
The Case for Less Predictable Operating System Behavior

Ruimin Sun Donald E. Porter† Daniela Oliveira Matt Bishop‡

University of Florida Stony Brook University† University of California at Davis‡

“No one is so brave that he is not disturbed by
something unexpected.” Julius Caesar

The operating system is increasingly regarded as un-
trustworthy. Applications, hardware, and hypervisors are
erecting defenses to insulate themselves from the operat-
ing system. This paper explores the potential benefits
if operating systems simply embraced these lowered ex-
pectations and deliberately varied API behavior. We ar-
gue that, even for trusted or benign applications, diversity
roughly within the specification can improve resilience to
attack and improve robustness. Malicious software tends
to be brittle; a preliminary case study indicates that, for
software of questionable origin, a somewhat hostile op-
erating system may do more good than harm for sys-
tem security. This paper describes the architecture of
Chameleon, an ongoing project to implement spectrum-
behavior as an operating system feature.

1 Introduction

A common goal of modern operating systems is to be
predictable. This improves compatibility among differ-
ent instances of the system, including older programs
running on newer systems. But predictability poses prob-
lems. Predictability allows vulnerabilities that are ex-
ploitable on one system to be exploitable on all systems
of that type. The paucity of different OS implementations
is one facet of the software “monoculture” problem.

One specific, limited form of unpredictability is di-
versity. The intent of diversity is independence, which
means that multiple instances yield the same result, but
in such a way that the only common factor is the inputs.
One example is N-version programming [1], in which
multiple teams create different software implementations
to perform the same actions. The results are considered
more reliable when multiple versions produce the same
results. Most fault-tolerant system designs require suffi-
cient software diversity that faults are independent, and
can be masked by voting or Byzantine protocols [2, 3].

At the system level, approaches to diversity gener-
ally involve randomness. For example, address space
layout randomization (ASLR) randomizes the placement
of pages of a program in memory during execution. A

return-to-libc or ROP attack may fail when the attack re-
lies on a buffer overflow causing a branch to a library
function or gadget, as the address of that target will vary
among instances of an operating system. But this ran-
domization is often insufficient against knowledgeable
attackers. A recent paper [4] demonstrated how, even
without specific knowledge of the ASLR of a web server,
one can quickly identify and exploit buffer overflows in
it. The technique relied on the fact that systems are com-
monly configured to restart daemons such as web servers
automatically, and that ASLR implementations do not re-
randomize the address space after restarting. As a result,
an attacker can incrementally explore the address space
and probe application behavior. Although fixes to ASLR
may mitigate this specific attack, the underlying lesson
is that diversity without unpredictability is not enough.
There is enough residual certainty that adversaries can
craft attacks that will work reliably across multiple in-
stances of a predictably diverse system.

Strategies for less predictable operating systems are
constrained by concerns for efficiency and reliability. Yet
consider what “efficient” and “reliable” mean for an op-
erating system. An operating system’s job is to manage
tasks that the system is authorized to run, “authorized”
meaning “in conformance with a security policy.” For
unauthorized tasks, such as those an attacker would exe-
cute to exploit vulnerabilities or otherwise misuse a sys-
tem, the operating system should be as inefficient and
unreliable as possible. So for “good” users and uses, the
operating system should work predictably; but for “bad”
users or uses, the system should be unpredictable. The
latter case eliminates efficiency and reliability. An ex-
tension is a spectrum of predictability, so that the less
actions conform to the security policy, the more unpre-
dictable the results of those actions should be.

This paper explores the benefits and feasibility of mak-
ing OS APIs less predictable on a spectrum from diver-
sity within the specification to active deception of dodgy
software. We argue that software robustness can actu-
ally be improved by being developed on a spectrum-
behavior operating system. Even within POSIX, mature,
portable software packages already handle considerable
variations in system call behavior. Most of this matu-
rity is the product of testing and bug reports across many
platforms. Moreover, hardware, compiler, and hypervi-

1



sor tools to protect the application from a malicious OS
are rapidly evolving [5–8]. Rather than require a soft-
ware developer to manually test the software on multiple
platforms, the development process could be facilitated
by easily generating a range of different behaviors to test
the software on—running the same test suite against dif-
ferent operating system behaviors. In essence, the oper-
ating system is a chameleon, taking on attributes appro-
priate to the user and use to which it is put.

