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Abstract

In certain usage scenarios, mobile devices are required

to operate in some constrained manner. For example,

when movies are being screened in movie theaters, all

devices in the room must be muted. However, typical

mobile devices operate in unrestricted mode, allowing

users to control their configurations. As a result, it is

hard to guarantee that mobile devices operate under cer-

tain restrictions. In this paper, we present a security ar-

chitecture that enables mobile applications to temporar-

ily restrict the functionality of devices. To this end, we

introduce a novel abstraction for mobile operating sys-

tems (MOS) called trust lease, which enables devices

to safely switch between modes. We discuss the design

implications that need to be addressed to implement this

primitive on modern MOSes.

1 Introduction

Today’s personal mobile devices are designed to be

highly extensible and configurable by their users. A

typical user has privileges to: install mobile applica-

tions on his device, grant access permissions to appli-

cations (e.g., network permissions), and configure sys-

tem settings (e.g., turn off the sound, or enable flight

mode). For some usage scenarios, however, such flexi-

bility poses difficult challenges.

To illustrate why, consider the following example. In

movie theaters, mobile devices must be put in silent

mode during movie screenings. Because this operation

must be performed on each device by its respective user,

the correct enforcement of this restriction is prone to hu-

man error. In fact, it is fairly easy for someone to forget

to mute their phone allowing for unfortunate calls to po-

tentially disrupt the environment and embarrass the re-

ceiver of the call. As it turns out, ensuring that all atten-

dees’ devices are muted is hard using technical means.

Usage scenarios such as this one are characterized by

the fact that mobile devices’ functionality must be con-

strained. Android currently provides a set of APIs and

system capabilities for installing a global security pol-

icy that cannot be overridden by the user [1]. Although

such policies can prevent the local user from perform-

ing certain operations on the device, these mechanisms

are more suitable for enterprise environments where a

trusted system administrator is responsible for manag-

ing the security policies of the employees. For personal

devices, alternative mechanisms are required in order to

enforce such restrictions.

In this work, we propose a security architecture for

mobile OSes that allows applications to temporarily re-

strict the operations that can be performed on a device.

Such restrictions include, e.g., denying access to certain

resources (e.g., network), preventing specific applica-

tions from being executed, or disallowing configuration

changes (e.g., mute the device). For example, in the cin-

ema use case just described, a mobile ticketing app can

be implemented in order to automatically put the atten-

dees’ devices in silent mode during movie screenings.

Before entering the screening room, the app requests

the OS to mute the device until the movie finishes or

the attendee leaves the room. The user must explicitly

authorize the application to enforce such restrictions im-

mediately before they are applied to the user’s device.

To reason about system restrictions, we introduce

an OS abstraction named trust lease. A trust lease

represents an execution mode within the OS in which

application-specific constraints apply. It must be issued

by the OS upon requested by an application. Every lease

must specify termination conditions (e.g., time out, lo-

cation based) that force the lease to expire. When the

lease expires, the user regains full control of the device.

Both the termination conditions and the requested con-

straints must be agreed upon by both the calling applica-

tion and the user. A third party can remotely attest that

trust leases are enforced on a mobile device. Remote

attestation is rooted in trusted hardware, such as ARM

TrustZone [4].

In the rest of this paper, we further motivate our secu-

rity architecture by discussing new applications that can

be enabled by trust leases (Section 2). Then, we present

the trust lease security architecture (Section 3), describe

one use case (Section 4), and discuss some implications

for MOS design (Section 5). Finally, we summarize the

related work (Section 6) and conclude (Section 7).

2 Motivation

We describe three potential mobile apps that are unsup-

ported by today’s commodity mobile devices. All these
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apps require the enforcement of app-specific constraints

to the mobile device, feature unsupported in present

MOSes. Because such apps restrict certain mobile de-

vice operations, we name them strapps.

Strapp mTicket. Digital ticketing apps are very pop-

ular. In general, a ticket gives its holder the right to en-

ter a place, travel by public transport, or participate in

an event. In many cases, a ticket also implies the duty

to disable certain features of the holder’s mobile device.

For example, in airplanes, mobile devices must be shut

down or turned into flight mode; in airports’ customs

areas, mobile devices cannot be used to take photos or

make phone calls; in museums, devices cannot be used

to take pictures; in movie theaters, devices must be put

in silent mode, etc. However, such restrictions are of-

tentimes neglected by ticket holders.

