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Abstract

One of the main reasons debugging is hard and time con-

suming is that existing debugging tools do not provide

an explanation for the root causes of failures. Addition-

ally, existing techniques either rely on expensive runtime

recording or assume existence of a given program input

that reliably reproduces the failure, which makes them

hard to apply in production scenarios. Consequently, de-

velopers spend precious time chasing elusive bugs, re-

sulting in productivity loss.

We propose a new debugging technique, called fail-

ure sketching, that provides the developer with a high-

level explanation for the root cause of a failure. A failure

sketch achieves this goal because: 1) it only contains pro-

gram statements that cause a failure; 2) it shows which

program properties differ between failing and successful

executions. We argue that failure sketches can be built

by combining in-house static analysis and crowdsourced

dynamic analysis. For building a failure sketch, we do

not assume that developers can reproduce the failure. We

show preliminary evidence that failure sketches can sig-

nificantly improve programmer productivity.

1 Introduction

Debugging is the process of eliminating bugs in a pro-

gram. Traditional debugging is a cyclic process, that is,

it involves running a failing program in a debugger over

and over again, hoping to reproduce the failure, learn its

root cause and eventually fix it. Debugging takes a sig-

nificant developer time (around 50% [19]), because it re-

quires deep understanding of the program code.

A problem with traditional debugging is that it may not

be possible to reproduce the failure. This is also a prob-

lem for automated techniques like delta debugging [27],

which relies on repeatedly reproducing a failure for the

purpose of isolating program states that cause the failure.

To solve the bug reproduction problem, record/replay

systems have been proposed [4, 20] to record failing exe-

cutions and deterministically replay them. Record/replay

systems can be helpful, however, despite many efforts,

they have not seen widespread adoption. This is because

these systems still have prohibitive overheads for pro-

duction use, especially on multiprocessors (e.g., 400%

for SMP-ReVirt [8]). State-of-the-practice record/replay

systems incur high overhead for parallel programs, as

they serialize executions by emulating a single-core ma-

chine [2, 3]. Therefore, reproduction of software bugs

through record/replay may not be feasible in general. In

the absence of a replayable execution, developers may

not be able to reproduce the failure to debug a program.

Furthermore, debugging requires root cause diagno-

sis, and merely reproducing a failure (e.g., through

record/replay) does not solve this problem. A root cause

is a cause or combination of causes, that once removed

from the program, prevents the failure associated with

the bug to recur [26]. Record/replay does not solve the

root cause diagnosis problem, because the developer still

needs to grok what distinguishes a failing execution from

a successful execution to understand the root cause of a

failure. This can be difficult if the program is complex,

has tightly coupled modules, and the failure has complex

data and control dependencies. This complexity is exac-

erbated if the replayed execution contains a lot of infor-

mation that is not relevant to the failure (e.g., control and

data flow information that does not affect the failure).

Guided by these observations, we posit that a new

paradigm for debugging is necessary, because neither tra-

ditional debugging nor record/replay debugging nor delta

debugging, as provided by today’s tools, solve the root

cause diagnosis problem, which is at the heart of debug-

ging programs. We argue that, to debug programs effec-

tively, a developer needs to:

1. Have access to a partial execution trace that we call

the failure sketch; the ideal failure sketch is com-

posed of the relevant data and control flow infor-

mation that allows reasoning about the failure, but

nothing else unrelated to the failure. The advantage

of the failure sketch over a full execution trace is

that it does not contain superfluous execution infor-

mation: all of its elements pertain to the failure.

2. Determine the differences in relevant control and

data flow information between failing and success-

ful program executions by using the failure sketch.

We argue that the process of obtaining failure sketches

should reflect how failures occur in the real world. We

do not assume that we can reproduce the failures (e.g.,
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decrement_refcount(...){

 if (!obj->complete)

  object_t *mobj = ...

 dec(&obj->refcnt);

 

 

 if (!obj->refcnt){

  free(obj);

 }

Time Thread T1
Thread T2

decrement_refcount(...){

 if (!obj->complete)

  object_t *mobj = ... 

 dec(&obj->refcnt);

 if(!obj->refcnt){

  free(obj);

 }

}
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Figure 1: The failure sketch of Apache bug 21287.

through record/replay), because this assumption may not

hold in a real setup. We can build failure sketches with as

few as a single failure; and we simply need the failures

to recur a few times (2-3) to build an ideal failure sketch.

