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Abstract
Unix took a rich smorgasbord of operating system fea-
tures from its predecessors and pared it down to a small
but powerful set of abstractions: files, processes, pipes,
and the shell to glue the system together. In the inter-
vening forty years, the common-case computational sub-
strate has evolved from a lone PDP-11 minicomputer
to vast clouds of virtualized computational resources.
Contemporary distributed systems are being built by
adding layer upon layer atop the foundation established
by Unix’s chosen abstractions. Unfortunately, the result-
ing mess has lost the “simplicity, elegance, and ease of
use” that was a hallmark of the original Unix design [24].
To cope with distribution at astronomic scale, we must
take our operating systems back to the drawing board.
We are living in a new world, and it is time to be brave.

1 Introduction
The June 1986 edition of Jon Bentley’s Programming
Pearls column featured two contrasting solutions to
a simple word-counting problem [3]. With the goal
of illustrating Literate Programming style, Don Knuth
presents a Pascal program on the order of 100 lines, care-
fully crafted “from scratch”. Doug McIlroy’s review
notes that the problem could have been solved with a
simple Unix pipeline:

tr -cs A-Za-z‘\n‘ | tr A-Z a-z | sort
| uniq -c | sort -rn | sed ${1}q

In McIlroy’s view, it was no coincidence that Unix was
up for the job: the utilities at hand were simple, modular
building blocks, designed for composition, which cap-
tured useful steps extracted from real problems.

The modern incarnation of Bentley’s problem would
involve orchestrating a fleet of machines to process a cor-
pus that exceeds any single machine’s capacity. What
tools can the contemporary programmer bring to bear?

Our first candidate would be a distributed process-
ing framework, such as Hadoop. But setting up virtual
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Figure 1: High level differences between conventional
cloud workload setups (left) and Andromeda (right).

machines, configuring Hadoop on them, expressing the
computation in terms of the particular primitives (i.e.,
map, reduce), configuring the job, taking care of file sys-
tems are all excessively tedious. Complexities of this na-
ture are not inherent to Hadoop itself (for instance, more
recent frameworks such as Spark [32], DryadLINQ [31]
or Naiad [21] have similar difficulties). High scalability
today comes at steep cost, because complete, transparent
de-centralization was never a concious design decision
or inherent feature of present systems (Fig.1 – left).

What we sorely lack is a distributed foundation upon
which to build a solution as concise and elegant as McIl-
roy’s pipeline. To change that state of affairs, we sketch
our vision for a massively distributed operating system,
designed afresh for the commodity cloud. As a paral-
lel to the scale of distribution the system is targeting,
we name our project Andromeda (M31 for short), after
the Messier 31 galaxy. Andromeda is designed de novo
to match the computational environment of the not-too-
distant future, taking advantage of many promising and
underexplored ideas from the past, morphing them syn-



ergistically with some of its own. Contrary to current
systems, in which developers are required to retrofit new
models to existing software architectures, it assumes dis-
tribution, mobility, fault-proneness, extreme bandwidth,
low but non-negligible latencies, and dynamic provision-
ing. It takes extensive care, however, in making their im-
plications transparent to the application layer.

Before delving into the details of the system, it is
worth noting the constraints and factors that have guided
its design. First, the forthcoming data cataclysm. Our
position is that the current model is broken more deeply
than may appear at first blush. Simply adding to the ex-
isting pile of incremental changes or doing minor tweaks
at the highest levels is not enough for even the most con-
servative forecasts. Second, the increasing reliance of
cloud computing infrastructure on commodity hardware:
inexpensive, unreliable nodes, that trade local guarantees
for global properties. These cause a shift of assurance
from the hardware to the software layer, requiring re-
design of the software stack under different assumptions.
This leads to a third development, the rise of the per-
sonal cloud, opposing the old idea that users will own
only dumb terminals connected to a datacenter – they
will own multiple micro-clouds. And fourth, the shift
of data processing from experts to ordinary people in all
fields (e.g., biologists, economists, anthropologists) us-
ing it for their everyday tasks. Systems of the future will
need to take care of all the gory details and expose the
cleanest possible abstractions. Assuming these trends,
the question becomes, what kind of mechanisms should
tomorrow’s ideal operating system provide, to allow a
solution of similar simplicity to the one presented three
decades ago?