The goal of strapp mTicket is to provide a digital tick-

eting service that restricts mobile device operations so

as to abide by the terms of service that the ticket issuer

established. The mTicket app running on the holders’

devices maintains the digital tickets locally. When vali-

dating the ticket at the checkpoint of the restricted zone

or service, mTicket will check the authenticity of the

ticket and apply the necessary restriction measures to

the mobile device, e.g., disable incoming calls in the-

aters, block the camera in museums, etc. After leaving

the restricted zone or service, the restrictions previously

applied will stop being enforced.

Strapp mMeet. Mobile devices are indispensable

tools for professionals. Through these platforms, they

have access to e-mail, calendar, web, documents, etc.

However, the presence of malicious apps potentially

running on their devices can be the source of informa-

tion leakage. For example, malware can record pri-

vate conversations using the device microphone, or keep

track of the person’s location; it can then stealthily trans-

mit the resulting data to a remote site or temporarily

buffer the data on local storage for deferred transmis-

sion. Because of such risks, in privacy sensitive activi-

ties (e.g., business meetings) users are currently left with

no alternative but to switch off their devices. Indeed, this

approach improves security, but renders devices useless.

mMeet aims at preventing information leakage from

private meetings by mitigating user-space malware from

the participants’ mobile devices. To this end, mMeet

will implement a private mode, which blocks the execu-

tion of every app except for a set of pre-defined trusted

applications (e.g., e-mail client, contacts list). Thus, by

suspending every untrusted app in the system, mMeet

will disable user-space malware potentially running in

the system. Before a meeting starts, each participant

only needs to run mMeet and enter private mode. For

improved reliability, each participant may also verify

that its peers’ devices have entered private mode too.

To ensure that the mobile devices are trustworthy, they

will remain in this mode until the meeting ends.

Strapp mExam. In academic institutions, examina-

tion procedures are fundamental to evaluate students.

Small schools have shifted towards using dedicated

computers as platforms for realizing exams. However,

for universities with a large number of students, using

dedicated computers entails significant investment. An

alternative is to leverage students’ own mobile devices

as examination platforms. The challenge is then to pre-

vent students from cheating. In fact, during an exam, an

examinee can look up the answers for the exam by con-

necting to the Internet and searching the web, joining

chat rooms with other colleagues, reading course mate-

rial stored on the mobile device, etc.

mExam aims at turning the students’ mobile devices

into trustworthy examination platforms. To prevent

cheating, mExam must restrict the mobile devices so

as to deny potentially compromising operations, namely

the execution of additional apps (e.g., browser) or ac-

cess to system resources (e.g., network, SMS service).

Before an exam starts, the students sitting in an exami-

nation room launch mExam on their devices. An exam-

iner in the room authenticates students’ identities and

controls the exam duration. To start the process, the

examiner instructs all devices to be restricted. Then,

mExam displays the questions and takes students’ an-

swers. When the exam finishes, devices are unrestricted.

Discussion. These example applications help us to

characterize the nature of constrains required by a

strapp. We highlight three characteristics:

1. The scope of constraints is global. This is be-

cause strapps require granting or denying access per-

missions to objects across the entire system. One kind

of constraints (R-type) regulates access to system re-

sources (e.g., prevent access to the network) or services

(e.g., prevent enabling the flight mode). Another (A-

type) controls the execution of user apps. Apps may im-

pose constraints of R-type only (mTicket), A-type only

(mMeet), or both (mExam).

2. Constraints cannot be enforced indefinitely or

arbitrarily. Because the user is the legitimate owner of

the device, he or she must eventually regain all of his

original privileges. Therefore, restrictions must be lim-

ited in time. For mExam, mMeet, or mTicket strapps,

constraints will be withdrawn, e.g., when an exam time

limit expires, a meeting ends, or a museum visitor fin-

ishes the tour, respectively. In addition, to prevent the

enforcement of constraints against the user’s will, the

user must be informed of the constraints that the strapp

requires and explicitly authorize them. This process oc-

curs in the three example strapps, when a student agrees
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on performing an exam (mExam), when meeting par-

ticipants turn on the private mode (mMeet), and when

ticket holders validate their tickets (mTicket).