We now explain in detail what failure sketches are

and how they can be used for debugging (§2), the chal-

lenges of building failure sketches (§3), how to obtain

failure sketches automatically (§4), some preliminary re-

sults (§5), and related work (§6).

2 What are Failure Sketches and

How to Use Them?

An ideal failure sketch is an ordered, per-thread sequence

of program statements, which clearly shows the differ-

ences between failing and successful runs in terms of

data and control flow. If some elements of an ideal failure

sketch are missing and/or inaccurate, we call the result-

ing failure sketch an imperfect failure sketch.

Fig. 1 shows the failure sketch of Apache bug

21287 [1]. Time flows downward in the vertical direc-

tion and the steps in the execution are enumerated along

the flow of time. The failure occurs when threads T1 and

T2 execute the decrement_refcount function concur-

rently, which frees obj when obj->refcnt is 0. Be-

cause the check if(!obj->refcnt) and the freeing

are not done atomically, obj may end up being freed

twice. The failure sketch shows the program statements

that leads to the failure. The dashed line shows the prop-

erty of the failing execution that differs from successful

executions, i.e., obj->refcnt getting freed twice.

Failure sketches allow the developer to focus on what

is essential for understanding the root cause. They

achieve this by concisely displaying the sequence of in-

structions that lead to the failure. All the statements with

black font in Fig. 1 influence the outcome of the failure,

and these statements also happen to be the only ones that

influence the failure. We grayed out some surrounding

statements that do not influence the failure.

Failure sketches also allow developers to zoom in

on the elements of the execution that differentiate fail-

ing and successful executions, thereby allowing them to

identify root causes of failures. Failure sketches achieve

this by clearly highlighting such differences (e.g., the

dashed line in Fig. 1). These differences point to the root

causes of bugs as per the definition of the root cause that

we gave in §1: If such differences were to be eliminated,

the failure would disappear in most cases. Only if an un-

related root cause results in the same failure, we would

need to eliminate other differences from another failure

sketch.

We believe that failure sketches provide what devel-

opers need to debug programs effectively: a concise ex-

ecution trace composed of the differences of relevant

control and data flow information between successful

and failing runs, which allows diagnosing failure root

causes. Merely reading the sketch allows a developer

to see the program statements that are involved in the

failing run and the failure root cause. For the example

in Fig. 1, the developer simply needs to ensure that the

check if(!obj->refcnt) and the freeing of obj occur

atomically.

3 Challenges

Automatically and efficiently building failure sketches

comes with a number of challenges. In this section, we

list three main challenges, and in the next section, we

discuss ways in which we believe these challenges can

be addressed.

Challenge #1: Not only developers may not be able to

reproduce failures that occur in the real world, but such

failures may not recur at user sites, or they may recur so

infrequently that it becomes hard to gather enough data

from failing executions to build failure sketches. We ar-

gue that even for failures that occur once, we should be

able to build a failure sketch, albeit an imperfect one.

Challenge #2: It is difficult to ensure that failure

sketches are concise and accurate for complex programs.

Developers have limited debugging time, therefore fail-

ure sketches should correctly provide the essential infor-

mation that pertains to a failure.

Challenge #3: It is difficult to make the construc-

tion of failure sketches fast, while not imposing large

runtime overheads and significantly perturbing real-user

executions. However, this is essential, because a high-

overhead solution would not be practically applicable in

the real world, and perturbing real user executions a lot

may mask the failures.

4 Obtaining Failure Sketches

At a high level, failure sketching takes as input a program

and the failure and outputs the failure sketch. We do not

envision to do bug detection as part of failure sketching.

In other words, we assume that the failure is provided
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to failure sketching via a bug report, core dump, or a

program statement where the failure manifests itself.

Failure sketching aims to strike the right balance be-

tween static and dynamic analysis to be able to always

build a failure sketch that is meaningful for the developer,

while not incurring prohibitive runtime overhead. We ar-

gue that leveraging the right technologies will solve the

challenges we mentioned in the previous section.

Static analysis is done offline, so it does not incur any

runtime overhead. We envision static analysis to use var-

ious forms of failure reports (e.g., a coredump). Using

these, static analysis can extract the failure point. Then, it

can compute a slice [25] of the program, which is a group

of program statements that have data and control depen-

dencies to the failure point. Slice computation can lever-

age information such as the call stacks that is present in

the coredump to increase the accuracy of slices.

