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Abstract

Taint tracking is a crucial yet expensive security prim-
itive. In the context of mobile devices, given the vol-
ume of sensitive data being generated and manipulated,
taint tracking is an important aspect of defense in depth,
yet is not widely adopted due to performance and energy
constraints. Existing work has proposed several forms
of optimization for desktop based systems – software-
only mechanisms, static analysis, hybrid analysis, and
hardware-assisted techniques. This paper makes the case
for an always-on taint tracking system for mobile devices
that embraces the unique properties of mobile operating
systems – interpreted runtimes, well-defined APIs, and
an overlooked ARM processor feature. Our proposed
system combines precise static analysis on Java code and
real-time instruction trace support widely available on
ARM processors to enable efficient taint tracking.

1 Introduction

Modern smartphones carry a wealth of data. The combi-
nation of always-available Internet access and a plethora
of sensors allow app developers to create rich applica-
tions that would be difficult, or even impossible, to create
on other platforms. However, that capability comes with
a downside - that same combination of Internet access,
personal information, and sensor data make smartphones
a goldmine for identity thieves, stalkers, and other mali-
cious actors.

To mitigate this risk, smartphone operating systems
include mechanisms for controlling apps’ use of data.
The mechanism used by major smartphone OSs today
involves a system of permissions - apps must explicitly
request, either at installation time or at runtime, access
to sensitive information or communications services.
While this model is easy to understand and straightfor-
ward to implement, it has several weaknesses in practice.
Chief among those weaknesses is the issue of dangerous

permission combinations - once an app has access to pri-
vate data and a way to get it off the device, it can, whether
by accident or by intent, leak that private data without the
user’s knowledge.

The canonical solution to the information-disclosure
problem is to use taint tracking. Taint tracking keeps
track of private data as it moves through a program’s
code, from a sensitive source such as GPS, through to
an off-device sink such as the Internet. Any computation
that depends on tainted data itself becomes tainted, and
if any tainted data reaches a sink, a leak of private data
is detected. The system can then take action, potentially
including blocking the leak and/or replacing the tainted
data with garbage.

Taint tracking is a powerful tool, but it is often a very
expensive one. Even state-of-the-art, optimized taint-
tracking systems for binary code typically cause 2.75x
slowdowns in the code being tracked [8]. Systems that
operate on more restricted input, e.g., TaintDroid [7] for
DEX bytecode from Java, have better performance, but
still impose a worst-case overhead of 30%.

An alternative approach to dynamic taint tracking, as
in the above systems, is to do static code analysis to
identify data flows that may leak private information.
FlowDroid and Amandroid [3, 23] are examples of such
tools. Static analyzers have the advantage of zero run-
time overhead, along with the ability to perform analy-
ses across the program, without being restricted to the
paths actually taken at runtime. However, without the
program’s inputs, static analyzers can’t tell how often a
given flow occurs in practice, or even whether it happens
at all. This is an important distinction to make for smart-
phone apps - an app that sends your location to a server
when the user asks for nearby restaurants, for example,
is much different in practice from an app that does so
constantly in the background.

The best possible system, therefore, would be a hybrid
system combining the runtime knowledge of dynamic
taint tracking with the full-program knowledge of static



analysis. Such systems have been discussed in the past,
both in theory [11, 10, 9] and in practice [8, 12]. How-
ever, existing work on this subject has focused on desk-
top and server workloads, with very little work focusing
on the mobile environment.

The remainder of this work proceeds as follows: Sec-
tion 2 describes the constraints and features of smart-
phones. Section 3 proposes a system for efficient taint
tracking within that framework. Finally, Section 4 dis-
cusses related work and concludes.

2 Design Space

Smartphones, while similar in many respects to desk-
top systems, have some key differences that make their
software environment quite different. First and fore-
most, smartphones are limited in computational power.
Most current desktop machines have enough resources
on tap that even heavily CPU-bound workloads tend to
complete quickly. In contrast, smartphones have much
slower and less capable CPUs, and rely on hardware ac-
celeration to handle common CPU-intensive tasks such
as media encoding. This constraint means that most
static analysis methods, which tend to be very CPU-
intensive, cannot be performed on-device. It also makes
even small overheads in execution time more noticeable
to the end user.

