
Elastic Memory: Bring Elasticity Back to In-Memory Big Data Analytics

Joo Seong Jeong, Woo-Yeon Lee, Yunseong Lee, Youngseok Yang, Brian Cho, Byung-Gon Chun
Seoul National University

Abstract
Recent big data processing systems provide quick an-
swers to users by keeping data in memory across a clus-
ter. As a simple way to manage data in memory, the
systems are deployed as long-running workers on a static
allocation of the cluster resources. This simplicity comes
at a cost: elasticity is lost. Using today’s resource man-
agers such as YARN and Mesos, this severely reduces
the utilization of the shared cluster and limits the perfor-
mance of such systems. In this paper, we propose Elastic
Memory, an abstraction that can dynamically change the
allocated memory resource to improve resource utiliza-
tion and performance. With Elastic Memory, we outline
how we enable elastic interactive query processing and
machine learning.

1 Introduction
Over the past decade, large-scale big data analytics has
been widely adopted. Google’s MapReduce [8], Apache
Hadoop [16], and Dryad [11] were seminal in allow-
ing analytics on data centers of commodity machines.
The simple functional programming model combined
with the runtime that supports elastic scale-out and fault-
tolerant execution has spurred wide adoption of the tech-
nology. Distinct MapReduce/DAG jobs are often run
together on a large shared cluster; each job runs on re-
source allocations given by the cluster’s resource man-
ager (e.g. YARN [18] and Mesos [10]). The resource
manager enables MapReduce/DAG jobs to elastically
share resource slices, improving peak job performance
and providing high utilization of cluster resources [18].

The resource manager abstraction is great for MapRe-
duce/DAG jobs, but new types of in-memory data pro-
cessing do not fit well to this abstraction. We look at two
types, interactive query processing and machine learn-
ing.

Recent query processing systems such as Impala [2]
and SparkSQL [6] provide quick answers to user queries
by keeping processed data in memory. As a simple way
to manage data in memory, the systems are deployed as
long-running workers on a static allocation of the cluster
resources. This simplicity comes at a cost: elasticity is
lost. The workers hold on to their resources even while
they remain idle during periods without client queries.
Using today’s resource managers, this severely reduces
the utilization of the shared cluster (the case for scale-in).

In other cases, the workers may spill data to disks when
they do not have enough memory resources. If mem-
ory resources could be expanded, these queries would be
served in memory (the case for scale-out).

Recent machine learning systems such as Spark ML-
lib [5] perform iterative processing on statically allocated
resources. A machine learning job typically consists of
tasks, each of which processes partitioned state in mem-
ory. Job execution should consider the trade-off between
computation and communication. If the job is computa-
tion heavy, it is better to allocate more memory in other
machines to exploit computation parallelism (the case
for scale-out). In contrast, if the job is communication
heavy, it is better to shrink the number of machines to
reduce communication overheads (the case for scale-in).

In this paper, we propose Elastic Memory, an abstrac-
tion that brings elasticity back to in-memory big data an-
alytics. Elastic Memory provides a set of primitives for
dynamically expanding and shrinking memory resources
and splitting and merging state with a hook to set elas-
ticity policies. We then discuss how Elastic Memory en-
ables elastic interactive query processing and elastic ma-
chine learning.

2 Elastic Memory
Despite various kinds of data analytics workloads, such
as batch processing, stream processing, query process-
ing, and distributed machine learning, the way in-
memory processing frameworks [2, 5, 6] execute such
jobs can be characterized by the following common
properties.

Master-slave pattern. Slaves process data under the
control of a master, which manages execution of a job.
Each slave and the master are deployed within its own
container, which represents computing resources such as
CPU cores and memory in a cluster allocated by a re-
source manager.

Data parallelism. To efficiently process large vol-
umes of data, each slave performs in parallel the same
computation on a different subset of the data.

In-memory caching. Data loaded from a distributed
filesystem as well as intermediate data generated from
previous computations is cached in memory, allowing
multiple stages of reads and writes without incurring disk
access.

Taking such characteristics into account, we propose

1



Figure 1: The EM architecture

Elastic Memory (EM) shown in Figure 1. EM adds new
modules and abstractions to the existing model to en-
able elasticity. First, the state manager in the master
manages and reconfigures state, an abstraction for re-
configurable in-memory data in a container. Second, the
metric manager in the master manages metrics with the
help of metric trackers in slaves. Third, the policy en-
gine in the master enforces user policies. Fourth, to be
able to quickly expand its resource capacity, EM keeps a
pre-allocated pool of containers that can be quickly pre-
empted for other jobs in the cluster to use and quickly
reclaimed if needed.