The static slice will contain some statements that do

not affect the failure, because it is computed offline. To

mitigate this, we propose refining the static slice by gath-

ering data from real-world executions. Slice refinement

removes from the static slice the components of the slice

that do not appear in real executions.

To refine the slices, we propose a crowdsourced

scheme that relies on always-on hardware support to col-

lect traces from real-world executions. Modern proces-

sors offer hardware tracing features to monitor the exe-

cution of software [5, 10]. Hardware support allows cap-

turing detailed traces with low runtime overhead, making

it suitable for user-site deployment. In the next section,

we show that our proof of concept uses Intel Processor

Trace (Intel PT) [10] traces that are gathered from real-

world executions to refine the slices, but any other hard-

ware tracing mechanism containing relevant information

to can be used, such as thread ordering [21]. Intel PT

traces contain per-thread control flow traces and provide

a per-thread correct ordering of control flow events.

We can solve challenge #1, namely building failure

sketches when failures do not recur, with a combination

of static analysis and crowdsourced always-on hardware

tracing. The first time a failure occurs, we can compute

a static slice and refine it using hardware traces. Such a

slice is an imperfect failure sketch: it neither has the cor-

rect ordering of program statements as they occurred in

the actual execution nor does it show all the differences

between failing and successful executions.

Challenge #2, namely building accurate and concise

failure sketches, can be partially solved by further user-

site tracing. We propose tracking the data flow in addi-

tion to the control flow, as some failures depend on the

data flow. To track the data flow, we can instrument the

memory accesses in the slice, using the watchpoint sup-

port present in modern processors. Watchpoints allow

breaking when a read from or a write to a certain address

occurs. Moreover, watchpoints can also allow tracking

the order of memory accesses across cores, which is a

necessary information for reasoning about concurrency

bugs. If the refined slice contains more memory loca-

tions than the available watchpoints on a user machine,

we can resort to sampling to track the memory accesses

on several users’ machines [12, 18]. If available, failure

sketching could use hardware tracing features to capture

values of memory operations instead of watchpoints.

To entirely solve challenge #2, we need to perform

user-site tracing for successful executions as well. This

way, we can identify the differences of program proper-

ties between failing and successful runs. We argue that

these differences point to the root cause by observing that

the programmer patches fixing the bugs eliminate these

differences, similar to how prior work evaluates the ac-

curacy of root cause diagnosis [6, 22]. We present an

example that supports our claim in the next section.

Challenge #3, namely building failure sketches effi-

ciently, would be solved if we solve the previous two

challenges using low-overhead hardware support. Intel

Corporation indicates that hardware-based control flow

tracing, the feature of Intel PT that we rely on, targets

performance overhead to be lower than 5% [7]. We be-

lieve that overheads of 5% are low enough for always-on

tracing, but we are working on selective recording tech-

niques to further lower this overhead. Through this exer-

cise, we hope to identify the ideal filtering mechanisms

to minimize the amount of information collected.

5 Preliminary Results

5.1 Prototype

We implemented a prototype to show that it is feasible to

solve the challenges of building failure sketches.

For static analysis we relied on LLVM [15], which

provides a lot of analyses out of the box. We relied on

modules of the LLVM framework that allow building the

control flow graph of the entire program and have sup-

port for alias analysis [14].

For control flow tracing, we implemented a PIN-

based [17] simulator of Intel PT. The driver support for

the real hardware is being made available by Intel at the

time of this writing. Our simulator relies on PIN’s binary

instrumentation to simulate Intel PT support, and there-

fore it has high runtime overhead (around 10×). We did

not optimize the simulator’s performance, because we in-

tend to replace it by the actual hardware in the future.

We used source code instrumentation for supporting

watchpoints, which incurs no perceptible runtime over-

head, which is promising. Nevertheless, we are inves-

tigating new hardware mechanisms to efficiently collect

more data flow information than what watchpoints pro-

vide.
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cons(queue* f){

 mutex_lock(f->mut);

 ...

 if (allDone == 1) {

  mutex_unlock(f->mut);

 }

...
Failure, line 898 (segfault)

(a)

#0 in cons at pbzip2.cpp:898

#1 start at pthread_create.c:312

#2 in clone at ...clone.S:111

(b)

889

... 

...