Underlying this idea is the observation that systems
tend to be fixed and do not adapt well to new conditions.
A motivated attacker can bring great resources to find at-
tack variations that will succeed. Despite the explosion
of security software, malware remains at an average of
125 lines of code [9]. Thus, a “holy grail” of system de-
sign is the ability for the system to adapt with consider-
ably less effort than the attacker must expend to explore
the new system variants. Unpredictable behavior can be
such a mechanism for active defense against an attacker.

Section 2 examines deception and diversity as mech-
anisms for introducing unpredictability into OSes. Sec-
tion 3 presents preliminary results that indicate varying
OS behavior affects malware, which loses data and func-
tionality. Section 4 describes the design of Chameleon, a
system that combines inconsistent and consistent decep-
tion with software diversity to provide a mechanism for
active defense of computer systems and herd protection.
Chameleon leverages recent work that pushes an increas-
ing portion of system code to user level [8, 10–18] as a
means to more quickly and easily mix-and-match system
behavior transparently to the application.

2 Truths About Deception

This section summarizes how deception and diversity
have been used previously in software design, and high-
lights under-studied areas.

2.1 Diversity
The ability to diversify behavior within a system is an
essential building block for unpredictability. We define
the distinction between diversity and unpredictability as
whether the variations stay within the API specification.

One approach to diversifying software is at com-
pile time. Several projects [19, 20] randomize selection
of instructions at compile time, breaking unnecessarily
predictable sequences of potentially-exploitable instruc-
tions. Each instance of a system binary will have dif-
ferent, but functionally-equivalent instruction sequences.
Compile-time techniques can improve diversity, but can-
not adapt to changing attacks.

In addition to ASLR, several proposals have dynam-
ically diversified other aspects of application behavior

at runtime. Several projects mitigate buffer overflows
and other memory errors by randomizing system call
mappings, global library entry points, stack placement,
stack direction, and heap placement—often in conjunc-
tion with running multiple versions in parallel to de-
tect divergence [21–25]. Holland et al. [26] proposed
a strategy to randomize the ISA of a virtual environ-
ment, undermining portability of attacks leveraging low-
level features, such as code injection attacks. The Syn-
thetix project [27] specialized code dynamically using
automatic compiler analysis and programmer annota-
tions, primarily to improve performance; specialization
has been proposed as a mechanism to block attacks [28].
Program slicing has also been used to bound the cost
and complexity of automatic diversification [29]. Finally,
several projects have combined existing diverse imple-
mentations of file systems [30], databases [31], and lan-
guage implementations [32]. As discussed above, dy-
namic diversity reduces predictability but is often limited
to easily-randomized features of software.

Although the focus of this work is not on diversity,
we observe that much of the needed infrastructure for
both diversity and deception are already being developed
for other purposes. Recent library OS designs [8, 10–13,
16,18] high-performance I/O systems [15–17], and other
hardware access techniques [14] facilitate migration of
kernel APIs into the application itself, in some cases im-
plemented in higher level languages [13]. With some
disciplined modularization of library OS subsystems, the
otherwise daunting task of multi-version programming
can be made feasible—a few hundred or thousand lines
per component, possibly in different languages. Our vi-
sion is to mix-and-match different implementations of
different components, such that one can run many in-
stances of an application, such as a web server, and
only a few of instances will share the same combina-
tions of vulnerabilities. When the implementation effort
is smaller and well-defined, a single graduate operating
system course could easily generate dozens of functional
implementations of each subsystem.

2.2 Deception

The art of deception has been successfully used in war-
fare for thousands of years. Strategists such as Sun Tzu,
Julius Caesar, and Napoleon Bonaparte advocated the
use of deception as a way to confuse and stall the en-
emy, sap their morale, and decrease their maneuverabil-
ity [33–38].

