
ASPIRE: Iterative Specification Synthesis for Security

Kevin Zhijie Chen
UC Berkeley

Warren He
UC Berkeley

Devdatta Akhawe
UC Berkeley

Vijay D’Silva

Prateek Mittal
Princeton University

Dawn Song
UC Berkeley

Abstract

How to perform a systematic security analysis of com-
plex applications is a challenging and open question. Ap-
proaches based on formal verification are impeded due
to the lack of application specifications. To address this
challenge, we propose a framework, called ASPIRE, that
enables analysts to automatically synthesize specifica-
tions from examples such as application input-output ex-
amples and system demonstrations. Our approach starts
by synthesizing the initial candidate specifications in a
domain specific language that conform to the examples,
and iteratively prunes the candidate set by incorporating
more user feedback. We implement a prototype of AS-
PIRE for synthesizing and checking specifications of web
applications, although our approach is not limited to web
security, and use it in three case studies to demonstrate
the discovery of complex vulnerabilities in implementa-
tions of real world web applications. Our work is the
first to design a general framework that leverages pro-
gram synthesis techniques for security applications.

1 Introduction
Validating the security of existing applications is a hard
challenge. Existing tools approach this problem from
two main perspectives. One perspective is that of a
top-down approach based on applying model checking
and proof systems [2, 5, 6, 22–24] on manually con-
structed models of applications. However, manually
writing specifications in a formal language requires sig-
nificant effort, and remains quite challenging and error-
prone. Security analysts wishing to write the specifi-
cation would need to understand the intricacies of the
formal specification language as well as translate com-
plex modern applications into the given formal language.
These challenges could lead to the developed model it-
self being erroneous and inconsistent with the implemen-
tation. The second perspective is that of bottom-up ap-
proaches that use static analysis techniques to automati-
cally build system models [1, 4, 7] from full system im-

plementations. However, for large applications, the se-
curity analyst may only have partial visibility into the
full implementation. The implementation of a system is
typically only partially visible because the code (or bi-
naries) for some components in the system will not be
available. For example, a modern web application may
rely on services such as Facebook Connect to authenti-
cate users and Paypal for monetary transactions, and a
typical mash-up developer lacks access to Facebook or
Paypal code. In addition, such approaches are unable to
efficiently recognize high-level semantics in the imple-
mentation, such as the authentication protocol between
Facebook Connect and the third-party application.

Our approach We envision an architecture where a se-
curity analyst can specify her intent in terms of applica-
tion input-output examples or a system demonstration.
Our approach, called ASPIRE, provides a middle ground
between the two perspectives of manually specifying
models, and fully-automated model inference. Instead
of manually writing models for each application, we
provide a set of common application-independent tem-
plates (in the form of a domain specific language or DSL)
whose instantiations become application-dependent, and
instead of deriving the application models from the im-
plementation, we inductively synthesize the models from
system execution traces.

Figure 1 depicts ASPIRE’s architecture. The core of
ASPIRE is the encoding of the domain knowledge (in-
cluding the DSL) for a class of applications, as well as
the corresponding synthesis algorithm. The design of
the DSL reflects the high-level common patterns the class
of applications. The user starts by using examples to
demonstrate how the application works. The synthesizer
then generate one or more candidate specifications that
are consistent with 1) the syntax of the DSL, and 2) the
examples. Finally, we set up a feedback loop with the
user, to ensure that the system specification meets the
user intent and to guarantee correctness and security. A

1

ASPIRE

Deployed
Application Synthesizer

Domain
Knowledge

and DSL

Analyst Validator
Backend
Solver

E
xa

m
pl

es

User
Feedback

Demostra-
tion

Specification
and Policy

Results

Figure 1: A conceptual workflow of ASPIRE. Users provide example
inputs or demonstrations of existing applications. The synthesizer com-
bines these input constraints with domain knowledge of the problem to
generate a security specification in a domain specific language. Users
can use the generated specification for validation and testing. Alter-
natively, feedback from the generated specification can produce more
inputs.

user feedback can be additional input-output examples,
refined demonstrations, or simple hints that point out the
errors or confirm the correct statements in the synthe-
sized specification. In this iterative fashion, the user can
generate and refine system models or policies.