3. Remote attestation capability is required. There

is typically the need to assure an interested party that the

relevant constraints are in place before the critical activ-

ity proceeds. Interested parties vary from case to case.

They can be: the user itself, a single third party, or mul-

tiple third parties. mExam and mTicket illustrate the

second case, in which there is a single interested third

party, namely the examiner and the ticket issuer, respec-

tively. mMeet illustrates both the first and the third case,

because each user and its peers from a private meeting

constitute interested parties.

Our goal is then to devise a security abstraction

for MOSes that can accommodate the requirements of

strapps. Our abstraction must be simple to understand

by users and developers, and require little changes to

existing MOSes. We assume that the hardware, kernel

and services of the MOS are correct and, therefore, are

part of the trusted computing base (TCB).

3 Trust Lease Security Architecture

To serve our goals, we propose a novel OS abstraction

that enables temporary dropping of user privileges on

behalf of a specific strapp running on the user’s device.

Because such a privilege reduction implies a reduction

of trust in the user’s actions and occurs for a limited

amount of time, we name our abstraction trust lease, in

which the user is the lessor, and the strapp the lessee.

Figure 1 illustrates how trust leases work. Essen-

tially, a trust lease transitions the state of the mobile

device between two modes: unrestricted mode and re-

stricted mode. In unrestricted mode, the device is not

constrained. The user can launch or terminate apps ar-

bitrarily (Ai) and grant or deny access to resources (Rj).

Ai refers to the threads and processes associated with a

specific user application i. Rj represents an operation

on a given system object j, which can target a periph-

eral (e.g., “access the camera”) or a system service (e.g.,

“access the contact list”). Today’s devices run solely in

unrestricted more.

We introduce the restricted mode in which specific

system constraints are enforced for a limited duration.

System constraints c establish configuration permissions

for a set of applications and resources: these permis-

sions are immutable while the device is restricted. An

application can be set to either stop or sticky. In the

first case, the application is suspended, forcing all its

threads and processes to terminate; the application can-

not be started while in restricted mode. In the second

case (sticky), the application is launched and cannot be

terminated while in restricted mode. A resource can

be set to either grant or deny, respectively preventing

Figure 1: OS operation modes with trust leases: Ai de-

note applications, Rj resources, and l a trust lease.

or forcing a resource to be blocked. The duration for

restricted mode depends on the occurrence of a given

event e, which can be as simple as a timeout. For ex-

ample, if e = {t = 5 min}, the device will return from

restricted mode after a 5 minute timeout.

To enter restricted mode, an application must issue

a trust lease request to the MOS. A trust lease can be

seen as a capability that controls the state of the device

while in restricted mode. It consists of a tuple containing

three parts: constraints c, termination events e, and the

identity of the caller application a. For example, the

trust lease l shown in Figure 1.b can be described as:

l = 〈c, e, a〉, where

c = {A2 : stop, R3 : deny, R4 : deny}
e = {t = 5min}, a = ID(A1)

When an application issues a MOS call to request a

trust lease, the request must be authorized by the user.

This decision can be taken based on any of the elements

of the lease tuple. The user can deny the authorization

if he considers the constraints c too strict or too loose,

judges the termination events e inadequate, or finds that

the application a is not trustworthy based on elements

of the application identity, such as its version, digest, de-

veloper certificate, etc. If the user denies the request, the

device remains in unrestricted mode and an error is re-

turned to the caller application. Otherwise, if the request

is granted, the MOS creates a corresponding trust lease

object, switches the device to restricted mode, and re-

turns the success status and a trust lease reference. Since

the caller application plays the lessee role, it can proceed

executing sensitive strapp logic that requires constraints

c to be in place.

The MOS remains in restricted mode until the termi-

nation event e occurs. e expresses a logical condition

over a set of possible triggers, and it fires when that con-

dition fails. Several types of triggers can be used:

• time: tests the value of timer t, which counts the

time starting from the moment the trust lease was

issued. As mentioned above, it can be used to set a

lease timeout (e.g., e = {t = 5 min}).

• space: tests the value of a given location provider

s, such as the GPS sensor, a WiFi-based loca-

tion system, or alike. This trigger can be used to
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confine the restricted mode to a certain area (e.g.,

e = {sc = 〈X,Y 〉 ∧ sr = R}, which refers to a

circular area centered in 〈X,Y 〉 with radius R.