2 Nucleosynthesis of Andromeda

Here we sketch the elements composing Andromeda, as
selected by our intuition, and reflecting three themes that
characterize the Andromeda vision: subsumption of OS
mechanisms with linguistic abstractions, transparent dis-
tribution, and a focus on interactive programming.

Fully-Transparent Object Distribution As is usually
the case in a distributed operating system, Andromeda
takes care of distributing and replicating state across
nodes. It does so transparently and homogeneously.
Transparency means that the distribution and replication
mechanisms remain invisible to the user, who has only a
unified view of the underlying resources, as if they were
part of a sole, centralized, single-core machine. Homo-
geneity means that all interconnected machines forming
a constellation export the same interfaces (even down
to particular versions), and this is reflected in the M31

substrate. When a user connects into an Andromeda in-
stance, there is no distinction between local and remote

data – everything feels local.
Of course, there exist workloads that are better suited

for a particular type of machine, and in our model these
machines form a dedicated constellation. For instance,
GPU-intensive workloads would be located within a con-
stellation augmented with GPUs, and could be relocated
to a uniform constellation right after completion. To
allow the properties mentioned above, there is an im-
plicit split between nucleus, the low-level, inner, per-
node kernel, and mantle, the high-level, spatially con-
tinuous, global substrate with which the user interacts.
Pico-kernel The nucleus comprises of the absolute min-
imum core, the language runtime, required to service
the mantle layer. It is minimized beyond traditional
microkernels, in which the OS takes care of process
management and scheduling, by enabling shared address
spaces, lightweight processing primitives and coopera-
tive scheduling. While it is closer to exokernels in the
sense that it avoids kernel mediation as much as possible,
contrary to them, it does not expose hardware resources
nor does it allow for applications to define their own in-
terfaces on top of it – upper layers can only make use of
a set of well-defined, carefully-chosen abstractions. It is
little more than a JIT compiler, receiving code and data
through active packets from other nodes, and, combining
with local libraries and data, translating down to machine
code, and executing them.
Low-Overhead Execution Primitives Current cloud
workloads require provisioning of hundreds or even
thousands of execution primitives (i.e., processes,
threads) in a very short amount of time. Some of
them are short-lived while others keep processing con-
tinuously. Andromeda provides fibrils, carefully-chosen
primitives of execution that are thin and lightweight. Fib-
rils are control units with their own private, dynamically
allocated stack, and private data . They are cooperatively
scheduled at user level, allowing traditional interrupt and
resume without incurring context switches, at an over-
head comparable to a function call, and communicate
through messages. Pipe- or rendez-vous-like synchro-
nization comes at a much lower cost, without incurring
conventional kernel overheads (e.g., setting up FIFOs,
buffering and producer/consumer synchronization).
Fibril Migration In a galaxy of interconnected ma-
chines, one increases fault tolerance and reduces access
latency by migrating a processing primitive and the data
it processes closer together. Since moving data around
can easily saturate network links in a data center (and,
with certainty, in the case of a personal cloud!), An-
dromeda offers transparent, non-preemptive fibril migra-
tion across machines or processors. Fibrils are much
cheaper to relocate or clone than whole datasets, and can
safely move along with all their associated state into an
entirely different node for execution. Co-location im-
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proves data locality, thus increasing overall performance,
and replication improves robustness in the case of failing
nodes. Aforementioned node homogeneity and data pri-
vacy make state migration easier and safer. Naturally,
migration policies are not set in stone by the nucleus-
but are subject to user requirements; for instance, when
needed, fibrils are allowed to anchor to a specific node or
processor.
Message Passing Shared memory suffers from many
shortcomings in a massively-distributed environment:
poor multi-core scalability due to lock contention [2, 13],
and difficulty of reasoning from the programmer’s per-
spective [1, 28]. M31 offers channels, one-way FIFO
primitives that facilitate both local and remote commu-
nication. Since no structures are shared, channels safely
allow scalability to thousands of nodes, and blur the dis-
tinction between local and remote execution. They come
in both synchronous and asynchronous versions, and
their endpoints are strongly typed – data exchanged have
their types agreed upon beforehand, allowing error catch-
ing and runtime optimizations. Cloning endpoints, han-
dled opaquely by the runtime, allows for paradigms of
multiple senders or receivers. Moreover, enabling chan-
nel and fibril migration through channels themselves,
similar to theoretical process calculi [29], enables pow-
erful and well-studied programmatic expressiveness.
Scheduling In such a distributed setting, each node has
to take into account global decisions, while at the same
time conduct local optimizations (e.g., masking hardware
heterogeneity, I/O latencies). Andromeda utilizes lay-
ered (hierarchical) scheduling [11, 5], in which deci-
sions are made using a combination of global, distributed
resolution and local, cooperative judgement. Pushing
global decisions to collaborating nodes with a holis-
tic view of the constellation allows efficient and tun-
able high-level, mid-term decision-making while low-
latency micro-management is left to the nucleus layer.
For instance, fibril migration requires coordination at
the global plane, but the coordination mechanism itself
running on each node makes use of local, cooperative
scheduling. Linguistic abstractions allow the kernel to
resolve possible dependencies between tasks, and make
it easy to alter scheduling policies on the fly based on
global knowledge.
Flat, Labeled File System Most previous attempts on
distributed operating systems assumed hierarchical file
systems, with ACID guarantees often built on top of
them; today’s requirements, though, caused a shift to-
wards flat file systems [27]. Indeed, to allow data scal-
ing, query efficiency and fault tolerance, Andromeda of-
fers a distributed, flat, labeled key-value store. Data are
stored as typed objects (as opposed to, say, tables or
text files), the same abstraction used for interchange for-
mats and linguistic constructs. These are distributed and

