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Abstract

By the end of the decade, computing designs will
shift from a processor-centric architecture to a memory-
centric architecture. At rack scale, we can expect a large
pool of non-volatile memory (NVM) that will be ac-
cessed by heterogeneous and decentralized compute re-
sources [3, 17]. Such memory-centric architectures will
present challenges that today’s processor-centric OSes
may not be able to address. In this paper, we describe the
characteristics and consequences of memory-centric ar-
chitectures and propose a memory-centric OS design that
moves traditional OS functionality outside of the com-
pute node and closer to memory.

1 Introduction

Data growth is outpacing the compute and storage tech-
nologies that have been at the foundation of the IT indus-
try for the last four decades [35]. This divergence causes
a deep rethinking of the way in which we build systems,
and points towards a much more radical memory-centric
architecture, where memory is the key resource and ev-
erything else, including processing, revolves around it.
In effect, the memory is the computer.

By the year 2020, we expect memory-centric ar-
chitectures at the rack scale that implement a shared
something model, a middle ground between shared ev-
erything scale-up systems and shared nothing scale-
out systems [3, 17]. In this architecture, the tradi-
tional memory hierarchy collapses, replacing traditional
block-based storage (hard drives and SSDs) and tradi-
tional DRAM with byte-addressable non-volatile mem-
ory (NVM) (sometimes called universal memory). As
memory and storage converge, we expect that the NVM
pool will also shift from being directly attached to the
main application CPU to becoming a shared resource
that is accessible by all compute resources in the rack.
Advances in optical networking will make this pooled

NVM accessible as memory at almost uniform latency,
and manageable as storage for reliability, serviceability
and security. In addition to shared NVM, “private” mem-
ory, probably volatile and co-packaged with the com-
puting elements, will also provide a lower latency and
higher bandwidth “performance tier”. Finally, compute
resources will become increasingly heterogeneous, and
distributed closer to the data.

These memory-centric architectures will present chal-
lenges that today’s processor-centric OSes may not be
able to address, as well as opportunities that they aren’t
prepared to exploit. Instead, we need a new breed of
memory-centric OS, which moves traditional OS func-
tionality outside of the compute node and closer to mem-
ory, in memory-side accelerators and controllers as well
as system-wide services.

In this paper, we will describe future memory-centric
architectures and the consequences they have for operat-
ing system design. We will also articulate a vision for
what future memory-centric operating system services
are needed and outline open research challenges towards
realizing this vision.

2 Memory-centric architectures

As data becomes the new currency, architectural changes
are necessary to overcome the limitations of the tradi-
tional compute-centric model. Data-centric designs call
for an architectural approach that minimizes data du-
plication and redundant motion, enables ubiquitous and
heterogeneous computing resources, and deals with re-
silience and security from the ground up.

We are already seeing signs that the traditional mono-
lithic server is disaggregating into a rack-scale archi-
tecture [10, 22], where pools of storage, networking
and compute resources can be flexibly organized in a
software-defined manner to match different workload
characteristics and requirements. This is the first step
towards an even more radical memory-centric approach.



Take for example HP’s Moonshot platform, and the
m800 server cartridge [1]. Built around TI’s Keystone
IT SoC, it integrates 4 general purpose ARM cores and
8 accelerated VLIW DSP cores in the same chip. This
platform can pack over 20,000 cores, 14 TB DRAM and
100 TB Flash into a single 47" rack.

If we project this trend out to the end of the decade, we
can easily expect O(100,000) cores, O(100TB) DRAM,
and O(1-10PB) of NVM in a hypothetical 2020 rack.
When we deal with this scale of resources, we believe
that other fundamental changes will also occur.