We envision a number of uses for such an automat-
ically synthesized specification. First, system builders
and users can use classic analysis and verification tech-
niques on the automatically generated formal specifica-
tions; thereby achieving much higher assurance in the
system. Second, a compiler can automatically translate
the specification into a (partial) implementation. Finally,
the results loop, which generates examples and natural
language descriptions of formal specifications, can help
better understand existing systems. This is in addition to
generating and verifying system specifications using ex-
amples. We propose to design and build a generic frame-
work that is able to leverage synthesis technologies in a
broad range of security applications, such as web secu-
rity, cloud security, mobile security, and even network
intrusion detection. While our goals are broad, for con-
crete exposition of our ideas, we explain our vision using
a domain-specific concretization for web security and a
few use cases.

Our work makes the following contributions.
1. A general approach for synthesizing security spec-

ifications from system execution traces and domain
specific languages.

2. A DSL to represent certain semantics of web appli-
cations, and a new algorithm for the synthesis of
web protocol models (in terms of the DSL) from sys-
tem executions and analyst feedback.

3. Three proof-of-concept case studies to demonstrate
how our system can efficiently detect real-world,
session integrity vulnerabilities, including previ-
ously unknown vulnerabilities.

GET /login HTTP/1.1
Host: bodgeitstore.com

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: session=7ffa4512
<form method=”post” action=”/login”>
<input type=”hidden” name=”csrftoken” value=”3eff8527”>
<input type=”text” name=”username”>
<input type=”password” name=”password”>
<input type=”submit” name=”submit” value=”login”>
</form>

POST /login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Cookie: session=7ffa4512
Host: bodgeitstore.com
csrftoken=3eff8527&username=user1&password=secretpwd&submit=login

HTTP/1.1 200 OK
Content-Type: text/html
Welcome!

Listing 1: Example traces from the Bodgeit Store

2 ASPIRE for the Web
To demonstrate the concrete benefits of our approach, we
present ASPIRE, a prototype system that aims to find vul-
nerabilities in web applications.

Running Example We use the Bodgeit Store [19] as
our running example. It is an online shopping web ap-
plication that allows users to register an account, login to
an account, manage shopping carts, and make purchases.
It is deliberately made vulnerable and used for teaching
web security. Listing 1 is an example of some messages
from its protocol.

The design of ASPIRE consists of three main compo-
nents. First, we define a DSL for web protocols to control
and customize the search space in vulnerability discov-
ery. Second, we introduce a new algorithm for synthe-
sizing specification describing a web protocol from exe-
cution traces (as the system demonstration) and analyst
feedback. Third, we integrate a formal verification tool
(as the validator) with the inferred model to construct an
end-to-end system for vulnerability detection. ASPIRE
accommodates interactive system analysis: the specifi-
cation can be visualized as a message sequence chart for
human inspection, and the analyst can interact with the
system via additional example execution traces, and pro-
vide hints as a feedback to the vulnerabilities and the is-
sues ASPIRE identifies.

To solve the problem of synthesizing specifications
for vulnerability discovery, we must solve two problems.
The representation problem is to design a DSL that cap-
tures the subtleties of web protocols while still remain-
ing high-level for human understanding. The algorithmic
problems are to construct a protocol model, find vulner-
abilities, and update the model using analyst feedback.
The details of the algorithm depend on the representa-
tion, and hence preclude an off-the-shelf solution.

2

2.1 Designing a Representation

We design a language, called the Model Description Lan-
guage (MDL), with primitives chosen to enable succinct
descriptions of web protocols. These primitives have a
precise semantics and compile into ALLOY, the input
language for the ALLOY model checker.