To a limited extent, deception has been an implicit
technique for cyber warfare and defense. The best known
example is Cliff Stoll’s use of deception to keep an
intruder on an international telephone line for several
hours, downloading a bogus but interesting file [39]. The

2



authorities were able to trace the call, and broke up a
spy ring. Cheswick’s response to Berferd is another clas-
sic in this area [40], and foreshadowed much of the hon-
eypot work [41, 42]. Zhao and Mannan [43] employed
deception in system authentication by giving adversaries
access to fake accounts in cases of password brute force
attacks. Sandboxes and virtual machines limit the actions
of the attackers while giving the appearance of unfettered
access to resources.

Consistent deception strategies make the deceiver’s
system appear as indistinguishable as possible from an-
other, real system. The attacker does not perceive the de-
ception and believes in a consistent false reality. Stoll’s
actions were designed to make the attacker think he
had found a system with classified documents on it.
Cheswick created a falsity of a system that was old, slow,
and vulnerable. Honeypots, honeynets, sandboxes, and
virtual machines are designed to exhibit behavior consis-
tent with production systems.

Several technologies for providing deception have
been studied. Software decoys are agents that protect
objects from unauthorized access [44–48] by creating a
belief in the attacker’s mind that the defended systems
are not worth attacking or that the attack was success-
ful. The researchers considered tactics such as respond-
ing with common system errors and inducing delays to
frustrate attackers. The work used consistent deception.

Red-teaming experiments at Sandia tested the effec-
tiveness of network deception on attackers working in
groups [49]. The network-level deception delayed at-
tackers for a few hours, wearing down some groups to
abandon the attack before the end of the experiments.

Deception at the host level modifies system behavior
when an attacker is logged in. One implementation uses
a wrapper that intercepts program execution requests and
optionally runs a different program without the user de-
tecting the switch [50]. But many command interpreters
perform some of the requested actions directly, without
invoking system calls and so bypassing the wrapper.

Almeshekah and Spafford [51] further investigated
the adversaries’ biases and proposed a model to inte-
grate deception-based mechanisms in computer systems.
Chameleon will extend this model, and investigate the
utility of inconsistent deception.

In all these cases, the fictional systems are predictable
to some degree; they act as would real systems given the
attacker’s inputs. Other inputs (such as hardware fail-
ures) introduce a degree of unpredictability with respect
to the availability of the system, but do not affect the at-
tacker’s steps to compromise the system.

True unpredictability requires randomness at a level
that would cause the attacker to get inconsistent results,
or inconsistent deception [52]. Neagoe and Bishop ar-
gued that an attacker will have no idea of whether she

is exposed under a deception or a normal system that is
malfunctioning, but will feel disoriented and may with-
draw from the situation. In this paper we present pre-
liminary results from running keyloggers and botnets
under inconsistent deception. For instance, a keylog-
ger in the inconsistent deceptive environment loses some
keystrokes and records some false keystrokes.

Iago attacks [53] are a good example of how such
deception might work. An Iago attack occurs when an
untrusted system attacks a trusted program by returning
system call results that the trusted program cannot ro-
bustly guard against—ultimately causing the trusted pro-
gram to violate its security policies. We believe sim-
ilar techniques can be employed for active system de-
fense. Several papers have demonstrated that abnormal
sequences of system calls or even function calls can indi-
cate the presence of malware [54–56]. When malware is
suspected, we propose to use Iago attack-style deception
as active defense. Somayaji and Forrest [57] proposed
a model of delaying system execution as one means of
active defense. The Chameleon project aims to build a
more powerful spectrum-behavior OS.

3 Malware Case Study

In this section, we show that common malware can be
quite sensitive to relatively minor misbehavior by the op-
erating system. In this case study, many, these errors
are often within the specification of the network or po-
tential storage failure modes; a robust application would
detect most issues with end-to-end checks [58] such as
checksumming files, or, in other cases, checks designed
to shield against a malicious OS, such as MAC checks
on an encrypted socket. A few cases, such as injected
keystrokes, would be hard for any robust application to
detect on current software stacks.

