
The Activity Platform
Helen J. Wang, Alex Moshchuk, Michael Gamon, Mona Haraty, Shamsi Iqbal,
Eli Brown, Ashish Kapoor, Chris Meek, Eric Chen, Yuan Tian, Jaime Teevan

Microsoft Research

Abstract— In this paper, we advocate “activity” to be a
central abstraction between people and computing instead
of applications. We outline the vision of the activity
platform as the next-generation social platform.

I. INTRODUCTION

“Applications: what a terrible term. What a terrible
concept. ... We don’t do word processing ... People do
activities, and the software ought to support this.” – The
Invisible Computer, by Donald Norman 1998

Social, mobile, and cloud computing has brought
unprecedented amount of information as well as much
digital clutter to people today. Many people feel over-
whelmed and burdened by organizing and finding in-
formation. Worse, ”applications”, the central abstraction
between people and computing today, siloes a person’s
information, multiplying his/her efforts in organization
and search. For example, information of one’s project
is often scattered across different applications, such as
email, IMs, software repositories, web browsers, local
folders, and remote folders. When searching information
about the project, a user often has to go to many of these
different silos to find it.

This problem calls for a fundamentally new abstrac-
tion between people and computing. In this paper, we
advocate “activities” to be this abstraction. An activity
is an ongoing effort in a person’s life towards a goal.
An activity can be a project for research, development,
testing, product planning or event organization, a trip, or
a hobby like book club. People already think in terms
of activities. For example, when one wakes up in the
morning or walks into her office, she often thinks about
what needs to be done for each activity of hers that day.
So, the activity abstraction is simply a representation
of what is already in people’s mind. We envision the
activity abstraction to live on top of existing applications,
leveraging and invoking their functionality in an activity-
oriented way. For example, news feed of an activity
can come from different applications including email,
Facebook/Twitter feeds, or updates on documents; a todo
list of an activity may contain bugs to be fixed from
software project management tools or other sources;
bookmarks may come from browser’s bookmarks or
command shortcuts on a local computer. To this end,
activity needs to interoperate with existing applications.

Furthermore, applications can offer more superior user
experience when they are activity-aware, as the activity
context enables more personalized services. For example,
today’s shopping services like Amazon have used only
one’s shopping history to make recommendations; when
with the activity context, they can string together the
user’s activity-specific shopping history and make more
targeted recommendations for the user’s activity. Operat-
ing system design can similarly benefit from the activity
context. Instead of offering an application-centric oper-
ating system shell (as in all existing operating systems),
an OS can offer an activity-based shell, as shown in
Figure 1, letting users to directly view and interact
with their activities and to dive into an activity context
which includes the display state (which applications
are openned with which files) and application state of
each application in that activity. We hope it is evident

Fig. 1. The Activity Shell

now that to support the activity abstraction, we need
an activity platform, which synthesizes activity-specific
artifacts from each application and in turn supplies the
activity context to applications.

Because many activities involve multiple people, we
must build this social context into the activity abstraction
and platform to allow collaborative curation for an activ-
ity. For example, an activity partner bookmarks a site for
the activity, the other partners can see the bookmark as
well. In another example, when an activity partner uses a
search engine to search related literature for the activity
(e.g., a research project). An activity-aware search engine
can annotate each search result with whether my activity
partner has clicked on the link or even whether they
have written notes for it. Lastly, two parents are doing

1



online Christmas shopping. When one bought a present
for their children, an activity-aware shopping site can
help the other partner see the presents bought so far to
avoid buying duplicate presents.

The activity platform can be viewed as the next-
generation facebook-like social platform. Today, Face-
book offers applications the social context of a user,
namely the user’s friends and what the user and friends
have shared on Facebook. In turn, applications con-
tribute back a facebook user’s actions in the applica-
tions (because it could potentially give the applications
viral growth). Analogously, an activity platform offers
applications the activity context, the users activities, their
current activity, their activity partners, past actions in
activities from a user or his/her partners. In turn, appli-
cations contribute back a user’s actions for an activity.
Facebook’s Open Graph is the representation of social
context, which is an entity graph that consists of entities
(users or any objects) and their relationship as edges
between them. An activity platform augments the Open
Graph with “activity” entities to which existing entities
belong, as shown in Figure 2.