Persistent storage will be accessible through the
standard load/store path, rather than through the indi-
rect block-oriented I/O path that we use today. As new
NVM memory technologies (such as memristor [34] or
phase change memory [38]) mature, they will approach
the access latencies of DRAM and become first-class cit-
izens in the memory hierarchy. Data-centric applications
operating on ever larger (and more sparse) data sets will
require increasingly more performance on random access
patterns that do not work well with block-oriented I/O.
As observed by Bailey, et al. [4], this implies a significant
departure from the block-oriented APIs that the OS and
other middleware layers between applications and stor-
age devices use to access non-volatile resources.

NVM will become a rack-scale pooled resource.
Rather than being directly attached to the CPU, it will
become accessible to all of the compute resources in the
rack. At the scale of 100,000 cores it is impractical to ex-
pect that all cores will have fully cache coherent access to
memory [3], and research efforts are already investigat-
ing scale-out NUMA extensions that overcome the scal-
ability limitations of single cache-coherent servers [25].
At the PB of memory scale, it will have to be managed
to provide the resilience, serviceability and availability
properties that storage systems offer today. So, we will
inevitably move towards a clustered, shared something
architecture, which represents a middle ground between
pure shared nothing scale out and pure shared every-
thing scale up. Figure 1 illustrates the difference be-
tween these models. In a shared nothing architecture,
all memory resources are directly connected to one (and
only one) compute node and accessing remote mem-
ory requires RDMA-style mediated support. In contrast,
shared something memory resources are accessible by all
compute nodes directly, without the intervention of an-
other node; this model is analogous to the shared disk
model of yesterday [14]. Rack-level pooled memory re-
opens a variety of research questions on non-coherent,
software-managed sharing. While we expect the direct-
attached shared nothing style to prosper for a while,
eventually the benefits of sharing resources at the rack
scale will cause the warehouse-scale computing building
block to evolve from a single server to a rack. We are

already seeing indications of this trend in recent work,
where acceleration resources are pooled at the enclosure
level and shared by several servers [29].

Optical networking will make most of the network-
accessible NVM equidistant. Once one pays the cost to
get to the network, high-radix optical switches will en-
able a low-hop-count topology (such as HyperX [2]) that
will make all NVM appear at the approximately the same
distance, for all practical purposes. This topology does
not mean that locality is not important: to the contrary,
we expect node-local memory resources (either stacked,
co-packaged, or in close proximity with the computing
elements) to be included, representing a far lower latency
and higher bandwidth “performance tier” that applica-
tions and system software will have to take account of.

Compute resources will become heterogeneous and
decentralized, due to the dark silicon effect that will
eventually become visible [11]. Accelerated function-
ality will migrate from the main application CPU to ev-
erywhere it is required. This trend implies computation
much closer to data [30], unless it is strictly required to
be centralized. In addition to application offload func-
tionality, we also expect memory to become more “in-
telligent,” including taking an active role in protection,
allocation, synchronization, and resilience.

3 Towards a memory-centric OS

Memory-centric architectures lead to a large set of chal-
lenges that today’s processor-centric OSes may not be
able to meet, as well as opportunities that they aren’t
poised to exploit. In this section, we describe these con-
sequences and the requirements they place on the OS
in more detail. Additionally, we describe how shifting
OS design from a processor-centric focus to a memory-
centric one may help to address these challenges.

3.1 Shared pool of memory

In traditional cache-coherent NUMA machines, memory
is “owned” by a particular compute node, which per-
forms allocation and mediates access to that memory
segment. Applying this traditional ownership model to
the pooled memory in the shared something architecture
makes little sense, because the owning compute node and
the memory may fail independently. The failure of the
owning node would mean that the memory it manages
would no longer be accessible, even if the memory itself
continued to be operational.