The design of the MDL is motivated by the web model
formally defined in previous work [2, 5, 6]. The mod-
eling of a web application’s logic consists of two com-
ponents, the application-independent component and
the application-specific component. The application-
independent component, i.e., the semantics of the MDL,
defines a generic web model, including the definition of
HTTP servers and clients, the same origin policy, the use
of cookies, etc. The application-specific component, i.e.,
a specification written in MDL, uses the basic definitions
in the application-independent component to describe the
logic of a web protocol. For example, Figure 2 lists the
specification derived from the Bodgeit Store’s example
traces in Listing 1. In ASPIRE, MDL models the follow-
ing web concepts:

Basic concepts A web application is a distributed sys-
tem based on the HTTP protocol. We refer to the partic-
ipants of a web application as endpoints. A client end-
point (client for short) is typically a browser and a server
endpoint (server for short) is a web principal represented
by its web origin. A message is either an HTTP request or
an HTTP response. Messages are abstractly represented
as mappings from keys to values. A web protocol is a
specification of the sequences of messages exchanged
between endpoints and the invariants imposed on these
messages. Each of these concepts will be translated into
an ALLOY signature in our base model.

Interaction The set of endpoints consists of a benign
client, a malicious client, a malicious server and a set
of benign servers defined by the synthesized MDL spec-
ification. The benign client can send arbitrary request
permitted by the rule of the server. When it receives a
redirection response, it immediately sends a request with
the URL specified by the redirection. For each benign
server, it only accepts requests and sends responses ac-
cording the synthesized specification.

Threat model We consider the web attacker model and
session integrity formally defined in Akhawe et al. [2]: A
web attacker is a malicious principal who controls a web
server visited by the user. Intuitively, the web attacker
can be thought as having “root access” to this web server,
and is able to retrieve arbitrary information contained in
the request and send arbitrary response to the user. In ad-
dition, the web attacker can send arbitrary HTTP requests
to the benign servers.

Security Policy Typical attacks on web protocols vio-
late the session integrity. A session integrity condition
states that the attacker should not be able to cause benign
servers to undertake potentially sensitive actions. CSRF
attacks are typical violations of the session integrity pol-
icy. For example, a login CSRF attack violates the login
session integrity by directly logging in the user without
the initial login page. In our running example, the invari-
ant at line 18-20 prevents login CSRF attacks.

These definitions are reflected in the ALLOY base
model. For example, listing 2 shows the ALLOY pred-
icate that checks if an HTTP request belongs to a CSRF
attack. And the model checker will check if such attack
could happen in our synthesized specification.

1 pred isCSRF[r: HTTPRequest] {
2 (some r.prev and r.prev in MaliciousRedirectionResponse)
3 (r.from = VictimClient)
4 (r.to in VictimServer))
5 some (r.payload − r.cookies)
6 attackerCanLearn(r.payload − r.cookies)
7 }

Listing 2: The ALLOY code that checks for CSRF attacks
Since MDL specifications are translated into ALLOY, em-
bedded in the base model, and verified, the base model
also determines the semantics of MDL.

1 servers: bodgeit;
2 init:
3 bodgeit knows t1,t2;
4 client knows t3,t4;
5 messages:
6 request(server=bodgeit, type=req-helo),
7 response(server=bodgeit, type=resp-helo,
8 fields=(jsid in setcookie, csrf in body)),
9 request(server=bodgeit, type=req-login,

10 fields=(rcsrf in urlparam, rjsid in cookie,
11 username in urlparam, password in urlparam)),
12 response(server=bodgeit, type=resp-login);
13 invariants:
14 resp-helo.jsid isa t1;
15 resp-helo.csrf isa t2;
16 req-login.username isa t3;
17 req-login.password isa t4;
18 forall m1:resp-helo, m2:req-helo {
19 m1.jsid == m2.rjsid <=> m1.csrf == m2.rcsrf;
20 }

Figure 2: The illustrative MDL specification for a website’s login
process.

2.2 Algorithmic Components

Next, we present how the specification is synthesized,
verified, and refined.

Specification synthesis The first algorithmic problem
is to construct a protocol model from HTTP traces. Since
our model is expressed in MDL, model construction can
be viewed as a specification synthesis task. Specifically,
the set of all MDL specifications defines a search space,
and synthesis from examples seeks to find specifications
that generate and generalize those sample executions.

The specification synthesis task is split into a few sub-
tasks that infers different aspects of the specification, in-

3

cluding the set of endpoints, the initial data known to the
each endpoint, the formats of the messages sent and re-
ceived by the endpoints, and the invariants over the mes-
sages and their payloads.