Fig. 2. Activity-augmented entity graph

II. UNIVERSAL TAG AND COLLABORATIVE TAGGING

We introduce universal tag as a key mechanism to
implement activity. Today, tags or labels have been well
used in applications silos. For example, Gmail has used
labels to organize emails, Google Doc uses folders, and
web browsers use favorite folders to organize book-
marks. A universal tag unifies all these silo-ed labeling
into a single one.

A universal tag is access control-agnostic, as illus-
trated in Figure 3. The data a user has access to falls
into three categories: (1) privately accessible to the user,
(2) group-accessible to the user because (s)he is part of a
group, or (3) publicly accessible data (such as public web
content). When an activity tag is applied to a data item,
the tag does not change the access control of an item.

Fig. 3. Universal Tag

This may seem obvious, but its subtlety has significant
implications.

Access control-agnostic tagging is what makes the
activity abstraction fundamentally different from the
“group” abstraction as seen in Facebook groups or
Yammer groups or Slack’s channel. Making an item part
of a group makes that item accessible to all the group
members. In fact, the group accessible artifacts in the
figure contain items in groups or channels.

There are still two key questions to answer: who can
give an activity tag and who can see the activity tag.

• Who can give activity tag: Given that the primary
goal of the activity abstraction is to help users
organize their digital artifacts by their activities, it
is undesirable for anyone to be able to tag an item
to be associated with an activity. This can clutter
a user’s view of their own activites. So, we only
allow activity partners to give the activity tags.

• Who can access the activity tag: There are three
possibilities: (1) It can be private to the user who
tags the item; (2) the tag can be visible to activity
partners; (3) the tag can inherit the access control of
the item. Careful readers would have dismissed (2),
as the item may not be accessible to all activity
partners since the activity tag is access control-
agnostic. Between (1) and (3), (3) gives the great
benefit of c

¯
ollaborative tagging, namely, when one

activity partner tags a shared item, other partners
who have access to the item can also see the tags
so that they do not need to tag the item themselves.
Collaborative tagging enables collaborative curation
and organization of the activity for all partners.

We now address the differences between activity tags
and hash tags that were popularized by Twitter. Hash
tags can be created by anyone and used by anyone to
tag (Twitter feeds for example). There is no-renaming
of a hash tag, but one can always create a new one. In
evitably, there can be much ambiguity in hash tags. For

2



example, #apple could be used to tag items related to
fruit apple or related to the Apple products. In contrast,
activity tags can only be created by activity partners (at
the activity creation time). The activity tags are much
less ambiguous as they are created and used only by
activity partners. Activity tags are also rename-able, in
the sense that activity partners can change the activity
name at any time. This can be useful for example when
a project name evolves. Fundamentally, activity tags and
hash tags have different goals. Activity tags are intended
for personalized, collaborative activity curation while
hash tags are used for public curation of a hash tag.
So these two mechanisms are orthogonal and can and
should co-exist.

Like any tags used before, activity tags represent user
labels that can be leveraged by the system to make
recommendation on other items that may belong to the
activity, helping users populate activities.

III. CHALLENGES

In this section, we illustrate some challenges in de-
signing the activity abstraction.

Visual representation of activities: Now that ac-
tivities synthesize artifacts from various applications,
the challenge lies in presenting these different types of
artifacts to the user in an activity. With the ever increas-
ing number of applications and unpredictable types of
artifacts, we need a way to map any artifacts into a fixed
number of categories to present to the user.

Minimize user burden: To make activity usable, we
must minimize user burden in creating, bootstrapping
and maintaining activities. We must make activity cre-
ation easy. Once the activity is created, we want to
minimize the amount of tagging the user has to do to
benefit from the system. For example, an activity can
be created from an email or meeting calendar event
where people involved become activity members and the
content of the item can be used by the machine learning
component of the system to immediately make useful
recommendations

Protecting user privacy in the activity platform:
Protecting user privacy is paramount in the activity plat-
form, since activity data is among the most private data
of a user. An application must obtain user permissions
to access a user’s activity data. Designing permissions
systems for the activity platform (as well as social
platform like Facebook) poses additional challenges to
that of modern client OSes (such as the permission
systems for Android and iOS): Permission systems for
modern client OSes is to let the user of a device to grant
permissions to applications to access sensitive resources
on (and local to) the device, such as camera, location or
address book. In the activity platform or social platform,
because the user context is accumulated from different

applications’ contributions as well as from other users’
contributions (such as a status update from the user’s
friend concerning the user), permission system designers
need to be concerned about (1) whether an application’s
contribution should be accessible to another application,
e.g., should Lowes know that the user has purchased a
John Deere lawn mower from HomeDepot? (2) whether
a user’s contribution can be accessed by another user’s
application, e.g., can a user’s TripIt app access the user’s
friends’ liked cities?