2.1 State
State is the in-memory data within a container that is
used and processed by a job. Figure 2 depicts how
state is represented in EM. A container’s state consists
of user-defined atomic entities of elasticity called units.
Each unit has a type representing its semantic meaning
within the job computation. Units within a container are
grouped into subsets of the same type. EM reorganizes
state by transferring units that make up all or a part of a
subset between containers.

2.2 Mechanism
2.2.1 Profiling

The metric tracker in each slave tracks metrics within its
container and sends them to the metric manager in the
master. The metric manager aggregates and processes
the received metrics into a form which can be used by the
policy engine. Users can configure not only app-specific
metrics to be profiled by metric trackers, but also how
they should be aggregated by the metric manager. For
example, each metric tracker can be configured to send
the number of state access requests per second to the met-
ric manager, which can also be configured to compute the
5-second moving average of this metric.

Figure 2: State representation. In-memory data of
type_A is divided into three parts and distributed in
two containers. Two parts reside in Container0

and compose a subset, while the remaining part is in
Container1 as another subset. Container0 also con-
tains a subset of type_B which, together with the subset
of type_A, forms the state of Container0.

2.2.2 Reconfiguring State

The policy engine compares the metrics processed by the
metric manager with conditions specified in the user pol-
icy. If a condition is met, then corresponding elasticity
actions are executed through the state manager. The state
manager provides the following set of system primitives
that are also depicted in Figure 3.

• add (resource-spec): Allocate a new container
as specified in the resource-spec that represents
the resource of the container such as CPUs and
memory.

• delete (container-id): Release the container
whose id is container-id.

• resize (container-id, resource-spec):
Resize the container whose id is container-id to
the resources specified in resource-spec.

• move (set<unit>, src-id, dst-id): Move
set<unit> from the container whose id is src-id
to the container whose id is dst-id.

• checkpoint (container-id): Persist the state
of the container whose id is container-id into
stable storage.

Note that when releasing containers via delete or
shrinking containers via resize, state in the slaves can
be lost. To address this problem, the state manager can
decide to either checkpoint such state, move it to other
slaves or simply discard it depending on its recoverabil-
ity and the system’s status.

2.3 User Policy
The user policy is a list of rules, each of which consists
of a condition and elasticity actions. A user can define a
policy using the policy definition language in Figure 4.

2



Figure 3: System primitives for handling state.
(a) add (resource-spec) / delete(container1)
(b) resize(container0, resource-spec)

(c) move(unitset0, container0, container1)

(d) checkpoint(container0)

Conditions are represented as conjunctions and dis-
junctions of predicates on metrics processed by the met-
ric manager. When a condition is satisfied, the policy
engine triggers the corresponding actions.

Actions are translated into lower-level system prim-
itives provided by the state manager in Section 2.2.2.
The following examples show how each action can be
defined using the language in Figure 4.

• Add resource-spec: Allocate a container whose
amount is specified in resource-spec by calling add.

• Delete (c ⇒ c.idle_time > 1 min): Remove con-
tainers that have been idle for longer than one
minute by executing delete on all such containers.

• Resize (c ⇒ c.idle_time > 1 min) resource-spec:
Change the memory size of idle containers to the
amount as specified in resource-spec by calling
resize on all such containers.

• Merge (c ⇒ c.idle_time > 1 min) 2: Find idle
containers and merge every two of them into one.
Call move to transfer data units between contain-
ers. During the process, EM may decide to delete

containers that have become empty.

• Split (c ⇒ c.load > 0.8) 2: Choose overloaded
containers and split the state of each container into
two containers by calling move to relocate data. EM
may decide to add new containers in the process.

• Migrate (c ⇒ c.load > 0.8) (c ⇒ c.load < 0.2):
Migrate data from busy containers to idle containers
by calling move.

〈Policy〉 ::= list〈Rule〉

〈Rule〉 ::= 〈Condition〉, sequence〈Action〉

〈Condition〉 ::= 〈Predicate〉
| ‘(’ 〈Condition〉 ‘)’
| 〈Condition〉 ∨ 〈Condition〉
| 〈Condition〉 ∧ 〈Condition〉

〈Action〉 ::= Add 〈ResourceSpec〉
| Delete 〈SelectFunc〉
| Resize 〈SelectFunc〉 〈ResourceSpec〉
| Merge 〈SelectFunc〉 factor
| Split 〈SelectFunc〉 factor
| Migrate 〈SelectFunc〉 〈SelectFunc〉

〈Predicate〉 is a statement that is true or false depending on the
system state.

〈ResourceSpec〉 represents the amount of resources (e.g., CPU
cores, memory, etc).

〈SelectFunc〉 selects containers that return true when Select-
Func is applied.

Figure 4: Policy definition language.