Our preliminary study uses ptrace to interpose on
system calls invoked by a keylogger and a botnet, in-
troducing unpredictable behavior into their execution. In
these cases, the malware runs without crashing, but some
I/O is corrupted.

We selected candidate system calls for spectrum be-
havior based on analysis of system call behavior of be-
nign processes and malware. We compared the sys-
tem call patterns of 39 benign applications from Source-
forge [59] to 86 malware samples for Linux, including 17
backdoors, 20 general exploits, 24 Trojan horses and 25
viruses. We found that malware invokes a system call set
that is smaller than benign software; approximately 50
different system calls. The most commonly invoked by
malware include write(), wait(), clone(), close(),
read(), open(), send() and fstat().

In selecting strategies for spectrum behavior, our aim
is to perturb system calls that harm malware yet al-

3



low benign code to run. We found that the following
system calls are critical to process start-up and execu-
tion, and cannot be easily varied: fstat(), getuid(),
ioperm(), set thread area(), and mprotect(). In
other cases, perturbing system call parameters leads
to non-fatal deviations. For instance, decreasing the
length of a write() will cause a keylogger to lose
keystrokes, silencing a send() might cause a process
to fail sending an e-mail, and extending the time of a
nanosleep() will just slow down a process. We try to
balance risks to benign processes with harm to malware
through an experimentally-determined unpredictability
threshold, which bounds the amount of unexpected vari-
ation in system call behavior.

We studied these strategies for spectrum behavior:
Strategy 1: Silence the system call: we immedi-

ately return a fabricated value upon system call invo-
cation. This strategy only succeeds when subsequent
system calls are not highly dependent on the silenced
action. For example, this strategy worked for read()
and write(), but not on open(), where a subsequent
read() or write() would fail.

Strategy 2: Change buffer bytes: we randomly
change some bytes or shorten the length of a buffer
passed to a system call, such as read(), write(),
send() and recv(). This strategy corrupts execution
of some scripts, and can frustrate attempts to read or ex-
filtrate sensitive data.

Strategy 3: Add more wait time: the goal of this
strategy is to slow down a questionable process, for ex-
ample rate-limiting network attacks. We randomly in-
crease the time a nanosleep() call yields the CPU.

Strategy 4: Change file offset: this approach simu-
lates file corruption by randomly changing the offset in a
file descriptor between read()s and write()s.

We first applied unpredictability to the Linux Keylog-
ger (LKL) [60], a user-space keylogger, using strategies
1, 2 and 4. The keylogger not only lost valid keystrokes
but also had some noise data added to the log file.

Next we applied unpredictability to the BotNET [61]
malware, which is mainly a communication library for
the IRC protocol that was refined to add spam and SYN-
flood capabilities. We used the IRC client platform
irssi [62] to configure the botnet architecture with a bot
herder, bots and victims. The unpredictable strategies
were applied to one of the bots.

We first tested commands that successfully reached the
bot, such as adduser, deluser, list, access, memo,
sendMail and part. The bot reads commands one byte
at a time, and one lost byte will cause a command to fail.
Randomly silencing a subset of read() system calls in
our unpredictable environment results in losing 40% of
the commands from the bot herder.

We measured the impact of the unpredictable environ-

Figure 1: Comparison of email bytes sent from bots in
predictable and unpredictable environments.

Figure 2: Comparison of SYN-flood attacks in standard
and unpredictable environments. Unpredictability can
increase the DDoS resource requirements.

ment on the ability of the bot to send spam emails, shown
in Figure 1. In the normal environment, nine emails
varying in length from 10 to 90 bytes were successfully
sent. In the unpredictable environment only partial ran-
dom bytes were sent out by arbitrarily reducing the buffer
size of send() in the bot process. In the case of a spam
bot, truncated emails will streamline the filtering process,
not only for automatic filters, but also for the end users.