Vulnerability discovery The second algorithmic prob-
lem is to discover vulnerabilities in the protocol model.
Our system includes generic description of CSRF vul-
nerabilities in web protocols. We compile a MDL spec-
ification together with a vulnerability description into
an ALLOY model, and reduce the vulnerability discov-
ery problem to a model checking problem. The ALLOY
model reflects the semantics of the MDL defined in Sec-
tion 2.1. The verification condition enforces that none
of the traces permitted by the specification forms a CSRF
attack.

The result of the verification can be Safe, Timeout
or Vulnerable. For all the three cases, a synthesized
protocol will be visualized to the analyst in a message se-
quence chart. Additionally, in the case when the protocol
is vulnerable, a trace will be presented to the analyst as
the demonstration of the attack.

Feedback and refinement The third algorithmic prob-
lem is to incorporate analyst feedback to update either
the protocol model or the vulnerability description used
by the system. During this phase, the analyst inspects the
results by reading the message sequence charts or replay-
ing the attack trace to the actual web service, and reaches
a conclusion on the correctness of the synthesized proto-
col and whether the attack trace is spurious. If the syn-
thesis is not accurate or the attack trace is spurious, the
analyst provides more hints to the synthesizer.

Our system accepts three types of hints: Input hints,
in which a new input value is provided as an alternative
to the values that are previously constant, or an anno-
tation is provided to ignore a message field; Scope hints,
which are URLs that should be considered or ignored dur-
ing the synthesis; and Target hints, which are messages
that should be considered or ignored in the verification.

3 Case Studies
We use ASPIRE to identify vulnerabilities in three real
world applications. We rediscover two (previously found
manually) vulnerabilities and discover four previously
unknown vulnerabilities. We summarize the configura-
tion and the performance of each iteration in Table 1. We
performed all the experiments on a desktop machine with
an Intel i5 670 3.4GHz CPU and 8GB memory. The per-
formance is moderate considering it is an offline analysis
that does not interrupt the web services.

The CAS Protocol First, we analyze the Central Au-
thentication Service protocol (CAS) [17]. The CAS pro-
tocol was originally developed at Yale University, and at
least eighty universities currently deploy it [14]. Akhawe

Name #Servers New Hints #Msgs
Verif.
Time (s) Vuln.?

CAS 2
None
Target(-)
None

12
12
12

7.17
41.71
>7200

Y(New)
Y
N

NMP 1
None
Target(-)
Input(+)

8
8
8

7.20
9.53
8.16

Y(New)
N
Y

GOV 2
None
Scope(-)
Target(-)

48
24
24

>7200
699.91
2399.77

N
Y(New)
Y(New)

Table 1: Configuration and performance of the case studies. The
first column lists the names of our case studies. The second column
lists the number of benign servers involved. The third column lists the
new hints provided by the analyst in each iteration. For each type of
the hint, we use “+” to indicate a positive answer, and “-” to indicate a
negative answer. The fourth column lists the number of message types
in the synthesized model. The fifth column lists the verification time.
We bound the verification to take up to 7200 seconds. The last col-
umn lists whether we find any vulnerabilities. The protocol synthesizer
terminates within 5 seconds in all the case studies.

et al. manually wrote down the protocol model and iden-
tified a session fixation attack (later fixed) [2].

To validate the fidelity of ASPIRE, we attempted to
recreate and automatically identify this vulnerability. We
captured example traces at our university by logging into
a class registration system (twice, with different user ac-
counts) using the CAS protocol. We manually removed
the fix to the aforementioned vulnerability. Figure 3
shows the synthesized vulnerable protocol. The proto-
col is equivalent to the one manually written [2].

Figure 3: The vulnerable CAS protocol

In the initial iteration, we embed the vulnerable pro-
tocol into our base model and check for vulnerabilities.
The initial attack trace returned by the model checker is a
valid session-riding attack. Interestingly, this attack was
missed by prior manual analysis.

