the call (fig. 1, line 15).

Technically, Taco’s CCI mechanisms rely on the
shipment of function objects (so-called functors) that
are generated automatically (fig. 1, lines 6, 9, 13).
The m2f() generator wraps a pointer to a method
including its actual parameters into a function ob-
ject that can be transfered to other cores and ap-
plied to compatible objects. Currently, message re-
ception is based on polling only. However, polling
can be very cheap (sec. 4). On systems that pro-
vide hyperthreads a dedicated thread could perform
these actions in parallel. Instructions like the mwait-
instruction are useful to put a core or hyperthread
into sleep mode as long as there is no incoming com-
munication.

For local latency hiding, the execution of the
method invocations are interlaced by lightweight, co-
operative threads to minimize synchronization costs.
Latency hiding techniques are necessary, when CCI
mechanisms are synchronous. In an event-driven sys-
tem that e.g. provides call mechanisms with contin-
uations, latency hiding mechanisms are not neces-
sary and the overhead of (user-level) thread switching
could be avoided. However, asynchronous systems
can be hard to program. Therefore, other latency hid-
ing means such as pseudo blocking protothreads [7]
are suitable alternatives.

In Taco all invocation mechanisms are imple-
mented by means of active messages [20] on top of
a communication layer that provides non-blocking
point-to-point message passing for short messages
(only a few cache lines). This simple communication
abstraction enhances portability greatly. However,
this approach reaches its limit (sec. 4) on networks
with extremely low latencies. The layered struc-
ture induces small but not negligible copy costs that
should be avoided e.g. with a suitable cross-layer de-
sign.
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3 Group Abstractions

The basic CCI mechanisms sketched in the previous
section allow for simple task-parallel computations
but common tasks in many-core processors require
more convenient means for parallel coordination. For
example, consider a multikernel that has to imple-
ment a virtual memory system. Each time, a page
needs to be evicted, every core that previously had a
mapping for that page has to invalidate the respec-
tive entries in its translation lookaside buffer (TLB).
Such activities are also necessary in monolithic SMP
kernels since TLBs are typically not coherent on most
architectures. This example requires managing vary-
ing groups of cores and addressing the group members
collectively in a scalable manner. Figure 2 sketches
such a scenario with Taco’s object groups.

01 // The group will have a quad tree topology

02 class AddrSpace:

03 public QuadTree<AddrSpace> { ... };
04

05 // find out my ancestor’s address space

06 GroupPtr<AddrSpace> all = ...;

07

08 // join my managing instance to the group once

09 all->call(m2f(&AddrSpace::join, myAddrSpace));

10 ...

11 // make a page accessible everywhere

12 all->map(m2f(&AddrSpace::mapIn, page, frame));

13 ...

14 // invalidate all entries synchronously

15 all->step(m2f(&AddrSpace::invalidate, page));

16 ...

17 // determine number of existing mappings

18 int n = all->reduce(

19 m2f(&AddrSpace::isMapped, page),

21 std::plus<int>()

22 );

Figure 2: Group-Based CCI Mechanisms

The construction of groups is automated by pre-
defined topology classes, which can be inherited by
the classes of member objects (fig. 2). They pro-
vide a join() method (fig. 2, line 9) to add new
members dynamically. In most cases groups have a
hierarchical tree topology such as a QuadTree in the
example in figure 2. The root of the tree acts as
the group’s leader such that a global pointer to the
leader represents the entire group. Collective method
calls are implemented by means of a parallel visitor
pattern [8] starting at the root. Each visitor func-
tor first forwards itself to the descendants of the cur-
rently visited member by means of asynchronous CCI
mechanisms and then performs its operation locally

on the currently visited object. Therefore, the ex-
ecution of the visitor is effectively parallelized, too.
Descendants are determined by an iterator provided
by the topology class. Thus, topology classes offer
the unique opportunity to control the order of execu-
tion and degree of parallelism of collective operations
with language-level inheritance mechanisms.