We also performed a SYN-flood attack to analyze the
effectiveness of the unpredictable environment in miti-
gating DDoS attacks. In a standard environment, one
client can bring down a server in one minute with SYN
packets. When we set the unpredictability threshold to
70% and applied strategies 1 and 3, the rate of SYN pack-
ets arriving at the victim server decreased (Figure 2), re-
quiring two additional bots to achieve the same outcome.

Preliminary tests with Thunderbird, Firefox and Skype
running in the unpredictable environment showed that
these applications can run normally most of the time, oc-
casionally showing warnings, and with some functional-
ities temporarily unavailable.

4 Spectrum-Behavior OS

Chameleon combines inconsistent and consistent decep-
tion with software diversity for active defense of com-

4



Figure 3: Chameleon can transition processes among
three operating modes: Diverse, to protect benign soft-
ware; Unpredictable, to disturb unknown software; and
Deceptive, to analyze likely malware.

puter systems and herd protection. It provides three dis-
tinct environments for process execution (Figure 3): (i) a
diverse environment for whitelisted processes, (ii) an un-
predictable environment for unknown or suspicious pro-
cesses (inconsistent deception), and (iii) a consistently
deceptive environment for malicious processes. The
Chameleon prototype is ongoing work.

Known benign or whitelisted processes run in the di-
verse operating system environment, where the imple-
mentation of the program APIs are randomized to re-
duce instances with the same combinations of vulnera-
ble code. In some sense, the diverse environment com-
bines ASLR and other known randomization techniques
with N-version programming [1], except that Chameleon
doesn’t run the versions in parallel, but rather diversi-
fies across processes. Our insight is that a modular li-
brary OS design makes the effort of manual diversifica-
tion more tractable. Rather than require multiple com-
plete OS implementations, the Chameleon design mod-
ularizes the Graphene library OS [11] and components
are reimplemented at finer granularity and possibly in
higher-productivity languages. The power of this design
is that mixing and matching pieces of N implementations
multiplies the diversity by the granularity of the pieces.

Unknown processes run in the unpredictable environ-
ment, where a subset of the system calls have their pa-
rameters modified or are silenced probabilistically. Un-
predictability is primarily implemented at the system call
table, or library OS platform abstraction layer. The exe-
cution of processes in this environment is unpredictable
as they can lose some I/O data and functionality. A mali-
cious process in the unpredictable environment will have
difficulty accomplishing its tasks, as some system call
options used to exploit OS vulnerabilities might not be
available, some sensitive data being collected from and
transferred to the system might get lost, and network con-
nectivity with remote malicious hosts is not guaranteed.

Unpredictability raises the bar for large-scale attacks.
An attacker might notice the hostile environment, but its
unpredictable nature will leave her with few options, one
of them being system exit, which from the host perspec-
tive is a winning outcome.

Processes identified as malicious run in a deceptive

environment, where a subset of the system calls are
modified to deceive an adversary with a consistent, but
false appearance while forensic data is collected and for-
warded to response teams such as CERT [63]. Shadow
Honeypots [64] have been used similarly for testing
the effects of anomalous network traffic and protecting
against potentially unknown attacks. In this environ-
ment, files the attacker intends to leak will be honey-
files, and any system privileges she thinks she has will
be limited to a sandbox. Connections and activities with
malicious remote hosts will be intercepted and logged.

Chameleon can adjust its behavior over the lifetime
of a process. Its design includes a dynamic, machine
learning-based process categorization module that ob-
serves behavior of unknown processes, and compares to
training sets of known good and malicious code. Based
on its behavior, a process can migrate to the diverse or
deceptive environment.

5 Conclusions

We currently have the worst of both worlds: rather sim-
ple attacks work, and both research and industry are
moving towards models of mutual distrust between ap-
plications and the operating system [5–8]. If applications
code will trust the operating system less in the future,
why not leverage this as a way to make malware and at-
tacks harder to write?