replicated across multiple nodes, and can be queried ef-
ficiently even on their secondary attributes. Objects can
have unlimited labels attached, namely arbitrary meta-
data similar to permissions and access times in traditional
file systems, that follow data along (and, if needed, can
emulate hierarchical structure). Apart from fast retrieval
due to relaxed schemas, and convenience due to utmost
freedom, flat labeling allows for easy migration and con-
ditional replication. Andromeda borrows ideas from
hyperspace hashing [9] (the so-called second genera-
tion key-value stores) to create a multidimensional ob-
ject space, one per query-able dimension, with different
types residing on different subspaces, but adds support
for transparent object versioning and version branching.
Naming In a setting where system state is decentralized,
virtual processors migrate and nodes come and go non-
deterministically, resource naming –the way by which lo-
cal, short handles reference remote, large pieces of data–
poses a considerable challenge. Post-migrated fibrils, re-
sources and channels should be accessible through the
same identification mechanisms as before (think of pro-
cess IDs in Unix-land) and the identifier should include
enough information to verify that dereferences produce
meaningful results. Some of the issues are alleviated by
the transparently-distributed, attribute-based persistence
store and the identical system image. On top of these,
Andromeda leverages RESTful uniform resource iden-
tifiers (URIs) [10], for both internal (local and remote)
and external naming. Many of these names are resolved
into virtual resources or are handed off to the persistence
layer (e.g., GET /fs/log?since=01012014&fmt=JSON).
The system makes opening public interfaces to share data
or services with non-Andromeda users straightforward
(see also Data Interchange) and allows for naming aliases
that can follow resource migration.
Implementation Language Picking the right linguis-
tic abstractions will influence both the performance and
security of the system [17] as well as the ease with
which astronauts and crew will be able to fly around.
To hide much of the complexity that arises from sys-
tems of this nature and scale, we envision a small, multi-
paradigm, systems programming language that follows
the same paradigm as the M31 itself – small core, but
trivially extensible semantics. Indeed, Andromeda as a
whole is structured around the language in the same way
Unix is structured around C [13]. It emphasizes safety
and supports first class functions and objects, since both
paradigms fit together with the persistent store and inter-
change formats, and express conveniently typical high-
level processing primitives. It provides strong, static typ-
ing (but allows optional dynamic type checking when
such is desired e.g., when used interactively), favors
immutability and data copying (but allows handing off
pointers if particular promises are kept), and provides
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mechanisms for containing side-effects.
Sandboxing Traditional isolation mechanisms based on
address space segregation incur high overhead, an over-
head that becomes prohibitive when thousands of pro-
cessing primitives need to collaborate with each other to
provide services across commodity hardware. The nu-
cleus provides efficient software fault isolation using lin-
guistic mechanisms (e.g., type system, scoping and bind-
ing rules, function closures (environments), protected
calls) to contain side effects. Most of these are enforced
during compile time, while some checks are done dur-
ing runtime; the user has a limited freedom of moving
some of these checks between compile time and run-
time. With the kernel architecture as described earlier,
all device drivers run at the mantle, in their own fault do-
mains, and communicate through messages. Since man-
ual memory management introduces many bugs and vul-
nerabilities that, in the case of a distributed system, af-
fect a shared and extended pool of resources, the lan-
guage runtime offers automatic memory management in
the form of garbage collection. The subsystem responsi-
ble for resource reclamation takes care of collecting con-
ventional, local objects (e.g., variables, fibrils) as well
as objects from mantle strata (e.g., open remote connec-
tions, channels).
Data Interchange In a system where data and code
are often in-flight between nodes, data interchange be-
comes vital, and a usual hot-spot for problems. Echoing
Dan Bernstein’s concerns [4], parsing and converting un-
structured blobs into structured data is usually a recipe
for disaster. Andromeda features object serialization
and interchange baked into the language, with the for-
mat being the object constructor itself (similar to Lua’s
“BibTeX” [14], Lisp’s S-Expression, and JavaScript’s
JSON [8] formats). Contrary to CSV or XML, the piece
of data itself is a valid program – if it compiles, it is
parse-able, and can be manipulated and introspected as
a first class citizen. Receivers can directly invoke meth-
ods of the objects transfered or retrieved. The format
is human-readable, self-describing and light-weight. As
an added benefit, Andromeda can optimize interchange
loads using a compressed abstract syntax tree (AST) en-
coding of the above format [6].
Programming Interface Contrary to existing dis-
tributed operating systems, Andromeda focuses on pro-
moting distributed computing to fully interactive use.
Users interact with M31 using a REPL that interprets
exactly the same strongly-typed, higher-order program-
ming language that components and user applications
are written in. Somewhat contrary to fork/exec Unix
(and, subsequently, POSIX) primitives, it allows dy-
namic module loading, reflection and fibril spawning,
enabling the user to load libraries and execute programs
in a unified interface. Users can compose and overload