In a world of memory-centric, shared something clus-
ters, we anticipate that traditional memory manage-
ment functionality will move from the processor-centric
node OS into memory side controllers, accelerators and
more novel computational elements to form (distributed)
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Figure 1: Comparison of shared nothing, shared something and shared everything configurations with NVM
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Figure 2: Migration of traditional OS functionality
out of single SoC. Functionality, such as NVM man-
agement, protection, synchronization, de/encryption,
(de)compression, and error handling, will move from the
processor-centric SoC node OS into memory side con-
trollers, accelerators and more novel computational ele-
ments. Similarly, policy services such as quotas and QoS
will be externalized into cluster-wide services.

cluster-wide services. Figure 2 illustrates this migra-
tion of traditional OS functionality. To be more specific,
we explore a few mechanisms and how they are imple-
mented in a memory-centric, shared something system.
Memory resource management. Functions such
as allocation and deallocation of global memory re-
sources must be managed cluster-wide by a combina-
tion of memory-side controllers. The application run-
time present on each collection of processors (in coor-
dination with the privileged entity that manages mem-
ory protection) requests a chunk of universal memory
from the memory services, and the OS maps it into the
application address space. Some runtimes may wish to
manage those resources locally to hand off to other ap-
plications. Because the sheer quantity of NVM is po-
tentially very large (petabytes) and it is likely that the
distributed services will be implicitly slower, allocation
chunks will typically be large. We expect a hierarchical
structure where purely local entities may take respon-
sibility for finer-grained allocations. Memory resource

management may also need to be aware of the bandwidth
and latency attributes of the memory system, as well as
the intended use of the memory (e.g., a buffer for inter-
node communication vs. a processor-local scratchpad).
Lessons learned from earlier research on multi-kernel
shared memory systems (e.g., [23]) may be applicable.

Protection and translation. Similarly to resource
management, cluster-wide data protection should be en-
forced locally by the memory elements themselves, in
cooperation with the processor-managed virtual memory
system. Because we expect a byte-addressable universal
memory, the basic unit of access and protection is a cache
line. However, OSes today would consider any protec-
tion (load) fault at this level to be a fatal memory error!
We think that it is likely that such systems will continue
to want to use virtual memory to support simple applica-
tion environments and large (virtually) contiguous mem-
ory regions. As the scale of the system increases, we also
believe it is important to decouple the concerns of trans-
lation and protection. In this context, we want translation
to be as efficient as possible via very large pages or even
direct mapping (e.g., [5]). As we move to a world where
all persistent data lives in memory, we tend to want very
fine-grain protection for certain items (e.g., the metadata
associated with an object). While many of today’s OSes
support multiple page sizes and work hard to reduce frag-
mentation, there is no “goldilocks” page size. Since the
goals of efficient translation of large quantities of mem-
ory and fine-grain protection are in conflict, we believe
that alternative protection mechanisms should be care-
fully explored (e.g., [36, 37]).

Tradeoffs exist between how much can be accom-
plished at the hardware ISA level (e.g., [37]) vs. at the
software level (e.g., [7]) in terms of generality, perfor-
mance, and ease of use (e.g., whether recompilation is
required). Modern OSes expose considerable function-
ality to the user space, making it easier to optimize and



hide some of the complexities in libraries.

Interconnect-related memory error handling. The
application abstraction of a flat virtual address space
presents a semantic gap between the apparent unifor-
mity of that space and the fault boundaries at the phys-
ical address discontinuities due to the underlying dis-
tributed nature of the memory system. In an environment
where load/store instructions are effectively mapped by
the hardware to network packets that traverse a large
memory system, we can encounter new species of mem-
ory errors corresponding to possibly transient errors in
the communication to memory. Handling these errors
will be more subtle, particularly for handling cache evic-
tion due to displacement flushes. For example, rather
than treating all errors as fatal (i.e., causing the system
to reset), miss-related errors that occur synchronously
should probably be treated as transient communication
failures to be handled by the application. We believe it
will be useful to revisit existing work (e.g., Linux “ma-
chine check” recovery [21]) for the rack-scale context.

