
On Instruction Organization

Tyler Dwyer
Simon Fraser University

tdwyer@sfu.ca

Alexandra Fedorova
Simon Fraser University

fedorova@sfu.ca

Abstract
To attain high program performance, a developer must
be conscious to the many intricacies of hardware and or-
ganize their code accordingly. This however, is not an
easy task. Often the hardware is unknown to develop-
ers, or, if it is known, it is difficult to control or ac-
count for. Developers struggle with this challenge by
using hardware conscious algorithms, specialized pro-
gramming languages, or doing manual low-level opti-
mizations.

We investigate the concept of instruction organization
at a more general level. In particular, we investigate if
a program, running on existing hardware, can be auto-
matically reorganized according to a chosen organiza-
tion metric. Further, if the reorganization can be done
automatically, a program can then be reorganized during
execution to adapt to changes in system resources, and
changing execution and data access patterns.

We use data locality as an organization metric with
the goal of reducing data access latency and improving
program performance.

1 Introduction

In the vast majority of cases, how a developer organizes
his or her code into functions and threads is not how it
should be executed. And, as this level of organization
is beyond the scope of compiler optimizations, the orga-
nization structure here determines the organization, and
thus execution, of the compiled program. An optimal or-
ganization would take both hardware specifications and
execution characteristics into account, but this informa-
tion is often difficult to incorporate into the program or is
unavailable to the developer. Sub-optimal organization
can lead to sub-optimal hardware utilization which has
two serious side effects: performance degradation and
wasted power.

One method to increase hardware utilization on cur-
rent hardware is to increase data locality. Data locality is

the solution to the problem of moving data to, from, and
across a hardware context, such as a CPU. In short, data
stored locally can be accessed faster and with less power
than data stored remotely – often a difference of over an
order of magnitude. This difference has led to the real-
ization that both program performance and the future of
hardware scaling hinges on reducing the quantity of data
moved across and off chip [7, 15]. For this reason, we
use data locality as our organization metric.

Achieving data locality however, can be a challenge.
For example, Figure 1 demonstrates the common event
of two threads updating a shared variable. Upon an up-
date to the shared variable, each thread will check for
a mutex, lock the mutex (if available), move the shared
variable into its local memory, update it, and release the
lock. This requires both the mutex data and the shared
variable data to be transferred between cores. A better
implementation of this example is to reorganize the in-
structions so that the shared variable is kept local and is
updated at the request of the other thread – the reorgani-
zation step is shown in Figure 1c, with the result shown in
Figure 1d. This has three benefits. First, the costly data
migration has been swapped with a small, lightweight
control migration. Second, the need for a mutex has
been removed as only one thread accesses the shared
data. And third, since the data never moves, maximal
data locality is ensured, as indicated in Figure 1d. Here,
both program organizations are functionally equivalent,
but differ in how their instructions are organized within
and across threads – a difference that can have a signif-
icant impact on performance. Lozi [11] and Soares [16]
independently explored this principle in a database, and
operating system, but in both cases the developer had to
put significant effort into redesigning the system.

The previous example highlights how instruction or-
ganization can improve data locality, but this is just one
metric of many that can be used to guide instruction orga-
nization. Another possible metric is instruction locality
(I-cache reuse), shown in Figure 2. In this example, as is



Figure 1: An example of how control migration can replace data migration to facilitate data locality. (a) shows the
pseudo-code for a shared data object passed between two threads. (b) illustrates how this data, protected by a mutex,
bounces back and forth between threads. (c) shows one way to reorganize the instructions; the update function of
one thread is moved into the other thread and control signals are instrumented to execute the update remotely. This
reorganization, as seen in (d), achieves maximal data locality, and removes the need for a mutex.

the case in many programs, a thread re-uses some code,
but by the time it is re-executed, the required instructions
have been evicted from the I-cache – Figure 2a. A better
organization would split the code into pieces and spread
the execution across many cores to take advantage of all
available caches, shown in Figure 2b. Ailamaki et al. [2]
took a similar approach of using control migration, but
the solution was specific to databases.

A third metric in-line with technological trends, is to
take advantage of single ISA heterogeneous systems. For
these systems it is important to offload work to smaller,
slower cores, but what work to offload and when to of-
fload it is an area of active research [13]. This is an in-
struction organization problem for which an organization
metric can be created, and our framework used to facili-
tate the intelligent management.

Unsurprisingly, implementing this reorganization is
difficult. Related work has often addressed this issue in
a problem-specific manner, by using new programming
languages such as Charm++ [1], or developing new hard-
ware such as TRIPS [14]. We believe that instruction

organization, along with a means to execute the reorga-
nized instructions, is the general concept behind all of
this work.