In order to search for other vulnerabilities, we provide
a negative target hint to exclude this vulnerability, and
continue the search for more attacks. The verification
with the modified vulnerability condition returns an at-

4

Figure 4: The second attack trace for the CAS protocol

tack trace as shown in Figure 4. The attack trace says that
the attack can authenticate with the authentication server
first and get a ticket. Instead of redirecting to Req check
in the attacker’s browser, the attacker sends the link to
a benign user who ends up logging in as the attacker on
the user’s browser. If the user is not aware of this, he or
she could end up registering for classes or paying tuition
for the attacker. This finding validates the performance
of ASPIRE. Recall that the vulnerability was previously
found using significant manual analysis. Furthermore,
the manual analysis missed the vulnerability discovered
in the initial iteration.

NeedMyPassword.com NeedMyPassword.com is an
online password manager. We found 1 new login CSRF
vulnerability and 1 previously known CSRF vulnerability.
We note that previous work manually identified the sec-
ond CSRF vulnerability that we found [16]. This demon-
strates the power of our approach; not only was ASPIRE
able to rediscover known vulnerabilities from system ex-
ecution traces, but its systematic analysis was also able
to identify new vulnerabilities in protocols that have been
manually vetted.

Govtrak.us and Facebook Connect Govtrak.us is a
website for easily tracking the activities of the United
States Congress. It provides some social features where
the user can associate his or her govtrak.us account with
a Facebook account, and also login with Facebook ac-
counts. ASPIRE successfully synthesized two attack
traces that exploit two different weaknesses during the
process of binding a Facebook account to a govtrak.us
account. At a high-level, these vulnerabilities are similar
to the ones found in the CAS protocol, since they are both
violations of the session integrity policy, and both proto-
cols are single-sign-on protocols. However, we want to
emphasize that our base model and the DSL do not have
any special treatment for single-sign-on or authorization
protocols in general. The synthesis algorithm manages to
recognize the patterns in the traces and generalize them

into protocol specifications for the CAS protocol and the
Facebook Connect protocol.

4 Related Work
At the core of our system is the synthesis of the proto-
col description in a DSL. Program synthesis aims to de-
velop technologies that can translate expressions of user
intent into programs. For example, researchers have re-
cently proposed techniques to automatically synthesize
programs using input-output examples [11, 13], system
predicates over input-output [12, 21], program template
structure and constraints [20], natural language [8], and
user demonstration [15]. Gulwani et al. provided a com-
prehensive overview of such techniques [10].

Our approach is motivated by existing work on in-
ductive model generation. We aim to generalize from
existing work and build a modular and extensible secu-
rity specification synthesis framework. Wang et al. per-
formed a series of mostly manual security analysis on
cashier-as-a-service based web stores [23], single-sign-
on web services [22] and protocol SDKs [24]. The latter
also demonstrates a systematic process of the interaction
between the security analyst and a formal analysis tool.
AuthScan [3] automatically extracts and checks web au-
thentication protocols. It performs differential analysis
on traces generated by symbolic execution and testing to
infer protocol invariants. Pellegrino and Balzarotti [18]
propose a black-box technique that identifies a number
of behavioral patterns from network traces and generates
test cases. Invariant detectors like Daikon [9] also induc-
tively generate invariants from traces.

5 Conclusion
In this paper, we present ASPIRE, an interactive frame-
work that enables the modeling and verification of pro-
gram implementations without access to the source code.
We illustrate how our system works by presenting a pro-
totype implementation for the security analysis of web
applications. ASPIRE uses execution traces and ana-
lyst feedback to construct and refine protocol models.
Our key insight is to leverage modern program synthesis
techniques in inferring the application models. Our sys-
tem eases the burden of manually translating the imple-
mentations of applications into formally verifiable mod-
els. Using several proof-of-concept case studies, we have
demonstrated how ASPIRE can discover both previously
known vulnerabilities as well as new vulnerabilities from
real world applications. Our research is the first step
to explore the benefits of program synthesis and domain
specific languages for enhancing application security.

Acknowledgement: This work is supported in part by
the National Science Foundation under award numbers
CNS-1409915, CNS-1409415, CNS-1238959, CNS-
1238962, CNS-1239054, and CNS-1239166.

5

References
[1] AIZATULIN, M., GORDON, A., AND JÜRJENS, J. Extracting

and verifying cryptographic models from C protocol code by
symbolic execution. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security (2011), ACM,
pp. 331–340.