The map() operation (fig. 2, line 12) initiates asyn-
chronous object parallel computations by applying
a void-functor to all group members while step()

(fig. 2, line 15)is executed synchronously. The syn-
chronous reduce() operation (fig. 2, line 18-22) first
applies the specified functor to all group members
and then combines all results with an associative and
commutative binary reduce-functor, e.g. the plus()

functor (fig. 2, line 21) of the STL. Other operations
such as gather() and scatter() are available, too.
All collective operations can be masked or applied to
predetermined member selections. The execution is
strictly in-order for all operations applied to the same
group. Thus, synchronous operations can implicitly
act as fence-operations that will complete when all
previously started operations have completed.

The group concept discussed here builds on the
more simple CCI mechanisms (section 2), which helps
to enhance portability and keep the code base concise.
The collective operations scale well and provide fairly
low latencies (refer to section 4). However, there
are some drawbacks. In particular Taco cannot use
(future) hardware based multicast mechanisms due
to the inherent point-to-point nature. Furthermore,
the layered design again causes unnecessary mem-
ory copies that are negligible on average distributed
systems but not on many-cores. Last but not least
the group leader concept in combination with strict
in-order functor-propagation eases consistency issues
but might become a bottleneck when a large number
of cores addresses the same group simultaneously.

4 Micro Benchmarks

We ported Taco to many-cores by replacing the
MPI-based communication by messaging over shared
memory, and performed micro-benchmarks on the
three systems summarized in figure 3. The 32 core
Intel Xeon E7 (2.13GHz) and 8 core AMD Opteron
(2.3GHz) systems used a protocol that was optimized
for the Opteron. On the non-cache coherent 48 core
Intel SCC (0.8GHz), its experimental hardware for
inter-core message passing was used.

The first benchmark measured the CCI roundtrip
time between the nearest and the most distant pair of
cores. The messages were up to two cache lines long,
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Figure 3: Overview of the network on the three test systems.
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Figure 4: CCI roundtrip times ranging from nearest
to farthest core.

which is typical for remote method calls with few ar-
guments. The results are shown in figure 4. For com-
parison, the CCI roundtrip times were around 3000
cycles in average with MPICH2 on the Xeon. The
Opteron and Xeon systems showed a large variation
depending on the network distance. While on the
Xeon the within-socket communication was slightly
faster than on the Opteron, the inter-socket latency
seems to be much higher. Up to 50% of the roundtrip
time was influenced by the network distance and,
thus, the network topology is important on multi-
socket systems. Better protocols for the Xeon might
decrease the gap. However, then the optimal pro-
tocol as well as any efficient data exchange highly
depends on the hardware. While middleware-based
systems can be adapted by replacing the communi-
cation layer, such tuning would not be feasible with
arbitrary shared memory code. In contrast, on the
SCC just 10% of the roundtrip time was influenced
by the distance because SCC’s mesh network has very
homogeneous link latencies and just a small portion
of the memory accesses of the protocol actually go
to remote memory. Therefore on future many-core
systems, the network topology may be negligible in
respect to point-to-point latencies.

The second observation is a huge discrepancy be-
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Figure 5: Completion time of collective steps.

tween the raw network latency and the CCI roundtrip
times. All systems need >1000 cycles for a roundtrip
while the actual payload transfer costs just <400
cycles.1 This is caused by inevitable memory ac-
cesses for notifications and acknowledgements inside
the protocols. On cache coherent systems like the
Opteron and Xeon this can also involve atomic op-
erations with costly coherence activities. Ideally, a
message roundtrip should not cost much more than
the actual data transfers and this will require faster
notification mechanisms between the cores.

The issue becomes more evident with respect to
scalability. Protocols on multi-core systems typi-
cally used separate pairwise channels to avoid costly
cache conflicts, e.g. [4]. This leads to quadratically
growing memory requirements and a linearly grow-
ing polling overhead. In contrast, the protocol on the
SCC achieves linearly growing memory requirements
and constant polling overhead (130 cycles) by using
atomic increment counters provided by the hardware
to dispatch concurrent senders.