The question we address is: can an existing program,
running on existing hardware, be arbitrarily reorganized
according to some metric (e.g., data locality), without as-
sistance from the developer? Even more interestingly, if
this reorganization can be done automatically, can a pro-
gram be reorganized throughout its execution to adapt to
changing execution and data access patterns? We believe
the answer to both these questions is yes, and propose a
method to do so.

We present a brief overview of our framework and
challenges in Section 2 with discussion and relevant re-
lated work in Section 3.

2 Method

Our proposed method to organize instructions is best di-
vided into three steps: getting the program’s instructions

2



Figure 2: An example of how instruction organization
can improve instruction locality. (a) shows a situation
where three functions executing on one core cause con-
tinual instruction cache misses. (b) shows a better orga-
nization where functions are spread across cores to make
use of multiple caches - instruction locality is achieved.

and determining their dependencies, organizing those in-
structions, and instrumenting a framework to execute the
reorganized instructions.

2.1 Instructions & Dependencies
We use the LLVM framework [10] and perform our reor-
ganization on LLVM’s Intermediate Representation (IR)
instructions; a simple example is shown in Figure 3ab.
This IR is similar to a hardware independent type of ma-
chine instructions with an infinite register set – a pro-
gram representation with both programming language
and hardware specifics abstracted away.

Once a program is in IR form, we conservatively add

all possible dependencies for all instructions across all
functions and threads, creating a Program Dependency
Graph (PDG), Figure 3c. Adding all possible depen-
dencies will likely create many unnecessary dependen-
cies, but it guarantees execution correctness and doesn’t
necessarily harm performance. The only detriment from
these extra dependencies is that the instruction organiza-
tion may not be optimal, which may lead to sub-optimal
performance. The influence of these extra dependencies
can be minimized through the use of optimizations, pro-
filing information, and runtime information.

2.2 Organization

To organize instructions we create organization blocks,
called org blocks, shown in Figure 3d. The size of these
blocks is determined at compile time and is based upon:
the block size to overhead trade off, instruction depen-
dencies, instruction statistics such as the number of bytes
allocated per block, and hardware information such as
the LLC size.

In the running example of this paper we are reorga-
nizing instructions to optimize for locality. Therefore,
the composition of the blocks here is made to maximize
internal instruction dependencies and minimize external
instruction dependencies. This promotes instruction and
data locality and reduces costly external communication.
This is also a min-cut graph partitioning problem – how
can the PDG be split into X pieces that minimize the
number of dependencies cut through. Statically it is un-
known which dependencies will be used more than oth-
ers, so all are treated equally but more precise informa-
tion can be added through profiling or further static anal-
ysis. Dependency edges inside an org block are handled
by compiling/serializing the block. Similar to a thread,
an org block can have multiple entries, multiple exits,
and be instantiated multiple times during execution.

Once the org blocks are determined, the problem shifts
from a static, compile time problem, to a dynamic, run-
time problem. Organizing instructions dynamically im-
plies that the instructions, or in our case org blocks, must
be able to change where they are executed during the
lifetime of the program - this is known as migration.
When any grouping of instructions is migrated from one
hardware context to another, it is a migration of control.
Data migration often occurs along side this as the instruc-
tions that are migrated may rely on some data located on
the originating core. Data migrations are generally very
costly as all data must be moved, where as control migra-
tions are often much cheaper as there are typically few
instructions that need to be moved.

To implement dynamic organization we let every
block decide, prior to its execution, whether it should
be executed locally (from where it was called), or mi-

3



Figure 3: This outlines the proposed method to: convert C++ source code into an LLVM IR(a,b), find all necessary
program dependencies (c), organize the instructions into organization (org) blocks and instrument control signals
between blocks (d), and instrument the program with a framework to facilitate migration and execution (e).

grated to a different core. This decision is a comparison
between two dynamically attained values. First is the
current system state. For our running example of maxi-
mizing data locality, LLC miss rate is a good metric to
use. Second is the program state, which is information
about how the program is currently executing. We en-
code program state by adding a weight to all dependency
edges between org blocks, shown in Figure 3e. When a
dependency edge is used and spans two cores, say for a
remote data access (data dependency edge), the weight
for that edge is increased. When a dependency edge is
used locally, say for a control signal between two local
org blocks (control dependency edge), the weight may be
decreased. The migration decision is then a comparison
between the system state and summation of weights for
that block. If the weights are low compared to system
state (acceptably low remote communication), the block
is not migrated and executed locally. If the weights are
high compared to system state (high remote communica-
tion), the block is migrated.

The migration decision, weights, and weight update
mechanism are all instrumented directly into each data
block.