simple processing primitives, introspect data objects and
interact with the file system. They can also set up, enter
and exchange sandboxes dynamically, and channel re-
sults through synchronous and asynchronous primitives.
Environments initiated in this manner inherit a small set
of default callbacks that can be augmented or overridden.
Everything under the sun? The discussion above tries
to distill key ideas in terms of the mechanisms and ab-
stractions provided by M31, omitting many interesting
details (e.g., node authentication, object versioning, pro-
gramming libraries), policies (e.g., consensus, coordi-
nation, scheduling) and optimizations (e.g., distributed
memory-caching schemes, internal networking proto-
cols). But let us return to the problem of counting words.

3 Back to Frequencies

In Fig. 2, we are working on extracting word frequen-
cies from thousands of books hosted on Project Guten-
berg [12]. We use a pseudo-Pythonic syntax only to have
something concrete to discuss. Also, to better explore
Andromeda’s internals, we do not present a pretty one-
liner, but rather the primitives that can be easily wrapped
to allow the one-liner.

Postponing the discussion of main until we cover
some preliminaries, we initially configure the distributed
storage for words (e.g., how many failures to tolerate,
if we need data versioning) and run the equivalent of
mkdir. This takes the configuration object as an argu-
ment and picks the user’s default options when param-
eters are missing. The value of attrs is itself an ar-
bitrary object. Since we need to inform the file system
about the type of values to be stored, we pass a type that
can be used to retrieve object interfaces or constructors
for destructuring incoming objects.

After storage is set up, we spawn a fibril that will start
crawling the project page intended for robots, download
books and calculate frequencies. The spawn primitive
wraps its arguments (a function and the function’s argu-
ments) in the interchange format discussed previously
and returns a channel endpoint pair (at the same time,
the new fibril itself gets the other parts of the pair). The
receiver can be monitored for updates and the sender can
be used to send data to the child, in a possible analogue
to Unix processes inheriting standard streams. Using
a limited form of static analysis, the runtime communi-
cates this package containing code and data to a node
that is highly probable to contain related data. The
wrapper object also encodes any channel endpoints re-
quired for communication, and after migration negotia-
tion, upon acceptance, both nodes make their respective
registrations.

