
Inferring the Network Latency Requirements of Cloud Tenants
Jeffrey C. Mogul and Ramana Rao Kompella –Google Inc., Mountain View, CA

Abstract
Cloud IaaS and PaaS tenants rely on cloud providers

to provide network infrastructures that make the appro-
priate tradeoff between cost and performance. This can
include mechanisms to help customers understand the
performance requirements of their applications. Previous
research (e.g., Proteus and Cicada) has shown how to do
this for network-bandwidth demands, but cloud tenants
may also need to meet latency objectives, which in turn
may depend on reliable limits on network latency, and its
variance, within the cloud providers infrastructure. On
the other hand, if network latency is sufficient for an
application, further decreases in latency might add cost
without any benefit. Therefore, both tenant and provider
have an interest in knowing what network latency is good
enough for a given application.

This paper explores several options for a cloud
provider to infer a tenants network-latency demands,
with varying tradeoffs between requirements for tenant
participation, accuracy of inference, and instrumentation
overhead. In particular, we explore the feasibility of a
hypervisor-only mechanism, which would work without
any modifications to tenant code, even in IaaS clouds.

1 Introduction
Tenants of Infrastructure-as-a-Service (IaaS) and

Platform-as-a-Service (PaaS) cloud providers rely on
these providers to provide network infrastructure to con-
nect the various components of their applications. In
such environments, both providers and their tenants face
critical tradeoffs between cost and performance. Un-
derprovisioned applications fail to meet their System
Level Objectives (SLOs); overprovisioned applications
add costs for either or both parties.

While some tenants deeply understand their own net-
work performance needs, many do not. Some lack the
technical sophistication to know how their SLO depends
on various aspects of infrastructure performance; oth-
ers just want to spend their efforts focusing on other
challenges (e.g., adding new features). The relation-
ship between application performance and network per-
formance can be quite complex [14, 24, 26]. Also,
cloud providers usually hide the details of the underly-
ing infrastructure, so that they can evolve it without be-
ing locked into outdated design decisions (and to avoid
revealing their trade secrets). Enterprises that are ac-
customed to designing around specific network hard-
ware structures cannot easily transfer these experiences
to opaque cloud platforms.

In addition, one oft-stated justification for the use of

cloud platforms is that they support rapid flexing of re-
sources in response to varying demands. These varia-
tions in demand and in the amount of computational re-
sources allocated to a tenant can complicate the relation-
ship between SLOs and network provisioning.

Given these impediments to client-specified network
performance requirements, a provider can do a better job
of optimizing both customer happiness and infrastructure
utilization if the provider can estimate the customer’s ac-
tual demand, rather than requiring the customer to spec-
ify it explicitly. Accurately and dynamically choosing
the right level of network provisioning could become
part of the “undifferentiated heavy lifting”1 that a cloud
provider offers to its tenants.

Previous research (e.g., Proteus [25] and Cicada [17])
has shown how to do this for network-bandwidth de-
mands. Proteus profiles the bandwidth demands of
MapReduce jobs, with the goal of overlapping their use
of a shared network during future runs of the same
jobs. Cicada uses VM-to-VM bandwidth measurements
of long-running cloud applications to drive a machine-
learning predictor of future bandwidth requirements, in-
cluding time-varying requirements typical of user-facing
applications; these predictions can then be used for ad-
mission control and/or VM placement decisions, to max-
imize the number of tenants whose demands can be met
on a given infrastructure.

However, many cloud tenants might also need to meet
service-level latency objectives, that in turn depend on
reliably low network latency within the provider’s infras-
tructure. User-facing applications, in particular, typically
must meet “tail-latency” SLOs [10], and can suffer sig-
nificant business impact from high or highly-varying net-
work latencies. On the other hand latency decreases be-
low a certain threshold might add cost without any sub-
stantial application-level benefit. Therefore, both tenant
and provider have an interest in knowing what network
latency is “good enough” for a given application.

Existing bandwidth-prediction methods cannot di-
rectly reveal a cloud application’s network latency re-
quirements. In this paper, we explore several options
for a cloud provider to infer a tenant’s network-latency
demands. These options vary in their tradeoffs between
requirements for tenant participation, accuracy of infer-
ence, and instrumentation overhead. In particular, we
explore the feasibility of a hypervisor-only mechanism,
which would work without any modifications to tenant
code, even in IaaS clouds.