2.3 Instrumenting a Framework
The program is now organized, but in its current form
it cannot be executed. The main reason for this is that
there can exist multiple control dependencies from a sin-
gle instruction; for example in Figure 3c, the ‘br’ instruc-

tion points to both the ‘load tmp’ and ‘load j’ instruction.
Current hardware implementations are incapable of exe-
cuting two instructions in parallel at this granularity. For
this reason we must add an execution framework to facil-
itate these control dependencies. This framework is sim-
ilar to the OS scheduler in that it starts the execution of
code, but, as we are operating near the instruction gran-
ularity, any OS support is far too heavy for our needs.
Instead, we instrument a lightweight scheduling, migra-
tion, and execution framework directly into the program.
This framework manages control dependencies by sig-
nalling other org blocks to execute, and honours data de-
pendencies by ensuring correct execution order.

2.4 Challenges
The two main challenges of this work are the graph cut
algorithm and overhead.

The graph cut algorithm is responsible for automati-
cally dividing the program into blocks and is dependent
on the metric we are organizing for. The metric of data
locality can be represented by reducing the number of
cut dependencies between blocks – a min-cut problem.
Min-cut graph problems are NP-complete, but as we do
not require optimal cuts, heuristics can be used. Further-
more, as this step is done at compile time, a lengthy com-
putation is not a significant concern. Other metrics will
require different graph division algorithms and be based
on possibly different information.

Our framework will incur overhead in three areas: the

4



overall overhead of the execution framework, overhead
from control signals, and overhead from migration deci-
sions and weight updates. This overhead however is only
incurred during the already costly case of remote data or
control migration. The common case of local execution
is largely unaffected by our framework. Furthermore, as
dynamic migration of blocks actively attempts to reduce
remote migrations, it is also a mechanism to actively re-
duce all overhead incurred by the framework.

3 Discussion & Related Work

Our work touches on three disciplines of work: instruc-
tion organization, control migration, and runtime infor-
mation.

There exist two ways to organize and execute instruc-
tions: by control and by data. Von Neumann architec-
tures, such as x86/x64, are control based and organize
instructions into blocks of varying granularity - basic
blocks, functions, threads, etc. The execution of blocks is
controlled by branch statements, and data dependencies
are specified through programming language syntax (i.e.
line order). Dataflow architectures, such as TRIPS [14],
organize the execution of instructions according to data
availability, and control can be specified through pro-
gramming language syntax (i.e., control tokens) [6, 8].

Even though each organization method is radically
different, they are functionally equivalent: control-flow
programs can be converted into functionally-equivalent
dataflow programs, and vice versa [3]. Our framework
exploits this insight by taking a control-flow based ap-
plication (written in C/C++), converting it to a dataflow
form (the Program Dependence Graph, or PDG), orga-
nizing it with respect to some metric (e.g., data locality),
and then reconverting it back into control-flow form for
execution on current hardware. While we are not aware
of any past work that takes this approach of instruction
reorganization, Olden [4] and Charm++ [1] are examples
of control flow languages that have a similar focus on or-
ganizing instructions according to data dependencies.

To facilitate a new instruction organization, we rely
on scheduling and migration of small instruction blocks.
Scheduling can be defined generally as managing when,
and where to start execution of a block, whereas migra-
tion is the process of moving the control of a block from
one core to another.

The effectiveness of any scheduler is largely deter-
mined by the granularity of tasks it is scheduling and
the overhead incurred to schedule those tasks. Finer
task granularity allows for better control over the sys-
tem but yields higher overhead. Some schedulers have
been designed to handle fine grained tasks at the millisec-
ond scale [12], but nanosecond/cycle scale tasks would
again incur prohibitive overhead. Our work allows for

instruction-sized (very fine) task granularity and we in-
strument the scheduling framework directly into the pro-
gram to avoid the heavy overhead of an OS scheduler.

Along with scheduling, we also instrument control mi-
gration to allow for dynamic reorganization of instruc-
tions during execution. Past work has used control mi-
gration as a tool to address problems such as improving
D-cache utilization [9], improving I-cache utilization [2],
reducing lock contention [11], reducing system wide re-
source contention [17] and even minimizing system call
overhead [16].

We use dynamic information to update migration
weights which are used to drive the migration pol-
icy. Adding dynamic information, such as dynamic in-
struction statistics [5] or hardware monitors [17], into
scheduling and migration policies allows for a applica-
tion to adapt to both changing execution patterns and
changes in system resources.