3 Elastic Interactive Query
When processing interactive queries, allocating too lit-
tle memory increases query latency, while allocating too
much causes excessive use of scarce memory resource.
A naive approach would estimate the load and config-
ure the memory resource accordingly before running the
query. However, interactive queries run in iterations and
produce intermediate data to be used and possibly cached
for subsequent queries. This makes it very difficult to
predict how much memory to use for each query. We
show how EM obviates such prediction with dynamic
state reconfiguration.

3.1 Representing Schema
In distributed in-memory query processing frameworks,
a table is partitioned and cached in containers in a colum-
nar format to exploit data locality. Since in this case each
value of a row forms an atomic unit, we can naturally de-
fine it as the base unit of reconfiguration in EM.

3.2 Profiling Query Execution
The following are a few examples of metrics an inter-
active query processing framework can profile and use
through EM.

Load. To ensure low latency, an in-memory frame-
work should have enough memory resource capacity to
keep data in memory. But load on slaves fluctuates for
every query. EM can keep track of such load in the fol-
lowing way. First, individual metric trackers can track

3



metrics such as container size, data size and requests
for data per second. Second, the metric manager can
use these metrics to compute an aggregate load for each
slave.

Idle time. Holding onto resources even when one is
not making good use of them hampers efficient use of
cluster resources. In interactive query processing, this
can happen when the user does not submit queries. We
can address these issues using EM by collecting and ag-
gregating metrics like last task execution time and last
state access time of each slave.

3.3 User Policies For Query Execution
The following shows an example policy to improve the
performance and resource utilization in the interactive
query processing. load and idle-time are measured with
the profiled metrics in Section 3.2. top(metric) denotes
the container that has the largest value for the metric.

• Rule 1
Condition: average(load) > 0.8
Action: Add (resource-spec)

• Rule 2
Condition: idle-time > 1 min
Action: Delete (top(idle-time))

Rule 1 is applied when the average load is bigger than
a threshold. To improve performance, EM expands its
resource capacity by allocating new containers. Rule 2 is
applied to containers who have been idle for longer than
one minute. For efficient use of cluster resources, EM
releases the container with the highest idle-time.

4 Elastic Machine Learning
Most distributed machine learning jobs start by loading
data from disk, which is later on accessed in memory
throughout the remaining job. Slaves run the algorithm
independently on its portion of the data. The master ag-
gregates the computation results and calculates a model.
This model is broadcast to the slaves, and then the whole
process is repeated; hence an iterative job.

Thus we can say that ML can be portrayed by a few
aspects: slaves perform identical operations during each
iteration and the training dataset never changes as the job
progresses.

The execution logic does not drastically change as the
job continues, which means even a single dynamic recon-
figuration, if carried out correctly, can speed up execu-
tion. The benefit grows even more if many iterations re-
main, or in other words the reconfiguration is done early
in the life span of the job. We illustrate how EM captures
such insights and applies an optimized configuration to
the currently running ML application.

4.1 Representing ML Data
ML algorithms accept a big training data set as input, and
use it to build a model. The data consists of independent
observations represented as rows of a table, where a row
can be a single float, vector, or even a matrix depend-
ing on the algorithm itself. Each observation is atomic
and thus we can define it as the base unit. In case each
worker maintains its own version of the model such as in
asynchronous systems [7], model partitions can also be
defined as units.

4.2 Profiling ML Execution
The iterative characteristic of ML applications allows
various metrics to be collected after each iteration. Sev-
eral instances are shown below.

Iteration time. The overall performance of a dis-
tributed job is dependent on the slave with the worst per-
formance, i.e. the slowest slave. To identify that slave,
the EM system must be provided with the running time
per iteration of each slave, which indicates their perfor-
mance.

Computation and communication overheads. Even
without a significantly slow slave, a machine learning ap-
plication may have room for performance improvement
by changing the number of slaves. EM can check the
overheads of computation and communication to make
a decision to balance out the two and find a number of
slaves that improves performance.

4.3 User Policies for Machine Learning
The timing for the policy engine to check conditions
specified in policies may differ depending on the ML ex-
ecution model: every synchronization barrier between it-
erations is the ideal point for synchronous models such
as BSP [12, 17], whereas for asynchronous models con-
dition checking and actions are done in the background.

The example policy below shows how EM can con-
tribute to optimizing the job configuration of ML ap-
plications. iter-time, comp-time, and comm-time are
computed using the profiled metrics in Section 4.2.
big_outlier(metric) computes whether there exists a
value in the metric that outstands from the other values.
topK(metric) and bottomK(metric) choose the containers
that have the largest K and smallest K values for the met-
ric, respectively.