Sacrificing predictability will introduce new, but
tractable, research questions—especially around usabil-
ity. For example, a user who installs a new game with a
potential Trojan horse will be tempted to simply whitelist
the game if it isn’t playable. We believe unpredictability
can be adjusted dynamically to avoid interfering with de-
sirable behavior, potentially with user feedback.

We envision Chameleon’s architecture adopted in
desktop computers. Common, whitelisted applications,
such as office software, run unperturbed with less risk of
exploitation. If successful, sacrificing predictable behav-
ior can finally give systems an edge over one of the pri-
mary sources of computer compromises [65]: malware
installed by unwitting users.

Acknowledgments

We thank the anonymous reviewers, Michalis Polychron-
akis, and Chia-Che Tsai for insightful comments on ear-
lier drafts of this paper. This research is supported in
part by NSF grants CNS-1149730, SES-1450624, CNS-
1149229, CNS-1161541, CNS-1228839, CNS-1405641,
CNS-1408695. OCI-1246061, and DUE-1344369.

5



References

[1] L. Chen and A. Avizienis, “N-version program-
ming: A fault-tolerance approach to reliability of
software operation,” in Digest of the Eighth Annual
International Symposium on Fault-Tolerant Com-
puting, pp. 3–9, 1978.

[2] M. Castro and B. Liskov, “Practical byzantine fault
tolerance and proactive recovery,” ACM Trans-
actions on Computer Systems (TOCS), vol. 20,
pp. 398–461, Nov. 2002.

[3] A. Clement, M. Kapritsos, S. Lee, Y. Wang,
L. Alvisi, M. Dahlin, and T. Riché, “Upright cluster
services,” in Proceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP),
pp. 277–290, 2009.

[4] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres,
and D. Boneh, “Hacking blind,” in 2014 IEEE Sym-
posium on Security and Privacy (SP), pp. 227–242,
May 2014.

[5] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, “Using innovative instructions to
create trustworthy software solutions,” in Workshop
of Hardware and Architectural Support for Security
and Privacy (HASP), 2013.

[6] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee,
and E. Witchel, “Inktag: secure applications on
an untrusted operating system,” in Proceedings of
the ACM International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS), pp. 265–278, 2013.

[7] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual
ghost: Protecting applications from hostile oper-
ating systems,” in Proceedings of the ACM Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pp. 81–96, 2014.

[8] A. Baumann, M. Peinado, and G. Hunt, “Shield-
ing applications from an untrusted cloud with
haven,” in Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pp. 267–283, 2014.

[9] “Darpa’s framework for the cyber security chal-
lenge https://www.youtube.com/watch?v=

EgR44QXQLns.”

[10] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. Hunt, “Rethinking the library OS from
the top down,” in Proceedings of the ACM Inter-
national Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), pp. 291–304, 2011.

[11] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain,
W. Jannen, J. John, H. A. Kalodner, V. Kulkarni,
D. Oliveira, and D. E. Porter, “Cooperation and Se-
curity Isolation of Library OSes for Multi-Process
Applications,” in Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys),
pp. 9:1–9:14, 2014.

[12] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,
J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt,
“Composing OS extensions safely and efficiently
with Bascule,” in Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys),
2013.

[13] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft, “Unikernels: Library operating sys-
tems for the cloud,” in Proceedings of the ACM
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS), 2013.

[14] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis, “Dune: Safe user-
level access to privileged cpu features,” in Proceed-
ings of the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pp. 335–
348, 2012.

[15] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “IX: A protected
dataplane operating system for high throughput and
low latency,” in Proceedings of the USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), pp. 49–65, 2014.

[16] D. Schatzberg, J. Cadden, O. Krieger, and J. Ap-
pavoo, “MultiLibOS: An OS architecture for cloud
computing,” tech. rep., Boston University, 2014.

[17] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe,
“Arrakis: The operating system is the control
plane,” in Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pp. 1–16, Oct. 2014.