4 Conclusion

Currently it is the developers responsibility to organize
their code for efficient execution – often an impossible
task due to the lack of required information. Our method
of instruction organization aims to relieve this responsi-
bility, and perform it automatically based on much more
information than the developer generally has access to.
Our organization method uses static information gained
at compile time such as dependencies and system speci-
fications, runtime system information such as cache con-
tention, and dynamic execution information such as ac-
cess and execution patterns. This information determines
how the program is subdivided into groups, where those
groups start their execution, and when they migrate.

Our method divides a program into groups called org
blocks. These blocks are created using an organization
metric and dependency information to minimize inter-
block communication and maximize intra-block locality
– optimizing for data locality. The blocks are then instru-
mented with the ability learn about the dynamic system
through weight updates. Finally a framework is instru-
mented into the program to facilitate the scheduling, mi-
gration, and execution of the org blocks.

We believe this technique can be used to reorganize
an application to allow for efficient execution on any
hardware for which an organization metric can be con-
structed. Our work focuses on data locality due to its
relevance to current systems, but other metrics can be
used.

5



References

[1] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil
Langer, Harshitha Menon, Eric Mikida, Xiang Ni,
Michael Robson, Yanhua Sun, Ehsan Totoni, and
Others. Parallel Programming with Migratable Ob-
jects: Charm++ in Practice. Supercomputing, 2014.

[2] Anastasia Ailamaki and Andreas Moshovos. AD-
DICT : Advanced Instruction Chasing for Trans-
actions. VLDB: International Conference on Very
Large Databases, 2014.

[3] Micah Beck, Richard Johnson, and Keshav Pingali.
From control flow to dataflow. JPDC: Journal of
Parallel and Distributed Computing, 1991.

[4] Martin C. Carlisle and Anne Rogers. Software
caching and computation migration in Olden. ACM
SIGPLAN Notices, 1995.

[5] Koushik Chakraborty, Philip M. Wells, and
Gurindar S. Sohi. Computation spreading: employ-
ing hardware migration to specialize CMP cores
on-the-fly. SIGOPS: Opererating Systems Review,
2006.

[6] Jack Dennis and David Misunas. A preliminary
architecture for a basic data-flow processor. ACM
SIGARCH Computer Architecture News, 1975.

[7] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger.
Dark silicon and the end of multicore scaling.
ISCA: International Symposium on Computer Ar-
chitecture, 2011.

[8] Wesley M. Johnston, J. R. Paul Hanna, and
Richard J. Millar. Advances in dataflow program-
ming languages. ACM Computing Surveys, March
2004.

[9] Md Kamruzzaman, Steven Swanson, and Dean M.
Tullsen. Software data spreading: leveraging dis-
tributed caches to improve single thread perfor-
mance. PLDI: Programming Languages Design
and Implementation, 2010.

[10] Chris Lattner and Vikram Adve. LLVM: A com-
pilation framework for lifelong program analysis &
transformation. CGO: International Symposium on
Code Generation and Optimization, 2004.

[11] Jean-Pierre Lozi, Florian David, Gael Thomas, Ju-
lia Lawall, and Gilles Muller. Remote Core Lock-
ing: Migrating Critical-Section Execution to Im-
prove the Performance of Multithreaded Applica-
tions. USENIX ATC: Annual Technical Conference,
2012.

[12] Kay Ousterhout, P Wendell, M Zaharia, and I Sto-
ica. Sparrow: Scalable scheduling for sub-second
parallel jobs. EECS Department, University of Cal-
ifornia, Berkeley, 2013.

[13] Juan Carlos Saez, Manuel Prieto, Alexandra Fe-
dorova, and Sergey Blagodurov. A comprehensive
scheduler for asymmetric multicore systems. Eu-
roSys: European conference on Computer systems,
2010.

[14] Karthikeyan Sankaralingam, Ramadass Nagarajan,
and Haiming Liu. Trips: A polymorphous archi-
tecture for exploiting ILP, TLP, and DLP. TACO:
ACM Transactions on Architecture and Code Opti-
mization, 2004.

[15] John Shalf, Sudip Dosanjh, and John Morrison. Ex-
ascale computing technology challenges. In VEC-
PAR: High Performance Computing for Computa-
tional Science, 2010.

[16] Livio Soares and Michael Stumm. FlexSC: Flexible
System Call Scheduling with Exception-Less Sys-
tem Calls. OSDI: Symposium on Operating Systems
Design and Implementation, 2010.

[17] Sergey Zhuravlev, Sergey Blagodurov, and Alexan-
dra Fedorova. Addressing shared resource con-
tention in multicore processors via scheduling.
ASPLOS: International Conference Architectural
Support for Programming Languages and Operat-
ing Systems, 2010.

6


	Introduction
	Method
	Instructions & Dependencies
	Organization
	Instrumenting a Framework
	Challenges

	Discussion & Related Work
	Conclusion