1A phrase from Jeff Bezos [18].



2 Motivation and background
The thesis of this paper is that cloud providers should

infer the network latency demands of their tenants. This
depends on several premises:

1. Cloud application performance (sometimes) de-
pends on internal network latency: This premise is
well-established, especially for applications where “tail
latency” matters [2, 3, 10, 13].

2. Network latency within a cloud infrastructure can
vary significantly: Several previous papers have re-
ported measurements of cloud-internal network laten-
cies. For example, Wang & Ng reported large varia-
tions in EC2 network latencies [23,§IV-B]; Barker &
Shenoy also reported EC2 latencies, but without for-
mally quantifying the variations [6]. We are unaware
of more detailed or recent studies ([6, 23] are both from
2010), so in§3 we report our own measurements.

3. Cloud providers can control latency: A provider can
use one or more of several known mechanisms to con-
trol latency. For example, High-bandwidth Ultra-Low
Latency (HULL) [3] uses a form of active switch-queue
management, DCTCP [2], and sender-based packet
pacing, trading a small amount of bandwidth for “dra-
matically” lower average and tail latencies. Silo [15]
improves on HULL by combining sender-based packet
placing and careful VM placement, avoiding the need
for either DCTCP (i.e., guest modifications) or switch
modifications. Silo also supports a combination of
guarantees for both bandwidth and latency. Providers
can also leverage enhanced hardware, such multiple-
queue QoS support available in many switches, by
setting DSCP headers in packets to assign latency-
sensitive traffic to lightly-loaded queues [13]. One
might also hope for deployment of NICs, such as
SENIC [21], with scalable hardware support for pac-
ing.

4. Tenant developers do not understand their own net-
work latency requirements: Systems such as Silo
assume that the latency-guarantee requirements are
known to the tenant. Similarly, systems such as Okto-
pus [5] assume that tenants know what bandwidth guar-
antees to request for their applications. However, our
discussions with cloud operators suggest that they do
not believe that most tenants actually know what net-
work guarantees to ask for; therefore, most clouds do
not provide any way to request network-performance
guarantees. (EC2 does support HPC clusters with low-
latency networking, but coupling low-latency network-
ing with the other HPC features yields an inflexible
tradeoff between resources.)

Based on these premises, we argue that a cloud provider
should infer network-latency demands for its tenants.
What remains to be shown is whether a cloud provider
can infer latency demands. We address this in§4.

2.1 Who benefits from latency inference?
Who would benefit from inference of latency de-

mands, and how?

Providers presumably want to find a Pareto-optimal
operating point, which maximizes both a provider’s own
profit and that of its tenants (since happy tenants are
more likely to continue as customers). Different tenants
are likely to have different tradeoffs between latency de-
mands and bandwidth demands, so a provider that knows
these demands can allocate its resources so as to balance
them appropriately, while making the most efficient use
of its infrastructure (i.e., serving as many tenants as pos-
sible using a given set of resources).

A provider that knows whether a tenant’s performance
problems are attributable to network latency can also do
better at responding to complaints about performance.

Tenants want to understand if and how they need to
improve their applications or purchase more resources.
Latency inference can help them understand the rela-
tionship between network latency and their application’s
SLO. (Wuet al. have proposed Virtual Network Diagno-
sis as a Service [24] as a step in this direction).

2.2 Using inferred latency demands
A provider can use several different methods for bal-

ancing resource allocations between tenants. It can do
admission control, to avoid overloading its infrastructure.
It can change VM placement (as in Oktopus and Silo) to
improve network locality or reduce interference. It can
reduce the sending pace of latency-insensitive VMs, so
as to provide better latency to latency-sensitive VMs (as
in HULL and Silo). It can change DSCP settings, to shift
flows between switch queues. It can use this information
for planning infrastructure upgrades and expansions.

A provider may want to to adjust the relative prices of
VMs, bandwidth guarantees, and latency guarantees, to
optimize the profit it makes from its resources, while of-
fering customers an opportunity to pay for better appli-
cation performance. Latency-insensitive tenants would
not pay for premium service, and so would experience
higher network latency – but would not care.

For example, the provider could say “you currently are
paying us for 99th %ile network-level latency SLO ofx

usec, which appears to be causing your application to
have a 99th %ile latency SLO ofy msec. If you wish to
pay us for network latencyx′ < x, we predict your 99th
%ile application latency will decline toy′ < y.”