Additionally, smartphones are energy-constrained.
Smartphone users demand the ability to go a full day
without a charge, causing hardware and operating sys-
tems vendors to go to great lengths to minimize the
amount of energy used. To save energy, smartphone pro-
cessors are designed to shut down peripherals and cores
that are not in use, and their software is designed to batch
requests together to minimize the amount of time those
peripherals must stay on. This requirement rules out any
cloud-based computation that requires continuous net-
work access, and imposes additional costs on CPU time
used by dynamic analysis.

Fortunately, smartphones also have a few features that
simplify the problem of taint tracking, even under those
constraints. First of all, both Android and Windows
Phone apps run under a managed, typesafe runtime. The
semantics of that runtime allow the system to make
strong assumptions about how code can behave, which
simplifies the logic required for taint tracking. Addi-
tionally, these runtimes use ahead-of-time compilation,
which allows us to control the machine code executed
for a given bytecode instruction without needing hard-to-
predict branches inside an interpreter. (See section 3.1.)

Second, every smartphone OS has an app store, which
users trust to provide them apps. The app store operators
have a vested interest in their users’ security, and a large
infrastructure at their disposal, which provides a perfect

place to perform heavyweight static analysis, which can
be used on-device to cut down the runtime overhead of
taint tracking or skip it entirely (see section 3.2).

Lastly, every popular smartphone on the market uses
an ARM processor. These processors are highly-
integrated pieces of hardware, containing a wide array
of coprocessors, modems, and peripherals that are used
to perform specialized tasks. In particular, every ARM
chip shipped in the last several years has included a pe-
ripheral called an Embedded Trace Macrocell, or ETM.
While ETM was designed to collect execution traces as a
debugging aid, it can be repurposed to send execution in-
formation from an app to another core, enabling the app’s
execution and taint propagation to happen in parallel (see
section 3.3).

3 Proposed Design

In our proposed design, the analysis begins when an
app is uploaded to the app store by its developer. The
app store operator runs a static analyzer over the app,
and saves the resulting output along with the app binary.
When a user installs the app, the app store also sends the
static analysis results. The app and the static analysis re-
sults are sent to the ahead-of-time compiler, which gen-
erates ARM machine code for the app. As it generates
the code, it emits marker instructions into the instruction
stream, guided by the static analyser output.

When the app is launched, the operating system con-
figures the ETM trace unit for a core to generate an event
when a marker instruction is executed. The app is then
run on that core. Every time the app hits a marker in-
struction, the ETM trace unit generates an event contain-
ing the marker instruction’s PC and an operand deter-
mined by the static analyzer output, and places the event
in a trace buffer. At the same time, on another core, a
taint-collector thread reads these trace events. By using
the PCs and data sent from the main app, the taint col-
lector thread reconstructs the app’s stream of execution,
and from there, can infer changes to the app’s taint state.
When it infers that a leak has occurred, it logs the leak
and notifies the user.

The remainder of this section discusses the design in
more detail. This work simply lays out the design; we
leave it to future work to implement it and verify its func-
tionality.

3.1 Semantic Analysis
Unlike traditional native-code-based desktop applica-
tions, mobile apps tend to be written in managed lan-
guages such as Java on Android and C# on Windows
Phone. These languages provide full type- and mem-
ory-safety, cross-architecture support, and garbage col-
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Figure 1: A diagram of our optimized taint tracking sys-
tem. Static analysis performed on a central app store is
combined with on-device dynamic analysis, which is de-
coupled using ARM’s ETM trace unit.