• abort: tests if the lessee has issued a lease abort

call to the MOS. This allows the lessee applica-

tion to terminate the lease explicitly. It is used as a

boolean variable (e.g., e = {abort = true})

Different triggers can be used in a termination event.

For example, e = {abort = true ∨ t = 5min} fires

the lease termination event as soon as either the lessee

aborts the lease or a timeout of 5 minutes fires. To make

sure that the lease always terminates, the system auto-

matically adds to e the condition t ≤ Tmax, which im-

poses a predefined maximum timeout Tmax. It is also

possible to define application-specific triggers that allow

the user to exit restricted mode, e.g., to make a phone

call while a movie is screening, in case of emergency.

As discussed in Section 2, interested parties may re-

quire guarantees that constraints are in place. To address

this need, the trust lease model provides a mechanism

called trust session. A trust session is a secure com-

munication channel between an interested third party,

called client, and a local strapp that holds a trust lease.

To convince a remote client that the local device did

transition into restricted mode, the trust session imple-

ments a remote attestation protocol based on trusted

hardware, namely ARM TrustZone technology [27]. At-

testation signatures are issued by a cryptographic key

bundled into the hardware by the device manufacturer.

These signatures include information about the MOS

identity and the current trust lease state. When a trust

lease expires, the trust session is terminated and the

client signaled. For flexibility reasons, the client can

close and reopen a session while the trust lease is active.

4 Use Case: mExam

Trust leases provide the missing primitive to enable the

implementation of strapps on mobile devices. We illus-

trate how by showing a concrete utilization of this prim-

itive for the mExam use case described in Section 2.

Note that this description is a caricature of a realistic

mExam application. Our purpose is to convey how trust

leases are concretely used and are crucial for security.

Figure 2 represents the parties of a potential mExam

usage scenario and relevant interaction steps among

these parties. The professor is responsible for compil-

ing the exam questions, assigning registered students

(examinees) to individual examination rooms, and as-

signing an examiner to each room. Examiners are re-

sponsible for supervising the examination process for

the students present in their assigned rooms. Exami-

nees will use their tablets for filling out the exam by

running the mExam strapp on their devices. Examiners

Figure 2: Usage scenario for mExam strapp example.

use their smartphones to control the examination pro-

cess. For this purpose they must execute a helper mo-

bile app called mKeeper. In addition, there is a central

service—the School Information System (SIS)—which

manages the examination procedures of the school.

The examination process is as follows. First, the pro-

fessor sets up relevant exam details on SIS (step 1).

On the predefined exam date, examinees and examin-

ers head to their respective rooms carrying their mobile

devices with them, and run the mExam and mKeeper

applications, respectively. After validating the registra-

tion of every student in the room (step 2), examiners

authorize examinees to start the exam (step 3) who can

then retrieve the exam questions from SIS and submit

the responses (step 4). For a given examinee, the exam

process ends when he submits the final responses, the

exam duration expires, or for some reason the examiner

cancels its submission.

In this scenario, trust leases play a fundamental role

to ensure that the students’ devices are properly secured

for the exam. During the exam, each examinee’s de-

vice will be restricted by a trust lease requested by the

mExam strapp running locally on each device. There

are two interested parties which require trust lease en-

forcement guarantees before the exam questions are sent

to the examinees: the examiner and the SIS. Examiner

(through mKeeper) and SIS obtain these guarantees by

opening trust sessions to the examinees’ devices. Each

examinee must explicitly approve the trust lease, after

being informed of the lease request conditions. The

lease constraints must deny the execution of all but the

mExam application, and block all resources and system

services except the required ones by mExam. The lease

termination event must specify at least a timeout for the

exam duration and an abort condition. Abort is issued

by mExam, e.g., when the exam is submitted to SIS.

5 Implications for MOS Design

In this section, we highlight the main implications of

the trust lease model to the design of a MOS. For this

discussion, we take Android as the baseline MOS.
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1. Security policy specification: In Android, se-

curity policies define permissions of apps in the sys-

tem. E.g., android.permission.INTERNET authorizes

an app to connect to the Internet. Trust leases introduce

system-wide permissions that need to be specified by de-

velopers and approved by the users. It is necessary to in-

vestigate whether existing permissions can be reused in

the specification of trust lease constraints. Others need

to be added, namely the ability to block the execution

of applications (Ai), permission that Android currently

does not support. Trust leases add complexity to poli-

cies. Care must be taken to not overwhelm users and

developers with cumbersome specification rules.