3 A simple latency-measurement study
Since we found no recent studies that quantify net-

work latency variation across multiple providers, we con-
ducted our own small-scale measurement study. Our lim-
ited study probably does not reflect either the typical or
worst-case latency variations in current clouds.We did
not design this study as a basis for comparing providers.
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Figure 1:Latency measurements (log-scaled Y -axis)

Methodology Due to documented issues with using
“ping” (ICMP ECHO) for measuring IaaS latencies [23],
we measured TCP latencies using the TCPRR (request-
response) function of thenetperf tool. We used unmodi-
fied netperf-2.6.0, but compiled to enable histogram sup-
port for TCPRR latencies2. We used the default 1-byte
message length, and ran 60-second trials every 15 min-
utes over a period of several days.

We ran our tests on several IaaS providers,
anonymized as A, B, and C. (We do not wish anyone to
use these results to compare between specific providers,
since they are hardly definitive.) On each provider, we
rented two VMs (the smallest dedicated-core instances
available), running stock Ubuntu 14.04 or 14.10.

For each trial, we post-processed the histogram to ob-
tain 50th, 90th, 99th, and 99.9th-%tile latencies. Fig. 1
shows the time series for providers A and B. (We did not
try to measure exactly the same period for all providers.
The results for C were too boring to include, and most
of the high-latency samples for C might be spurious, be-
cause we may have failed to obtain dedicated cores.)

Results The results of our simple study suggest that,
while 90th-percentile latencies are typically close to the
median, the 99th percentile is often significantly larger,
and at least for Provider B, can vary tremendously from
hour to hour. (Note that since we experimented with only
two VMs per provider, this does not mean such variations
do not exist for other providers.) For Providers A and
B, the 99.9th percentile (which might be significant for
applications sensitive to tail latency) is typically on the
order of a few msec.

2Note that this histogram uses logarithmic decades, each divided
into 10 linear buckets, resulting in a factor-of-2 worst-case uncertainty.
E.g., one bucket covers all samples between 1 and 2 msec, while an-
other covers all samples between 800 and 900 usec.

The study therefore suggests that tail-latency-sensitive
tenants could benefit from a provider that can detect this
sensitivity and re-balance resources in response.

4 Using correlation for latency inference
Our goal is to infer the causal relationship between

network latency and application-level latency (i.e., the
application’s latency SLO). In particular, we would like
to find the threshold (if any) below which any decreases
in network latency would give no further SLO improve-
ments. We might also want to know how dramatically
application latency increases when the network latency
exceeds this threshold – that is, is application latency
highly sensitive to small increases in network latency, or
can the application tolerate these increases without user-
perceived slowdowns? (For example, an application with
poorly-chosen timeouts could seriously magnify a slight
change in network latency.)

One could run controlled experiments (similar to
what Proteus [25] did for bandwidth) that measure
application-level latency, as the network latency is ex-
plicitly varied across a chosen range; the shape of the
resulting curve would reveal the latency threshold(s). Al-
ternatively, these experiments could vary another param-
eter under the provider’s control, such as packet priori-
ties (set, as described in§2, using DSCP headers). We
would then need to apply statistical methods to estab-
lish whether an observed correlation between network
and application latencies is real (i.e., high-confidence)
or accidental, and to extract the latency thresholds from
possibly noisy samples. Prior work by Cohenet al. [9]
suggests that such a correlation-based approach can be
made to work.

4.1 Challenges for latency inference
In order to use statistical correlation to discover how

network latency affects an application’s latency SLO, we
need to solve several practical problems. Solving these
problems in an IaaS system, without requiring changes
to tenant code – that is, primarily within the hypervisor –
presents challenges:
• Measuring network latency: The hypervisor can

record when a guest sends and receives packets, but
without additional meta-information, converting these
timestamps to round-trip times (RTTs) is tricky. We
also need to be able to separate network latencies
from service latencies, either at a tenant VM or at a
provider’s service (such as a storage system).

• Measuring application-level performance effects:
How can we measure effects on an application’s perfor-
mance? Is there a way for a provider to measure these
effects without any modifications to a tenant’s code?

• Perturbing network latency: If the natural variation
in network latency is too small to establish a correla-
tion, how can the hypervisor inject more latency? How



much latency should it inject, and how often?
• Attributing network latency to the correct SLO-

related events: Assuming that the hypervisor can mea-
sure both network latencies and application latencies,
for complex applications (with multiple tiers and per-
haps multiple entry points), how does the provider con-
nect these measurements?