Finally on the SCC, the roundtrip time is strongly
influenced by protocol overheads because a third of
the roundtrip time (300 cycles) can be attributed to
the upper CCI layer.2 This could be reduced by em-

1 Opteron and Xeon: <2*200 cycles for remote cache line
access [9]. SCC: <2*190 cycles for on-chip memory access.

2The sender constructs the message in his L1 cache (<50

4



ploying optimizations based on static code analysis.

In the second benchmark, the completion time of
collective operations over an increasing subset of the
cores was measured. An appropriate tree topology
was used on each system. Figure 5 presents the re-
sults. On the Xeon and SCC systems, the completion
time grows logarithmically as can be expected from a
tree topology. This is better visible on the SCC, be-
cause the inter-socket latency on the Xeon introduces
additional costs. By design, the communication over-
head per core is constant and, thus, other work can
be done while the operation is propagated over the
cores. In conclusion, collective operations on many-
core systems are scalable and their efficiency depends
on the efficiency of basic point-to-point mechanisms.

5 Related Work

Both Corey [3] and Barrelfish [17] are operating sys-
tem approaches that could benefit greatly from a suit-
able inter core middleware layer. At least within the
Barrelfish system such a layer is mentioned but un-
fortunately details except about the underlying com-
munication protocol [16] have not been published yet.

Taco itself has been strongly inspired by
ABC++ [14] and the MTTL [11]. E.g. the MTTL
already provided means for general purpose paral-
lel object oriented programming with global point-
ers but did neither support polymorphism nor col-
lective operations. Template technology can be suc-
cessfully applied to prototype parallel programming
concepts without the initial need to design new lan-
guages before the concepts have been accepted. Thus,
many programming concepts found today in Split-
C [12], UPC [6], X10 [5] or Cilk [2] can in principle
also be achieved with C++ templates. However, the
programming language approach generally offers bet-
ter means for optimization and safety through static
analysis. This is not possible in template libraries,
since a standard C++ compiler has no notion about
parallel constructs and their associated semantics.

Generally, even though we use the term middleware
layer for Taco, our approach is not suited for pro-
gramming across security boundaries due to the use
of active messages for communication. Taco can in
principle be used within a multikernel like Barrelfish,
in runtime libraries like for X10, and any parallel ser-
vices but not to interface these services to clients.

cycles) and after the transmission the receiver copies it into a
receive queue in his L1 cache (100 cycles).

6 Conclusion

Current many-cores are internally distributed sys-
tems that should at least in part be treated as such
to avoid cache thrashing effects and lock contention.
Therefore, middleware platforms are required that
are able to address this aspect appropriately. Ultra-
low latency cross core invocation mechanisms are
needed that have a similar overhead as a cache-line
roundtrip time on current architectures. However,
the experiments with Taco have shown that low la-
tencies can be achieved in principle (compared to
cluster architectures) but the final goal is still in far
reach. Even though Taco is just a thin (mostly
inlined) software layer above the basic communica-
tion layer, communication costs do not dominate CCI
costs any more. Further achievements could only be
reached by giving up the current layered architecture
to avoid unnecessary copying of data between layers.
Purely event-driven invocation mechanisms in con-
junction with protothreads can potentially yield bet-
ter performance than the currently used cooperative
threads. Last but not least certain communication
activities like polling for messages and forwarding of
messages to other cores during collective operations
can be offloaded to dedicated hyperthreads.

Collective operations play an important role to ini-
tiate parallel computations and keep replicated data
consistent. The basic collective operations of Taco
scale well on the mesh network of the Intel SCC
and reasonably well on the fully connected cache-
coherent systems. For such systems optimized topol-
ogy classes need to be designed. In-memory com-
munication mechanisms that are based on internal
cache-coherence protocols are generally hard to con-
trol and need to be adapted carefully to each new
architecture. The relatively good performance of the
SCC indicates that future many-cores should provide
communication means that are clearly independent
from hardware coherence mechanisms.
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