• Rule 1
Condition: big_outlier(iter-time) = true
Action: Migrate (top1(iter-time), bottom1(iter-
time))

• Rule 2
Condition: average(comp-time) / average(comm-

4



time) > 5
Action: Split (top1(comp-time / comm-time), 2)

• Rule 3
Condition: average(comp-time) / average(comm-
time) < 0.2
Action: Merge (bottom2(comp-time / comm-time),
2)

Rule 1 can detect stragglers that are taking a consid-
erably longer time to finish iterations compared to other
containers. The total job running time can be reduced by
migrating data from the straggler to a faster container.
Rules 2 and 3 cover cases in which computation and
communication overheads are unbalanced. When com-
putation is intense, Rule 2 kicks in and splits the data of
the container with the most computation, lowering the
global overhead. On the other hand, if communication is
the bottleneck then Rule 3 is invoked and the distributed
workloads of the two most communication-heavy con-
tainers are merged to one to diminish the network over-
head.

Resource constraints. The assumption of limited
resources is actually a common scenario in distributed
computing, either by hardware specifications or because
of other users sharing the same resources. Under this sit-
uation, the metric of available resources must be taken
into account when deciding resource-related actions to
be invoked. Although it is debatable whether to give
precedence to user-defined policies over resource con-
straint policies, there exist circumstances where user-
defined policies are impossible to carry out due to the
lack of additional resources. A job might be running
with only two slaves and need to execute Add to achieve
optimal performance, but the cluster may not have more
slaves available because other jobs are using many nodes.

5 Related Work
Discardable Distributed Memory (DDM) [15] proposes
the use of memory, obtained from a resource manager, as
fast external storage for running jobs. EM instead recon-
figures state directly within running jobs. In addition to
supporting memory elasticity, this abstraction provides
the means to tune computation parallelism and commu-
nication overheads.

Commercial cloud offerings [1, 3, 4] allow develop-
ers to configure custom rules for triggering expansion or
contraction of the number of VMs for serving systems.
Escape Capsule [13] proposes a mechanism to capture
and automatically migrate per-session state that spans all
layers of the software stack. FreeFlow [14] splits and
rebalances flow-specific state among virtual middlebox
replicas. While also enabling elasticity, the main goal
of these systems is load balancing, whereas EM can im-

prove the runtime performance of in-memory big data
processing frameworks using mechanisms and policies.

A different line of work explores techniques to achieve
elasticity in a distributed computing environment. Elas-
ticOS [9] enables a process to stretch its associated re-
source boundaries across multiple machines, obviating
the need to accommodate cluster programming mod-
els. The motivation is clearly different from that of EM,
which aims to enable elastic use of in-memory data for
distributed frameworks.

6 Conclusion
We propose Elastic Memory, an abstraction that provides
mechanisms and policies for dynamically expanding and
shrinking memory resources and splitting and merging
memory state. We believe that the Elastic Memory archi-
tecture enables new exciting execution modes that bring
elasticity back to in-memory big data analytics and offers
interesting research opportunities to consider elasticity as
a first-class citizen in in-memory big data analytics.

Acknowledgments
This research was supported by the MSIP (Ministry of
Science, ICT and Future Planning), Korea and Microsoft
Research, under ICT/SW creative research program su-
pervised by the NIPA (National ICT Industry Promotion
Agency) (NIPA-2014-H0510-14-1022). Brian Cho was
supported by the Institute of New Media and Commu-
nications, Seoul National University, grants No. 0423-
20140007 and No. 0423-20140067.

References
[1] Amazon web services. http://aws.amazon.

com.
[2] Cloudera impala. http://impala.io.
[3] Google cloud. http://cloud.google.com.
[4] Microsoft azure. http://azure.

microsoft.com.
[5] Sparkmllib. https://spark.apache.org/

mllib/.
[6] Sparksql. https://spark.apache.org/

sql/.
[7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalya-

naraman. Project adam: Building an efficient and
scalable deep learning training system. In OSDI,
2014.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, 2004.

[9] A. Gupta, E. Ababneh, R. Han, and E. Keller. To-
wards elastic operating systems. In HotOS, 2013.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In NSDI, 2011.

5



[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In Eurosys, 2007.

[12] F. Loulergue, F. Gava, and D. Billiet. Bulk syn-
chronous parallel ml: modular implementation and
performance prediction. In ICCS. 2005.

[13] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Escape capsule: Explicit state is ro-
bust and scalable. In HotOS, 2013.

[14] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elas-
tic execution in virtual middleboxes. In NSDI,
2013.

[15] C. N. Sanjay Radia, Arpit Agarwal. Sup-
port memory as a storage medium, 2014.
https://issues.apache.org/jira/
browse/HDFS-5851.

[16] The Apache Software Foundation. Apache
Hadoop. http://hadoop.apache.org.

[17] L. G. Valiant. A bridging model for parallel com-
putation. Commun. ACM, 33(8):103–111, 1990.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache hadoop yarn: Yet another re-
source negotiator. In SOCC, 2013.

6