Figure 2 illustrates how solutions to these problems, and
others, fit together into an overall design.

Figure 2:System design for latency correlation

We now describe some approaches to these challenges.

4.2 Obtaining network-latency variation data
We need to generate a time series of the network-

latency variations experienced by a VM, sampled often
enough to detect relatively rare latency spikes, without
imposing a lot of overhead. To do this without any tenant
cooperation, we considered several options, including:
• Round-trip timestamps: Since IaaS providers typi-

cally encapsulate tenant packets using protocols such
as GRE (RFC 2784) or VXLAN (RFC 7348), one
could add a pair of timestamp fields to the encapsula-
tion headers. The sending hypervisor would set a “sent
timestamp” field, which would be echoed by the remote
hypervisor in a “received timestamp” field on the next
packet sent by the same tenant from the remote side.
The sender can thus calculate delays without additional
per-packet state; however, this does add overhead3, and
if the receiving VM has nothing to send for a while, the
measured RTT could be inflated.

• Monitoring TCP headers: For tenants using TCP
(without IP-level encryption), the hypervisor could
monitor TCP headers and run the same RTT estima-
tor as a typical TCP stack. This avoids any on-the-
wire overheads, but requires per-flow (rather than per-
VM-pair) state in the hypervisor. (Experience with vS-
noop [16] suggests that TCP-snooping in the hypervi-
sor actually scales fairly well.) While TCP-snooping
measures stack-to-stack RTTs, without any confound-
ing latencies from the tenants or services, it could be
tricky to filter out the effects of TCP’s delayed ACK.

While simply measuring network delays can yield a time
series, the available techniques all have drawbacks – es-

3On-the-wire overhead could be reduced using MGRP, which
“transparently piggybacks application packets inside theoften signif-
icant amounts of empty padding contained in typical probes”[19].

pecially if a given VM sees little natural variation.
However, we do not need to restrict ourselves to mea-

surements! Recall that our goal is to find the correlation
between network delays and application delays; there-
fore, one other approach is:
• Injecting a detectable pattern of latency increases

and decreases: the provider can correlate against this
pattern, rather than a measured time series.

Assume that the hypervisor can delay tenant-transmitted
packets (as we discuss in§4.3) either by 0 orD msec, and
can change between 0 andD everyT msec, in a known
pattern of lengthL. This pattern is (in effect) aL-bit bi-
nary number; if it is properly chosen, it should be uncor-
related with the actual variations in network delay, and so
if the added delay has any effect on application SLO, this
effect should be detectable by a correlator that knows the
pattern, in much the same way that a GPS receiver de-
tects GPS satellites. (GPS uses pseudo-random codes,
also called ‘pseudo-noise” or “PN” sequences [1].) The
hypervisor might need to varyD andT to discover the
threshold at which network latency has an effect on SLO,
for any given application.

The PN codes can be chosen, as for GPS, to be unique
to each latency injection point, and with minimal cor-
relation between codes (they should be “highly orthog-
onal”)4. This solves the problem of how to attribute
SLO variations to network latencies, since it allows the
correlation-calculator to attribute SLO variations to a
specific latency injector. PN-coding also should allow
us to separate network latencies from service latencies.

Therefore, we believe that injecting latency changes
using PN codes is the most useful way to obtain a known,
varying time series of network latencies. It would be
useful to couple this with TCP-snooping measurements,
which can establish a baseline for latency and its vari-
ability between each pair of VMs; this may help with
debugging, and to set the values forD andT .

How much delay do we need to inject, and at what
“bit-rate”? We do not yet know; we speculate that the
rate cannot be higher than the usual 1KHz clock tick rate,
and the fall-time for removingX msec of added delay
could be as high asX. For applications that act as low-
pass filters, the useful bit rate could be even lower.

4.3 Network-latency injection mechanisms
We would like a scalable way for a hypervisor to in-

ject network delays on the packets sent by specific VMs,
and with reasonably accuracy. Existing software compo-
nents, such asdummynet [7], can achieve reasonably ac-
curate delays at granularities based on the clock-interrupt
resolution (for Linux, typically 1 msec). This does re-
quire buffering delayed packets in the hypervisor; at 10
Gbps, delaying all packets by 10 msec requires up to 12.5

4Techniques exist for generating orthogonal PN codes [11], but we
have not yet found a description of their computational costs.