lection as part of their design. In order to support
those services, app code is distributed in an intermedi-
ate language. These intermediate languages carry a large
amount of semantic metadata, including class and inter-
face definitions, method bytecode, inheritance and over-
ride information, and debugging data. That data can be
used in multiple ways to simplify the problem of taint
tracking. For example:
• Managed bytecode is structured into clearly defined

methods, classes, and interfaces. This structure al-
lows unambiguous disassembly and reconstruction
of the original control flow graph, enabling static
analysis of apps without needing access to source
code that app developers may be unwilling to pro-
vide. In contrast, native machine language is far
more difficult to disassemble and analyze, with un-
ambiguous x86 disassembly being a provably unde-
cidable problem. [22]
• Bytecode is type- and pointer-safe, simplifying

static analysis by reducing the possible aliases of
a reference to other references of compatible type.
• Objects are clearly separated in managed languages,

allowing taints to be tracked per-object and per-
field, rather than per-byte.

This additional data allows for lower-overhead taint
tracking for the vast majority of apps that use bytecode.
For those few apps that take advantage of native machine
code (for example, via Java’s JNI or Android’s NDK), a
more traditional native-code approach can be used.

In addition to the direct benefits of using managed
languages, mobile taint tracking also benefits from the
properties of mobile OS API designs. By design, these
APIs funnel all access to sensitive information through a
small number of well-defined interfaces, where permis-
sions can be checked. These interfaces serve as natural

points to apply taint markers. Sinks follow a similar pat-
tern, again due to the need for permissions checking.

The work done to enforce permissions also provides
an extra benefit due to the association of permissions
with sources and sinks - by taking advantage of the dif-
ferent permission types that are used, taints from differ-
ent sources can be distinguished. For example, leaks of
a user’s location can be distinguished from those involv-
ing the user’s contacts. Projects such as SuSi [16] have
explored the feasibility of performing this analysis au-
tomatically, thus reducing the engineering work that is
required to annotate those sources manually.

3.2 Cloud-Assisted Hybrid Analysis

As previously mentioned, the best possible taint track-
ing system would take advantage of both static knowl-
edge about the program’s structure and runtime knowl-
edge of the program’s behavior. However, implement-
ing this hybrid analysis has several challenges. The first
challenge is the issue of performing the static analysis
in the first place. Most analyzers are very CPU- and
RAM-intensive, making them poorly suited to run on
low-power smartphone chipsets. The solution is to farm
out the analysis to the operator of the device app store,
who would perform the analysis on a much less resource-
limited machine, then sign the analyzer results and in-
clude the signed results in the app download. This al-
lows the analysis to be done once per app uploaded, then
served to any number of customers who need it.

App store vendors are already performing some level
of security checks on submitted apps and updates, either
automatically as in the case of Android, or manually as
in the case of iOS. Therefore, even a very long-running,
computationally-intensive static analysis – such as that
performed by TAJ [20], which can take over an hour to
run a complete analysis on a large app – would not be
a disruption to the current app-development ecosystem.
This means that an expensive, but precise, static analysis
can be run on each app, which would reduce the amount
of work left to be done by the runtime taint-tracking sys-
tem. Instructions that don’t deal with private data, and
that can be proven safe, can be skipped entirely in the
runtime analysis. Previous work on published apps has
shown that private data is generally only handled in a
small percentage of code [24], so excluding the rest of
the app from consideration should reduce the overhead
considerably.

Another significant challenge involves handling taint
from other apps. Android makes heavy use of IPC be-
tween processes to share information. That information
may be tainted, but it won’t always be. Therefore, each
app needs to treat any data received via IPC as poten-
tially tainted, and thus perform taint analysis of that data.



Similarly, data from the local filesystem may also be
tainted. It remains to be seen what impact these addi-
tional sources and sinks will have on the effectiveness of
the static optimizations.

The final challenge involves finding an efficient way to
customize the runtime taint-propagation behavior. With
a conventional interpreter like Android’s Dalvik, which
uses the same implementation code for every instance of
a given bytecode instruction, this would require a condi-
tional branch on a hot path with a difficult-to-predict pat-
tern. Under those conditions, branch mispredicts may, in
fact, make the implementation slower than simply prop-
agating every time [5]. To avoid that issue, it would
be necessary to have separate native implementations
for each bytecode instruction; preliminary investigations
into ART, Android’s ahead-of-time-compiled Dalvik re-
placement, show that it is possible to modify the code
generator to emit additional native instructions into an
app binary based on an input file. This capability could
be used to emit taint-propagation logic only on instruc-
tions that require it, saving clock cycles and memory ac-
cesses.