IV. INITIAL DESIGN AND EARLY EXPERIENCE

We have built our initial design into an activity
browser called Somex, which currently interoperates
with Outlook, SharePoint, and Lync instant messen-
ger. We also build an activity platform that exposes
Facebook-like Open Graph APIs to applications with a
focus on the permission system design.

We made an early deployment of the Somex activity
browser from September 5-18, 2013 with 15 user using
the tool. While we cannot draw any conclusions from
such a small study, some of the results shed light on
certain design decisions.

We are only scratching the surface in understanding
and designing the activity abstraction and the activity
platform. We describe future work respectively.

A. Visual presentation of activities

Fig. 4. The Somex Activity Browser: Activity Index

The Somex activity browser presents a high-level view
of all the activities of a user, as shown in Figure 4. To
more compactly present the data from different appli-
cations within an activity and to scale with increasing
number of and different type of applications, we classify
all entities out there into five basic types, as shown in
Figure 5: news feed (e.g., e-mails, Facebook news feed,
updates on documents, code or bug fixes), todo list (e.g.,

3



todo item from Outlook, bugs to be fixed from Github),
Documents and links (e.g., links or shortcuts to remote
files or local files, email attached documents), Calendar
Events, and People who are involved in the activity.

Future work: It is an open question whether these
five types can be sufficient for all the application types
out there; it is future work to interoperate with many
applications to understand this fully.

B. Minimizing user burden
We minimize user burden in creating and maintaining

activities in the following ways.
Collaborative activity creation: Activity creation in

Somex is collaborative. Once an activity parnter creates a
project, other activity partners see that activity in Somex
as well; this can significantly reduce project creation
effort for activities with multiple partners. From our
study, the 15 users would have created 89 activities, but
with collaborative activity creation, they only need to
create 43 projects, saving that effort for 46 projects.

Collaborative activity tagging: As described in Sec-
tion II, activity tags on a shared item are visible to
activity partners who also have access to the item.
Therefore, when one partner populates an activity by
associating an item with the activity, the shared item
is also populated at other partners’ activities if they can
access the item. Our study shows that for 12 of 15 users,
collaborative activity tagging populated more than half
of their artifacts in their activities.

Machine learning suggestions: Somex uses a basic
Linear Support Vector Machine (SVM) algorithm to sug-
gest items that belong to an activity, using the already-
tagged items as labels. For privacy, we perform only
user-private machine learning. In other words, we do not
perform machine learning globally across users. In this
scenario, collaborative tagging significantly increases the
number of labels for our machine learning algorithm and
consequently improves the quality of the suggestions.

Future work: New approaches are needed in having
the system to give high quality recommendations even
with very few labels. It is also desirable that the system
suggests new activities to users.

C. Permission system design for the activity platforms
We have analyzed the existing permission system of

Facebook. We find that it falls short in the following
aspects: (1) Many permissions are not least-privilege.
Once the permission is granted to an application, the
application has permanent access to the data including
future data the nature of which the user cannot predict.
For example, an application can get all the user’s future
check-ins once obtaining the User/CheckIn permission;
an application can get all the user-liked items once
obtaining the User/Like permission. From our 300 Me-
chanical Turk user study, we found that around 50%

of users do not expect such future, permanent access.
(2) The permission granting process incurs significant
time overhead to developers. 36 out of 39 permissions
require manual review and approval which takes from 3
to 14 days. (3) Certain sensitive permissions are denied,
sacrificing functionality for privacy. “Read-Stream” and
friends’ sharing are deprecated permissions for better pri-
vacy. Nevertheless, some desirable functionality would
be sacrificed. For example, when shopping for a wedding
present at Macy Online store, the user would benefit
from knowing what presents have been bought so far
not just from Macy’s, but also other online stores.

Learning from these lessons, we identify the following
goals for a permission system of an activity platform:
(1) Minimize the number of permissions to reduce
developer and user burden. (2) Minimize the number
of user prompts to reduce user burden. (3) Achieve
least privilege to protect user privacy. (4) Enable cross-
user, cross-application sharing without compromising the
previous three goals.