Reliable Services. Although shared something sys-
tems may no longer need replication for performance
reasons, a sophisticated memory-centric system may
support various forms of redundancy as natural prim-
itives to help improve reliability. A related aspect of
building a (more) reliable system or application service
on top of a less reliable, distributed infrastructure is the
equivalent of cluster membership (i.e., what hardware
computational elements are functioning, and what mit-
igations can be deployed recover from failure?). Detect-
ing errors and managing recovery in a shared something
system are likely to be more complex than the equivalent
facilities in a shared nothing system [18].

3.2 Memory at large scale

Addressing memory. Even if we assume an uncompli-
cated physical address space, the sheer size of the mem-
ory system of a warehouse-scale shared something clus-
ter may be far larger than any processor thread can ad-
dress due to the shortage of physical or virtual address
bits. We can expect processors to gain address bits over
time, but in the meantime we may require additional lay-
ers of physical address translation (e.g., [15, 16]) or more
sophisticated approaches (e.g., [13]).

We also believe that the various physical and logical
address spaces managed by the operating system will be-
come far more dynamic — to deal with the large ca-
pacity, failures, or reconfigurations of the memory el-
ements that are carrying load/store traffic. Ultimately
this requires memory side accelerators and other com-
ponents in the memory system to coordinate in transpar-
ently managing all levels of the address space of the sys-
tem as the cluster and the needs of a running application

evolve.

Coherency. It is easy for accesses to memory from a
small number of CPU cores to be cache-coherent, even
for quite large numbers of hardware threads. But ul-
timately hardware coherence mechanisms do not scale,
and therefore we must either abandon cacheability, or
carefully manage concurrent access to a given cache line
between different groups of cores that are using hard-
ware coherency. As a trivial example, it may be perfectly
acceptable for multiple coherence domains to cache a
very large, read-mostly data structure, while relying on
a heavier weight distributed synchronization mechanism
when the data structure needs to be updated.

Synchronization. More generally, multiple hardware
threads from different coherence domains need to be able
to coordinate access to universal memory as they take
part in a computation. This can be provided by memory-
atomic synchronization mechanisms directly supported
by the memory system that perform cluster-wide equiv-
alents of processor atomics like 11/sc or cas. Tradi-
tional lock-based and lock-free algorithms can then be
built on top of these mechanisms with minimal software
changes. An additional challenge is to arrange the equiv-
alent of inter-processor messages (c.f. interrupts) needed
to implement adaptive locks vs. long-duration spins in
the face of lock contention.

Big memory operations. As memory pools increase
in size, it will become increasingly time-consuming to
perform an operation across all of memory (e.g., ze-
roing memory, verifying checksums, scanning all data
in a single-pass algorithm). Memory-side acceleration
may provide assistance for low-level operations (e.g.,
[27]); increasing accelerator programmability permits
more sophisticated operations to be moved closer to
the data [20]. This raises interesting questions about
software-based control of when and how to use such ac-
celerators [31]. At one extreme, low-level generic func-
tions, such as encryption or compression, may be imple-
mented transparently to the OS and applications; at the
other extreme, semantic memory operations, which re-
quire understanding of the data (e.g., copying application
data structures or semantic checkpointing [19]) require
considerable software intervention.

Memory errors at scale. As the size of memory in-
creases, memory errors will not be an exception but com-
mon behavior. Traditional mitigation techniques, such as
parity, chip kill [9] and memory scrubbing, can detect
or correct these problems transparently to the compute
nodes [39]. However, because of the load/store access to
NVM, the OS and user applications running on the com-
pute nodes must be prepared for the fact that the memory
they access may fail. In the past, memory failures en-
countered by an OS were considered unrecoverable and
would typically result in a machine check, while user



processes would be killed. Given the high expected rate
of large memory failures, we advocate the use of excep-
tions for error reporting, to permit the OS and applica-
tions to recover where possible [24].