We can now dissect main. We already know that this
function is going to be compiled and executed remotely,
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 1 fn main(url: String):
 2   import http, fs, sys, jam
 3   res = http.req(url)
 4   match res.contentType:
 5     "application/zip" =>
 6       book = jam.unzip(res.content())
 7       for b in book.split():
 8         fs.invoke({word:b, freq:Int.incr)
 9       PARENT.send(sys.SUCCESS)

10    "text/html"       =>
11      cs = []
12      for url in res.urls():
13        cs.append(sys.spawn(main, [url]))
14      PARENT.send(sys.collect(cs))
15    _                 =>
16      PARENT.send(sys.FAILURE)
17
18 words = { key: "word", value: {"freq": Int}

19     , opts: { partitions:8, failures:2
20             , versioning: False}}
21 fs.addSpace(words)
22 seed = "//gutenberg.org/robot/harvest"                                                                                                                                                                                             
23 s,r = sys.spawn(main, [seed])
24
25 match r.recv():
26   sys.SUCCESS => fs.search({word:"pi"})
27   _           => ("Impossible", -1)

Figure 2: Word frequencies (a typical “hello, world!” program among distributed frameworks) on Andromeda.

so we need to include particular imports (everything is
loaded on the fly). It first downloads the file and checks
if it’s a book (zip) or a url containing books. In the first
case, it just processes each word in the file and signals
completion. Int.incr, and generally any fs invoca-
tion, is guaranteed by the runtime to run atomically on
every record. In the second case, it spawns more fibrils
and ships the required parts accordingly (data and fibril
id’s). In particular, there is no need to resend a function
body, since the runtime has already registered this partic-
ular version across nodes that, when presented with the
function’s fingerprint, can retrieve it accordingly. In any
case, the fibril communicates its status with the parent,
with the root blocking until all computation is complete.
The runtime makes sure to reschedule any failing or un-
reachable computation. When complete, we just ask for
the frequency of the noun “pi”.

4 Related Work
There has been a significant body of work on distributed
operating systems dating from the 1970s [20, 23, 22,
15, 30], but most of this work never managed to blos-
som beyond academic interest. Although the exact rea-
sons might be different for each project’s fate, one can
clearly identify some of the causes. Most of these sys-
tems lacked the maturity that systems nowadays enjoy,
raising the barrier of adoption, given that they were al-
ready providing different abstractions from existing sys-
tems. Moreover, network speeds were only a fraction of
processing speeds, and while a lot of effort was put into
masking latencies and lack of bandwidth, users of these
systems never experienced today’s luxury. Most impor-
tantly, however, there was never a desperate need for
such systems. Only today have workload requirements
motivated the properties pursued by these systems.

Since the environment has changed, it is reasonable
to challenge the decisions made in the past, or at least
evaluate them carefully – after all, it has been more
than twenty years since most of these systems were de-
signed! For instance, due to resource cost, and there-
fore scarcity, many of these systems assumed batch, non-
interactive workloads on non-uniform clusters, and de-
signers chose to expose such heterogeneity across nodes.
A more important difference is that older systems were
designed with much more powerful, relative to contem-
porary, hardware in mind whereas Andromeda is specif-

ically designed for extremely cheap, failure-prone com-
putational substrate. This puts the main responsibility
on the software layer, whose complexity needs to be ab-
stracted away from developers and users. Deliberate,
precise abstraction is becoming vital, due to the ongo-
ing shift towards third-party, non-systems programmers.
Moreover, Andromeda is the only system that explicitly
targets distribution at scale, and puts a conscious effort
in handling the complexities introduced by unwieldy, as-
tronomical growth.

Over the past few years, researchers have made sim-
ilar observations about workload needs and user trends,
and the necessity of a scalable, distributed, minimal op-
erating system or language runtime [17, 26, 18, 25, 13].
Moreover, they identified that such systems require new
linguistic paradigms and operational abstractions, effec-
tively dropping varying degrees of backwards compat-
ibility. Surprisingly, however, the community has not
seen many implementations, and even these typically
tackle only a subset of the issues Andromeda aims to
address. Osprey [25] and DIOS [26] are well in their
development phase, but, to the best of our knowledge,
they seem to be Linux library OSes targeted for the cloud
rather than OS kernels themselves. Cluster management
suites [19, 16] and container engines [16, 7] (both of
which are often dubbed as cloud operating systems!) are
usually just another layer added on top of the conven-
tional stack with the goal of making application develop-
ment and management easier.

5 Conclusion

In this work we try to answer an simple, old question
under new lenses. Our inability to find a satisfying an-
swer motivates a discussion about a massively distributed
OS targeting commodity hardware. The features and ab-
stractions offered by Andromeda, although not novel per
se, act in synergy to offer sorely-needed guarantees for
tomorrow’s user.
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