To meet these goals, we employ the following three
mechanisms in our activity platform: (1) Opaque handle.
An activity platform can give an opaque handle of a
piece of context to an application. The handle is the
same across different sessions of the application. This
way, although the application cannot see the context,
it can collate the user’s in-application behaviors across
sessions to gain application-specific context for the user.
For example, instead of providing a user’s activity to an
application, the activity platform could give an opaque
handle of the user name to the application. The ap-
plication can track the user behaviors across sessions
without knowing who the user is. (2) Opaque display.
Instead of passing a piece of privacy-sensitive context
to an application, we pass an opaque display (such as
a cross-domain iframe) containing the context to the
application. This way, the user can see the activity data
(possibly contributed from another application), but the
application cannot access the data. Consider an activity
of wedding registry in which wedding guests collaborate
to buy wedding presents and want to avoid duplicate
presents across all online shopping venues. At an online
shopping venue, an opaque display can show the list
of presents bought by other guests at other stores. This
way, the online shop does not need to get permission
to access that data which may contain privacy-sensitive
data of a user’s shopping experience at its competitors.
(3) User-driven access control [4]. Let the user’s natural
interaction with an application grant the proper permis-
sions. For example, a user shares a piece of context from
an application by explicitly clicking on the share button
provided by Facebook, building the permission into the
design of the functionality of sharing in the application.

By using these mechanisms as much as possible, our

4



Fig. 5. Five essential entity types in Somex

permissions system needs just 1 permission compared
with Facebook’s 38 permissions today.

Future work: It is future work to study real-world
applications that use Facebook’s social platform and
measure the impact of adopting the three mechanisms
on them.

V. RELATED WORK

Bartram et al. (2003) built the ABC (activity-based
computing) system for grouping related documents into
projects for convenient project management and switch-
ing [1]. Likewise, Smith et al. built the groupbar, which
grouped related windows into groups in the familiar
taskbar [5], and Robertson et al. designed Scalable Fabric
similarly, though leveraging the periphery and scaling for
very large displays [3]. IBM’s Activity Explorer [2] also
uses activity to organize collaboration, but artifacts of
an activity are always shared among activity members;
furthermore it does not interoperate with existing appli-
cations, but has its own (siloed) artifacts.

VI. CONCLUDING REMARKS

In this paper, we have outlined the vision of making
“activity” as a central abstraction between people and
computing, which allows people to visualize, interact,
and organize all their data by activity across appli-
cation silos. Activities also represent critical context
for applications to offer superior, more personalized
user experiences. Fundamentally, an activity platform is
needed to supply the activity context and to synthesize
in-application activity data. The new, foundational con-
cept we bring forth is universal tagging, which crosses
application boundaries and is access control-agnostic.

We gave a brief description of our first design to
address the three key challenges in designing the ac-

tivity abstraction: We identify five basic types of en-
tities to allow a compact and scalable presentation of
activity data synthesized from unpredictable number of
applications. We employ collaborative activity creation,
collaborative tagging, and machine learning suggestions
to ease the user burden. Protecting user privacy in the
activity platform requires rethinking permission system
design, in which we advocate the techniques of opaque
handle, opaque display, and user-driven access control to
minimize the number of permissions and the number of
user interactions needed.

Many open questions remain across different research
areas, including exploring new and tailoring existing
machine learning algorithms to minimize user efforts,
understanding the impact of activity entity in an entity
graph for information retrieval, exploring user interaction
model for accessing and finding related artifacts and
activities, and activity-based operating system resource
management and security policies.

REFERENCES

[1] Jakob Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard.
Support for activity-based computing in a personal computing
operating system. In Proceedings of CHI, 2006.

[2] W. Geyer, M. J. Muller, M. T. Moore, E. Wilcox, L.-T. Cheng,
B. Brownholtz, C. Hill, and D. R. Millen. Activity explorer:
Activity-centric collaboration from research to product. In IBM
SYSTEMS JOURNAL, VOL 45, NO 4, 2006.

[3] G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch, D.R.
Hutchings, B. Meyers, D. Robbins, and G. Smith. Scalable fabric:
flexible task management. In Proceedings of AVI, 2004.

[4] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk,
Bryan Parno, Helen J. Wang, and Crispin Cowan. User-driven
access control: Rethinking permission granting in modern operat-
ing systems. In IEEE Symposium of Security and Privacy (The
Oakland Conference), 2012.

[5] Greg Smith, Patrick Baudisch, George Robertson, Mary Czer-
winski, Brian Meyers, Dan Robbins, Eric Horvitz, and Donna
Andrews. Groupbar: The taskbar evolved. In Proceedings of
OZCHI 2003, pages 34–43, 2003.

5