Mbytes of extra buffer space (although we do not expect
to delay all packets at any given time).

The provider can also inject latency indirectly, using
any of the knobs it can use to favor or dis-favor specific
traffic. E.g., we can represent PN codes using one DSCP
(priority) setting for “on” bits, and another for “off” bits.
Changing priorities, instead of explicitly delaying pack-
ets, also allows finer-grained manipulation of network
delays, but perhaps with less-predictable values.

4.4 Monitoring application latency
Our most difficult challenge is to measure application

latency for IaaS tenants. If we assume that the tenant
application and OS cannot be modified, how do we know
what events to measure? The options include:
• Passive network-based measurements: For exam-

ple, many cloud customers use provider-suppliedload-
balancer (LB) services (e.g., [20]), at which the
provider can measure high-level latencies directly.
(However, not all applications use a provider’s LB: e.g.,
those that have only one front-end, or that use Direct
Server Return, which bypasses the LB for responses.)

Another possible approach is tomeasure the ten-
ant’s network traffic (bits/sec), since an application
waiting for message arrivals might handle fewer re-
quests/sec, reducing its traffic. This is especially true
for “chatty” applications [12], but perhaps not as ap-
plicable to others (e.g., applications that use several
sessions in parallel). Cloud providers already measure
network traffic, because they typically bill for it at rel-
atively high prices.

• Hypervisor-based measurements: Typically, when
an application VM blocks waiting for a network re-
sponse, the guest OS will issue a reserved instruction
(such as HLT or MWAIT [22]) to release the CPU core.
The resulting “vmexit” is handled by the hypervisor,
which can easily measure the time spent in this state
using the cycle-counter. We can therefore use blocked-
VM time as a proxy for application-level delay.

In conjunction with the use of PN-coded delay in-
jection, this approach should work even if the VM that
blocks is not the VM where the delay is injected. For
example, we can correlate blocked-VM time at the ap-
plication’s front-end VM, even if the delays are being
inserted primarily in lower tiers of the application.

However, this approach will not identify application
stalls if the available parallelism in the workload keeps
all of the application cores busy, even while end-to-end
latency is intolerable.
While passive network-based and hypervisor-based

measurements might suffice for some applications, we
do not see a zero-modification approach that would work
in all cases. Further, while these techniques might al-
low the provider to measure the correlation between net-
work latency and application latency, they cannot tell the

provider what top-level latencies are tolerable (that is,
what constitutes an SLO violation).

Therefore, for full generality, we may be forced to use
some explicit application modification to support latency
inference. This can be quite simple and low-cost; for
example, a library linked with the application that pro-
vides API calls to record start and end timestamps for
application-identified operations. These timestamps can
be forwarded to the provider (e.g., via UDP packets to
a reserved address) for further processing. Commercial
middleware that does a much more sophisticated version
of this (for example, AppDynamics [4], which does au-
tomatic code injection) is widely used, suggesting that
many cloud customers do not just tolerate these modifi-
cations, they are willing to pay for them.

With customer approval, but no code modification, the
provider can also inject dummy requests into the appli-
cation to measure its latency. Cloud customers already
use probing systems to measure operation latency [8].

Note that some applications that use a partition-
aggregate method may set a top-level latency target, and
if some underlying RPCs are delayed too long, may
return reduced-accuracy results, rather than exceeding
their latency SLO. For this applications, we would have
to correlate network delays with an accuracy metric,
rather than a top-level latency metric; accuracy metrics
are obviously application-specific.

4.5 Validation
The next step is to validate our approach. We need to

validate some assumptions: to experiment on real cloud
applications to learn how significantly network latency
affects SLOs; to characterize, using the various options
we have discussed, how well a provider can control net-
work latency, and how well it can measure SLOs. We
need to understand how to choose PN codes and their
amplitudes. Finally, we must validate the overall ap-
proach to show that it produces useful insights.

5 Conclusion
We assert that cloud platforms should infer how ten-

ant applications depend on network latency, as part of
the “undifferentiated heavy lifting” that makes the cloud
valuable to enterprises, and that PN codes may enable
this. As with any inference-based system, many chal-
lenges remain to be addressed before it is practical and
real; prior experience does suggest that it is plausible.
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