898

Figure 2: The failure in pbzip2 (a), the stack trace (b)

Failure sketching instruments programs running on

users’ machines to gather data flow information, which

may raise intrusiveness and privacy violation concerns.

To be less intrusive, we can dynamically instrument the

programs using dynamic binary rewriting. To reduce pri-

vacy concerns, we can quantify the amount of data that

the instrumentation can leak, and try to minimize that.

5.2 Pbzip2 Concurrency Bug

For the sake of simplicity, we picked a small C++ pro-

gram (2 KLOCs), namely pbzip2 [9] which is the multi-

threaded version of the file compression program bzip2.

The bug in pbzip2 is a concurrency bug, which is a class

of bugs known to be difficult to debug [13, 28]: it occurs

only under a specific thread interleaving that causes the

control flow of the execution to change, which in turn

changes the data flow of the program, causing the pro-

gram to fail due to a segmentation fault.

Fig. 2.(a) shows a code snippet from pbzip2. When

the program fails, the coredump contains the stack trace

shown in Fig 2.(b). The failure occurs in the cons func-

tion on line 898 because f->mut is NULL.

5.3 Manual Debugging

We describe our manual debugging effort to later contrast

it to debugging with failure sketches. When we encoun-

tered the failure on line 898, we realized that f->mut is

also accessed on line 889, however the program had not

crashed. We concluded that f->mutwas modified by an-

other part of the program before it was accessed on line

898. Alas, we could not determine which part of the code

was modifying f->mut by reading the code.

Based on our only lead that f->mut was being modi-

fied somewhere in the program that we could not deter-

mine, we thought of using watchpoints. However, there

was one caveat: one needs to know the address to watch

in order to place the watchpoint, and this can only be

known at runtime. Therefore, we put a regular break-

point on the cons function in Fig. 2 on line 889 where

we knew that f->mut will have been allocated an ad-

dress. When this breakpoint got triggered, we placed

a watchpoint at the address of f->mut. We also wrote

scripts that print the program counter when this watch-

point would be triggered. We continued executing the

main(){

  queue* f = init(size);

  create_thread(cons, f);

  ...

  free(f->mut);

  f->mut = NULL; 

  ...

}

Time Thread T1
Thread T2
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cons(queue* f){

  ...

  ...

  mutex_unlock(f->mut);

}
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Type: Concurrency bug, segmentation fault 
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Figure 3: The failure sketch of the pbzip2 bug

program, but the bug wouldn’t recur. We realized that

we are dealing with a Heisenbug.

We replaced the breakpoint on cons with a tracepoint,

which is similar to a breakpoint, but allows automatically

running a sequence of commands when hit. Tracepoints

stop the execution less than breakpoints, thus they per-

turb timing less. We wrote commands that would place a

watchpoint at the address of f->mut when the tracepoint

in cons is hit. Then, we ran pbzip2 10,000 times with 10

different inputs that we selected for input diversity. We

managed to reproduce the bug only twice. Further in-

vestigation of the logs containing the program counters

revealed that the root cause of the bug was another part of

the program deallocating f->mut and setting it to NULL

while the program executed the statements between the

lines 889 and 898. This entire process took us 20 hours.

5.4 Construction of a Failure Sketch

Failure sketching automates the manual root cause di-

agnosis process for the pbzip2 failure, and it builds the

failure sketch in Fig. 3. The failure sketch shows that

init allocates memory for f (step 2). It is not shown

for brevity, but init also allocates memory for f->mut.

Then, main creates a thread with the start routine cons

and the argument f (step 4); T2 starts executing, but T1

gets scheduled (step 5), and it frees f->mut and sets it

to NULL (steps 5-6). When T2 accesses f->mut (which

aliases to f->mut), it crashes (step 8) because of the par-

ticular scheduling of threads illustrated by the dashed ar-

row. We now explain in detail how failure sketching au-

tomatically computes the failure sketch for this bug.

When the failure in pbzip2 first occurs, failure sketch-

ing automatically identifies the refined slice using its

static slicing algorithm and Intel PT traces. We assume

that user sites have always-on Intel PT tracing, therefore

the Intel PT trace for this bug is available the first time

the failure occurs. The refined slice of the pbzip2 bug

is composed of the statements in Fig. 3, and a few other

statements not shown in Fig. 3, notably the statements in

init that allocate the memory for f->mut.