Failures need to be contained as much as possible, and
the affected resources must be recovered after the fail-
ure. In contrast to shared everything and shared nothing
systems, where fault domain boundaries (and hence fault
containment strategies) are clearly defined, shared some-
thing memory errors cross fault domains, and potentially
affect multiple compute nodes running independent OS
instances. Because multiple nodes may map the same
memory regions, when a shared something node fails,
additional error containment must be performed (e.g.,
”poisoning” memory), so that nodes that subsequently
access the shared memory deal with the failure.

3.3 Memory non-volatility

As described by Bailey, et al., the non-volatility of mem-
ory presents additional challenges [4].

Abstraction for persistent data. NVM blurs the line
between file system and memory access for persistent
data (e.g., files vs. memory regions), calling into ques-
tion whether traditional file systems are the best approach
for managing persistent data.

Volatile caches. Some components of the mem-
ory system architecture (e.g., store buffers, caches) will
likely continue to be volatile, even as main memory be-
comes fully non-volatile. The OS and applications must
carefully control movement of data from volatile proces-
sor caches to non-volatile memory. ISA support is only
beginning to become available (e.g., Intel’s pcommit and
clwb); without sufficient ISA support, the OS and appli-
cation runtime systems may need to rely on software-
controlled mechanisms to manage this data movement in
a sensible fashion (e.g., [8, 26]).

Recovery from software and human errors. Be-
cause NVM doesn’t “forget” its state, it’s no longer pos-
sible to clear memory state by rebooting the machine
(and thus clearing volatile DRAM and processor cache
state). The memory-centric OS must provide additional
mechanisms such as checkpoints and logging to permit
recovery from software and human errors. Since we’ll
likely want to keep many such recovery points around,
the OS must decide how to create and garbage collect
these recovery points to provide a reasonable tradeoff be-
tween fast (and recent) recovery behavior vs. the cost of
generating the recovery points [33].

Encryption is a necessary but insufficient protection
mechanism to data held in universal memory [3]. Data
at rest can be protected against physical theft of indi-
vidual devices by keeping the data in the physical me-
dia appropriately encrypted, while ensuring that the rel-

evant keys are volatile with respect to the device, but
non-volatile with respect to the system. Ideally, data in
motion through the memory system should also be en-
crypted. As usual, key management may present some
tricky problems. Note that encryption at rest represents a
form of read protection for the underlying data, but does
not prevent the data from being overwritten or corrupted.

3.4 Additional issues

Memory-centric I/0. In a system with universal mem-
ory, the majority of I/O comes from data networks. A
simple model for I/O is to imagine a sophisticated I/O
engine in the memory system that handles moving data
to/from memory from/to an IP network. A more chal-
lenging problem is dealing with very high-speed net-
works where packet processing by an application needs
to happen with very low latency, particularly when the
desired performance begins to challenge the latencies of
the memory interconnect plus the characteristics of the
memory device itself. High speed operations may imply
that even cache fill times across a large-scale memory
system are too long. In such cases the data must be de-
livered much closer to the processor (e.g., directly into a
cache or locally attached memory). The role of the OS
is largely to get out of the way of data plane operations,
instead providing control plane functionality such as pro-
cess isolation and security (e.g., [6, 28, 32]).

Memory-centric application runtimes. Memory-
centric systems invite the further exploration of dis-
tributed application runtimes that make effective use of
distributed persistent memory, which will in turn gen-
erate corresponding requirements on a memory-centric
OS. For example, earlier work, such as Linda and tu-
ple spaces, and various dataflow programming models
should be reevaluated in this context [12].

4 Summary

The future is converging towards a memory-centric rack-
scale architecture that adopts a shared something model,
where heterogeneous compute resources access a large
pool of shared non-volatile memory. Today’s processor-
centric OSes may fall short of addressing the challenges
these architectures present and exploiting the opportuni-
ties they provide. In this paper we’ve articulated a vision
for a memory-centric OS that moves traditional OS func-
tionality like memory allocation, protection, synchro-
nization and error handling out of the compute node and
closer to the memory system.
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