3.3 Hardware-Assisted Taint Collection

While using hybrid analysis can reduce the overhead of
taint tracking, it cannot eliminate it completely. As long
as taint propagation is being done in-line with the appli-
cation code, there will always be some degree of over-
head involved with running those calculations. In order
to eliminate that final cost, it’s necessary to decouple the
app’s code from the instrumentation code and run the
two in parallel. In a parallelized taint tracking model,
the application thread does not maintain its own taint
state. Instead, when an instruction is executed, the ap-
plication thread records information about the instruction
and sends it to a taint collector thread running on a differ-
ent core. Using the information sent by the application
thread, the collector thread then infers the changes made
to the program, and updates its taint state appropriately.
With this design, the slowdown of the main app thread is
limited to the time necessary for communication, rather
than the full overhead of taint propagation. These tech-
niques have proven effective in native-code taint tracking
workloads, as in ShadowReplica [8].

Unfortunately, while they work well on heavier
workloads, software-only parallelization techniques like
ShadowReplica become less effective as the analysis
costs decrease, due to the fixed costs of communication.
In the case of our analysis, where our propagation logic
is small in comparison to a native taint tracking work-
load, that fixed communication cost may negate any ben-
efits gained from moving the propagation off-core. This
would seem to indicate that the maximum speed of our

  

CPU0

0:  mov r1, v1
1:  mov r0, 31
2:  ldr r13, =stack
3:  cmp r0, r1
4:  mark
5:  beq <addr>
6:  mark
7:  ldrcc r2, [r0], #4
8: cmp r2, r1
9: mark
10: bcc <addr>

ETM FIFO

4 [m], 6 [m], 9 [m]

CPU1

Trace Collector

Figure 2: Instruction markers are added to the app code
during ahead-of-time compilation. The markers generate
ETM events, causing the PC and optional instruction data
(m) to be saved in the FIFO. A taint collector core reads
the FIFO and performs taint tracking.

analysis has been reached - it can’t be sped up any further
in-line, and it can’t be profitably moved out-of-line.

However, there is still one technique available - if there
were a way to cheaply communicate instruction-trace
data off-core, then parallelization would become a viable
option, even on workloads this small. Previous work has
considered adding hardware support for this communi-
cation, and has shown it to be an effective technique [6].
Unfortunately, as no hardware implementing this sup-
port has ever become commercially available, using it
becomes impossible in practice.

As it turns out, though, while no processors have ever
been designed to have this support, there have been pro-
cessors with hardware designed to solve the similar prob-
lem of collecting trace data for debugging – namely, the
ubiquitous ARM processor. Recent ARM chips have
shipped with a small unit called an Embedded Trace
Macrocell included in each processor core. This unit is
designed to collect information about an execution trace,
compress it, and write it into an on-chip FIFO for later
collection by an external JTAG programmer. [1] In the
absence of a JTAG, however, the FIFO can also be read
out from any core as an ordinary memory-mapped pe-
ripheral. The ETM has configurable filters to limit the
trace data to desired instructions, and can collect the pro-
gram counter, data address, and data value of each in-
struction.

Those capabilities are sufficient, given correct config-
uration and software support, to allow the ETM to be
used as an effectively-free taint trace communications
channel off-core. Consider Figure 2. The app’s native
code is modified during compilation to add instruction
markers (mark in Figure 2) whose purpose is to generate
ETM events. Upon an ETM event, the processor saves
the current PC and instruction data (labeled as “m”) into
a FIFO. The taint collector core reads out the FIFO to
infer the taint state of the monitored app.