[18] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosen-
burg, E. Van Hensbergen, and R. W. Wisniewski,
“Libra: A library operating system for a JVM in a
virtualized execution environment,” in Proceedings
of the International Conference on Virtual Execu-
tion Environments (VEE), pp. 44–54, 2007.

6



[19] S. Forrest, A. Somayaji, and D. Ackley, “Building
diverse computer systems,” in Proceedings of the
6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), 1997.

[20] P. Larsen, A. Homescu, S. Brunthaler, and
M. Franz, “Sok: Automated software diversity,” in
Proceedings of the IEEE Symposium on Security
and Privacy (SP), pp. 276–291, 2014.

[21] M. Chew and D. Song, “Mitigating buffer over-
flows by operating system randomization,” tech.
rep., University of California, Berkeley, 2002.

[22] E. D. Berger and B. G. Zorn, “DieHard: Probabilis-
tic Memory Safety for Unsafe Languages,” PLDI,
pp. 158–168, June 2006.

[23] B. Salamat, A. Gal, and M. Franz, “Reverse stack
execution in a multi-variant execution environ-
ment,” in Workshop on Compiler and Architectural
Techniques for Application Reliability and Secu-
rity, 2008.

[24] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser, “N-variant systems: A secretless frame-
work for security through diversity,” in Proceedings
of the USENIX Security Symposium, 2006.

[25] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox,
and J. W. Davidson, “Security through redundant
data diversity,” in Proceedings of the International
Conference on Dependable Systems and Networks
(DSN), 2008.

[26] D. A. Holland, A. T. Lim, and M. I. Seltzer, “An ar-
chitecture a day keeps the hacker away,” SIGARCH
Comput. Archit. News, vol. 33, pp. 34–41, Mar.
2005.

[27] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Kra-
sic, A. Goel, P. Wagle, C. Consel, G. Muller, and
R. Marlet, “Specialization tools and techniques for
systematic optimization of system software,” ACM
Trans. Comput. Syst., vol. 19, pp. 217–251, May
2001.

[28] C. Pu, A. P. Black, C. Cowan, J. Walpole, and
C. Consel, “A specialization toolkit to increase the
diversity of operating systems,” in Proceedings of
the ICMAS Workshop on Immunity-Based Systems,
1996.

[29] J. P. Sterbenz and P. Kulkarni, “Diverse infrastruc-
ture and architecture for datacenter and cloud re-
silience,” in Computer Communications and Net-
works (ICCCN), 2013 22nd International Confer-
ence on, pp. 1–7, IEEE, 2013.

[30] L. N. Bairavasundaram, S. Sundararaman, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Tol-
erating file-system mistakes with envyfs,” in Pro-
ceedings of the USENIX Annual Technical Confer-
ence, pp. 7–7, 2009.

[31] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden, “Tolerating byzantine faults in trans-
action processing systems using commit bar-
rier scheduling,” in Proceedings of the ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pp. 59–72, ACM, 2007.

[32] A. Singh, N. Sinha, and N. Agrawal, “Avatars for
pennies: Cheap n-version programming for repli-
cation,” in Workshop on Hot Topics in System De-
pendability (HotDep), pp. 1–3, 2010.

[33] R. Greene, The 33 Strategies of War. Viking Adult,
2006.

[34] S. Tzu, The Art of War. Filiquarian, 2007.

[35] A. Goldsworthy, Caesar: Life of a Colossus. Yale
University Press, 2006.

[36] C. von Causewitz, On War. Princeton University
Press, 2008.

[37] A. Roberts, Napoleon, A Life. Viking Adult, 2014.

[38] E. Montagu, The Man Who Never Was. J. B. Lip-
pincott Company, 1954.

[39] C. Stoll, “Stalking the wily hacker,” Communica-
tions of ACM, no. 5, pp. 484–497, 1988.

[40] W. Cheswick, “An evening with berferd, in which
a cracker is lured, endured, and studied,” USENIX
Conference, no. 5, pp. 163–173, 1992.