Failure sketching identifies the refined slice using a
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single failing execution. The refined slice is imperfect:

it does not order statements across threads and does not

show differences between failing and successful execu-

tions, but it identifies the statements that are involved in

the failure separately for each thread. We believe that

the imperfect failure sketch eases the root cause diagno-

sis problem for the developer. For the pbzip2 example,

it is not difficult to guess that the statement f->mut =

NULL precedes the statement mutex_unlock(f->mut)

and this order of accesses results in a segmentation fault.

Nevertheless, failure sketching can use more user ex-

ecutions to build the ideal failure sketch automatically,

without resorting to any guesswork. For this, failure

sketching places a watchpoint to the address of f->mut

at user sites that run pbzip2, whenever f->mut is allo-

cated in init. Failure sketching monitors the trigger-

ing of this watchpoint at runtime and logs the accessing

thread id as well as the program counter of the access.

When the failure recurs, watchpoint-based tracking al-

lows failure sketching to determine that T1 executes the

statements in steps 5 and 6, followed by T2, which exe-

cutes the statement in step 7. This tracking allows failure

sketching to order the statements across threads in a fail-

ing execution as shown in Fig. 3.

Failure sketching tracks multiple user executions to

identify the differences between failing and successful

runs with respect to several properties of the refined slice

(i.e., computed values and flow of instructions). For

pbzip2, failure sketching will determine that, in failing

executions, T1 will free f->mut and set it to NULL fol-

lowed by the dereference of f->mut in T2. This differ-

ence is captured using the dashed arrow in Fig. 3. Suc-

cessful executions will not exhibit this ordering behavior.

5.5 Using a Failure Sketch

Failure sketching automates the process of generating the

failure sketch for the pbzip2 failure by combining static

and dynamic analysis. The developer can trivially use

the failure sketch to fix the bug. For the failure in pbzip2,

the developer needs to introduce proper synchronization

that will eliminate the offending thread schedule. This is

exactly how pbzip2 developers fixed this bug [9].

Manually debugging the pbzip2 failure took us 20

hours, whereas failure sketching automatically builds the

failure sketch after having witnessed 2 failing executions

and a successful execution in 2 seconds. This represents

over four orders of magnitude improvement in root cause

diagnosis time.

6 Related Work

Delta debugging isolates the cause-effect chain of a fail-

ure by systematically narrowing down the state differ-

ence between a failing run and a passing run. Delta de-

bugging requires the failure to be reproducible. Failure

sketching does not assume that failures are reproducible

and aims to build an imperfect sketch even with a single

failing execution. If failures recur at the user site, failure

sketching can build more accurate sketches.

Triage [23], Giri [22], and DrDebug [24] use dynamic

slicing for root cause diagnosis. Triage uses custom

checkpointing support. DrDebug and Giri assume that

failures can be reproduced by record/replay and knowl-

edge of failing inputs, respectively. Failure sketching re-

lies on hardware tracing for slice refinement and does not

assume that failures can be reproduced.

Crowdsourcing for building failure sketches is in-

spired by the collaborative bug isolation approaches

CBI [16] and CCI [11]. CBI and CCI instrument pro-

grams to sample certain predicates (e.g., branch targets)

from user executions. Because they use sampling, CBI

and CCI require many successful and failing runs to cor-

relate predicates and failures. Failure sketches can be

built with as few as a single failing execution.

LBRA/LCRA [6] relies on the last branch record

of Intel processors and a hardware extension that al-

lows correlating branches with sequential bugs and co-

herency events with concurrency bugs, respectively.

LBRA/LCRA targets failures due to control flow. Fail-

ure sketching targets failures due to either control or

data flow, or both. LBRA/LCRA works well for bugs

with short root cause to failure distances, whereas failure

sketch sizes are limited by persistent storage size.

7 Conclusion

We argued that we need a new debugging paradigm al-

lowing developers do root cause diagnosis using a rep-

resentation of failures called failure sketches. Failure

sketching does not assume that developers can reproduce

failures. Failure sketches only contain information per-

taining to a failure, and they show differences between

failing and successful runs to point developers to the root

cause. We argued that it is possible to do this automati-

cally by building a prototype that uses a combination of

static analysis and crowdsourced dynamic analysis that

relies on modern hardware support. We presented initial

results that show significant improvements of program-

mer productivity. In future, we envision using failure

sketches for automated test case generation and for im-

proving the performance of program analysis techniques

like symbolic execution.
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