This technique has significant benefits over pure-



software solutions. First and foremost, this technique can
be implemented on nearly any ARM processor made in
the last several years. As ARM processors control nearly
all of the smartphone market, this means that hardware
support will be widely available, even at its first launch.
Second, this technique is incredibly lightweight - be-
cause the ETM is integrated directly into the processor
core, messages can be sent in as little as one cycle. Un-
like software techniques, synchronization is handled au-
tomatically - if the ETM’s output FIFO fills up, the pro-
cessor will stall, thus allowing the core reading the FIFO
time to catch up. This means that there is no need for
any communication or synchronization between the ap-
plication core and the taint collector core, except under
limited circumstances - for example, to flush the buffer
and ensure there is no leak before committing a write.
Lastly, because the event generation is controlled by a
hardware peripheral, event sources can be toggled on
and off at runtime without needing to modify the code
that generates them. A disabled event would still exe-
cute the marker instruction, but the corresponding ETM
event would not be generated. This could reduce the load
on the taint-collection thread and yield even more energy
savings.

One challenge to this approach is the energy cost of
running two cores instead of one, which may negate
any energy savings gained by reducing CPU overhead.
In many respects, this is a similar problem to the pre-
existing issue of sensor processing, which requires a
small, but constant, amount of CPU power. Similar
techniques can be used to mitigate the energy cost of
taint processing - for instance, if the user is willing to
accept deferred notification that a leak occurred, then
taint-propagation events could be batched, and handled
in short bursts at intervals. Another solution would be to
do the processing on a smaller, low-power core, such as
the low-power microcontrollers included with some TI
chips [14], or ARM’s more recent big.LITTLE designs
that use low-power cores for lighter workloads [2].

4 Related Work and Conclusions

Taint tracking, a form of information flow control [19],
is recognized as an important security primitive to con-
trol usage of sensitive data. However, researchers have
quickly realized that it is an expensive primitive to im-
plement, as evidenced by the plethora of projects aimed
at optimizing taint tracking for speed and energy con-
sumption [15, 18, 21, 25, 6, 8, 13, 24].

Software-only approaches to optimization include
LIFT’s [15] runtime binary techniques, where code
paths not affected by tainted data are not taint tracked.
This mechanism does not require any specialized hard-
ware support, but is an inline technique, i.e. execu-

tion and analysis are interleaved resulting in slowdowns.
Speck [13] uses speculative execution and spare cores
to run analysis on a separate core thus decoupling exe-
cution and analysis; however, this results in application
code running more than once, which is an unacceptable
energy cost on a mobile device. We propose an archi-
tecture that uses commodity real-time tracing hardware
combined with static analysis to accelerate taint track-
ing on mobile devices. Our mechanism is not inline, and
does not require re-execution of application code.

Log based architectures [6, 18] introduce a microar-
chitectural extension to stream execution logs from one
core to an analysis core. However, we note that, typ-
ically, these logs are very high-bandwidth, resulting
in application stalls and reductions in speed. Shad-
owReplica [8] is a promising technique that uses offline
analysis to reduce the amount of execution trace trans-
ferred between the execution core and analysis core, but
does not use hardware acceleration. This technique uses
static analysis and profile information to minimize the re-
quired trace bandwidth, by ensuring that the most likely
cases result in little or no data being generated.

Hybrid analysis techniques have recently started to
emerge [4, 17, 25] that exploit offline analysis and se-
mantics of program units such as functions. We believe
that such techniques can be sped up even further through
the use of semantic information and hardware accelera-
tion. TaintEraser [25] reasons about the taint behavior
of functions statically. However, unlike our proposal, it
does not use hardware acceleration.

In summary, while taint tracking is an important secu-
rity primitive, it is not yet widely adopted on mobile de-
vices due to performance and energy constraints imposed
by such an environment. In this paper, we describe the
architecture of a hybrid taint tracking system that lever-
ages the unique features of mobile operating systems. A
central insight is that we can use existing real-time in-
struction tracing support available on ARM processors
to implement a decoupled taint tracking system, assisted
by static analysis on Java code to reduce the overhead of
analysis. An implementation is in progress.
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