2. Security policy enforcement: To enforce trust

lease security policies, Android’s standard DAC and

MAC mechanisms must be complemented with novel

mechanisms. First, when a trust lease is requested to

the system it will be necessary to ensure that no ex-

isting application or service holds access permissions

to a resource that is disallowed by the trust lease. For

example, if a trust lease requires exclusive access to

the network and the browser is running, the MOS will

need to take proper measures to revoke network permis-

sions from the browser. Entering restricted mode may

also require suspending running applications. The MOS

must terminate all threads and processes of an app with-

out breaking the application semantics (e.g., by losing

state). When the device returns to unrestricted mode,

applications must be resumed to their prior state.

3. Trust bootstrapping and remote attestation.

Mobile devices running Android or other popular

MOSes such as iOS, implement some form of secure

boot scheme to check the integrity and authenticity of

the TCB, i.e., firmware, bootloader, and operating sys-

tem. This process is usually supported by dedicated

trusted hardware available on the device, such as ARM

TrustZone. With trust leases, stricter guarantees need

to be granted. First, when establishing a trust session,

a client will need to attest the integrity of the TCB

and the integrity and authenticity of the lessee applica-

tion. Trust session protocols implemented by the MOS

and client endpoints must enable clients to remotely

check the enforcement of such conditions. This can

be achieved by incorporating existing remote attestation

protocols [27, 28]. Second, it is necessary to ensure se-

cure persistence of trust lease state. Otherwise, a device

can become unrestricted by simply rebooting it.

6 Related Work

A large body of work aims to improve data security

from untrusted, potentially malicious, applications for

Android. Different systems attain this goal in several

ways. Some systems focus on detecting overprivileged

mobile apps [33]. Other systems [14, 18, 30] adopt in-

formation flow techniques to detect and / or prevent

data leaks. Several proposals focus on improving ac-

cess control mechanisms by: enabling fine-grained per-

missions [6,8,12,19,20,23,31,32], mitigating confused

deputy attacks [11,13,15,16,26], implementing manda-

tory access control (MAC) [7, 9, 10, 29], and provid-

ing hooking APIs to implement user-level access control

models [5,17]. The focus of all this body of work, how-

ever, is complementary to ours. In these systems the user

is fully trusted. Generally they offer either application-

or system-wide restrictions, rarely both. Our trust lease

architecture complements these systems by introducing

a restricted MOS operation mode, in which the user is

no longer trusted, and where individual apps (strapps)

can enforce global system constraints.

Regarding the enforcement of global system restric-

tions, we highlight: Digital Rights Management (DRM)

and Trusted Execution Environments (TEE) systems.

DRM systems [24, 25] aim at protecting copyrighted

content (e.g., preventing copies between applications).

The TEE considers a stronger threat model. TEE sys-

tems [2, 3, 21, 27] leverage trusted hardware to enable

secure execution of small pieces of application code

from potentially compromised MOSes. Systems like

Flicker [22] fall in this category. All these models—

DRM, TEE, and trust leases—allow for the enforcement

of global system restrictions. However, the nature of

these restrictions is different: DRM restricts access to

content, TEE restricts access to the runtime state of a

small piece of app code, and trust leases restrict access

to full-blown applications and system resources.

When compared to Android’s device administrator

applications [1], trust leases provide a richer set of re-

strictions and the ability to negotiate restrictions and ter-

mination conditions dynamically without relying on a

trusted system administrator.

7 Conclusions

This paper proposes a novel security model for mo-

bile operating systems (MOS) called trust leases. Trust

leases aim to enable the transition of commodity mo-

bile devices between two operation modes: one in which

the device is fully configurable but unsafe (unrestricted

mode), and another in which some of the device’s fea-

tures are constrained, enabling it to carry out certain

tasks in a trustful manner (restricted mode). We de-

scribe novel mobile application scenarios enabled by

trust leases, and discuss the technical challenges of im-

plementing this primitive in modern MOSes.
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