[41] L. Spitzner, Honeypots: Tracking Hackers. Addi-
son Wesley Reading, 2003.

[42] J. Yuill, M. Zapper, D. Denning, and F. Feer, “Hon-
eyfiles: Deceptive Files for Intrusion Detection ,”
IEEE Information Assurance Workshop, 2004.

[43] L. Zhao and M. Mannan, “Explicit Authentication
Response Considered Harmful,” in New Security
Paradigms Workshop (NSPW), pp. 77–86, 2013.

[44] N. R. J. Michael, M. Auguston, D. Drusinsky,
H. Rothstein, and T. Wingfield, “Phase II Report on
Intelligent Software Decoys: Counterintelligence
and Security Countermeasures ,” Technical Report,
Naval Postgraduate School, Monterey, CA, 2004.

7



[45] J. Michael, M. Auguston, N. Rowe, and R. Riehle,
“Software Decoys: Intrusion Detection and Coun-
termeasures ,” IEEE Workshop on Information As-
surance, 2002.

[46] N. Rowe, “ Counterplanning Deceptions to Foil
Cyber-Attack Plans ,” IEEE Workshop on Informa-
tion Assurance, pp. 221–228, 2003.

[47] J. Michael, “ On the Response Policy of Software
Decoys: Conducting Software-based Deception in
the Cyber Battlespace ,” 26th Annual International
Computer Software and Applications Conference,
pp. 10–12, 2002.

[48] N. Rowe, J. Michael, M. Auguston, and R. Riehle,
“Software Decoys for Software Counterintelli-
gence,” IA Newsletter, vol. 5, no. 1, pp. 10–12,
2002.

[49] F. Cohen, I. Marin, J. Sappington, C. Stewart, and
E. Thomas, “ Red Teaming Experiments with De-
ception Technologies ,” IA Newsletter, 2001.

[50] D. Rogers, “Host-Level Deception as a Defense
Against Intruders,” 2004.

[51] M. H. Almeshekah and E. H. Spafford, “Planning
and integrating deception into computer security
defenses,” in New Security Paradigms Workshop
(NSPW), 2014.

[52] V. Neagoe and M. Bishop, “Inconsistency in decep-
tion for defense,” in New Security Paradigms Work-
shop (NSPW), pp. 31–38, 2007.

[53] S. Checkoway and H. Shacham, “Iago attacks:
Why the system call api is a bad untrusted rpc in-
terface,” in Proceedings of the ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASP-
LOS), pp. 253–264, 2013.

[54] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “In-
trusion detection using sequences of system calls,”
Journal of Computer Security, vol. 6, pp. 151–180,
1998.

[55] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff., “A sense of self for Unix processes,” in
Proceedings of the IEEE Symposium on Security
and Privacy (SP), pp. 120–128, 1996.

[56] S. Peisert, M. Bishop, S. Karin, and K. Marzullo,
“Analysis of computer intrusions using sequences
of function calls,” Dependable and Secure Com-
puting, IEEE Transactions on, vol. 4, pp. 137–150,
April 2007.

[57] A. Somayaji and S. Forrest, “Automated response
using system-call delays,” in Proceedings of the
USENIX Security Symposium, 2000.

[58] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-
to-end arguments in system design,” ACM Trans.
Comput. Syst., vol. 2, pp. 277–288, Nov. 1984.

[59] “SourceForge.net: Open Source Software
(http://sourceforge.net).”

[60] “Linux keylogger
(http://sourceforge.net/projects/lkl/).”

[61] “Botnet-1.0 (http://sourceforge.net/projects/botnet/).”

[62] “irssi (http://irssi.org/).”

[63] “CERT Advisories.
(http://www.cert.org/advisories).”

[64] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis,
K. Xinidis, E. Markatos, and A. D. Keromytis, “De-
tecting targeted attacks using shadow honeypots,”
in Proceedings of the USENIX Security Symposium,
pp. 129–144, 2005.

[65] J. Carr, Cyber Warfare. O’Reily, 2011.

8