[2] AKHAWE, D., BARTH, A., LAM, P. E., MITCHELL, J., AND
SONG, D. Towards a formal foundation of web security. In Com-
puter Security Foundations Symposium (CSF), 2010 23rd IEEE
(2010), IEEE, pp. 290–304.

[3] BAI, G., LEI, J., MENG, G., VENKATRAMAN, S., SAXENA,
P., SUN, J., LIU, Y., AND DONG, J. Authscan: Automatic ex-
traction of web authentication protocols from implementations.
In Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2013).

[4] BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI,
S. K. Automatic predicate abstraction of C programs. In ACM
SIGPLAN Notices (2001), vol. 36, ACM, pp. 203–213.

[5] BANSAL, C., BHARGAVAN, K., DELIGNAT-LAVAUD, A., AND
MAFFEIS, S. Keys to the cloud: formal analysis and concrete
attacks on encrypted web storage. In Principles of Security and
Trust. Springer, 2013, pp. 126–146.

[6] BANSAL, C., BHARGAVAN, K., AND MAFFEIS, S. Discovering
concrete attacks on website authorization by formal analysis. In
Computer Security Foundations Symposium (CSF), 2012 IEEE
25th (2012), IEEE, pp. 247–262.

[7] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y., AND VEITH,
H. Counterexample-guided abstraction refinement. In Computer
aided verification (2000), Springer, pp. 154–169.

[8] COZZIE, A., AND KING, S. T. Macho: Writing programs with
natural language and examples. Tech. Rep. 2142.33791, Univer-
sity of Illinois at Urbana-Champaign, 2012.

[9] ERNST, M. D., PERKINS, J. H., GUO, P. J., MCCAMANT, S.,
PACHECO, C., TSCHANTZ, M. S., AND XIAO, C. The Daikon
system for dynamic detection of likely invariants. Science of
Computer Programming 69, 1 (2007), 35–45.

[10] GULWANI, S. Dimensions in program synthesis. In Proceedings
of the 2010 Conference on Formal Methods in Computer-Aided
Design (Austin, TX, 2010), FMCAD ’10, FMCAD Inc, pp. 1–2.

[11] GULWANI, S. Automating string processing in spreadsheets us-
ing input-output examples. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (New York, NY, USA, 2011), POPL ’11, ACM,
pp. 317–330.

[12] GULWANI, S., KORTHIKANTI, V. A., AND TIWARI, A. Synthe-
sizing geometry constructions. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and im-
plementation (New York, NY, USA, 2011), PLDI ’11, ACM,
pp. 50–61.

[13] HARRIS, W. R., AND GULWANI, S. Spreadsheet table trans-
formations from examples. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and im-
plementation (New York, NY, USA, 2011), PLDI ’11, ACM,
pp. 317–328.

[14] JASIG. The CAS protocol deployment. Online, 2010.
http://www.jasig.org/cas/deployments.

[15] LAU, T., WOLFMAN, S. A., DOMINGOS, P., AND WELD, D. S.
Programming by demonstration using version space algebra. Ma-
chine Learning 53, 1-2 (2003), 111–156.

[16] LI, Z., HE, W., AKHAWE, D., AND SONG, D. The emper-
ors new password manager: Security analysis of web-based pass-
word managers. In 23rd USENIX Security Symposium (USENIX
Security 14) (2014).

[17] MAZUREK, D. The CAS protocol. Online, 2005.
http://www.jasig.org/cas/protocol.

[18] PELLEGRINO, G., AND BALZAROTTI, D. Toward black-box
detection of logic flaws in web applications. In Network and
Distributed System Security (NDSS) Symposium (February 2014),
NDSS 14.

[19] PSIINON. The bodgeit store. Online, 2010. https://code.
google.com/p/bodgeit/.

[20] SRIVASTAVA, S., GULWANI, S., CHAUDHURI, S., AND FOS-
TER, J. S. Path-based inductive synthesis for program inver-
sion. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York,
NY, USA, 2011), PLDI ’11, ACM, pp. 492–503.

[21] SRIVASTAVA, S., GULWANI, S., AND FOSTER, J. S. From pro-
gram verification to program synthesis. In Proceedings of the
37th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New York, NY, USA, 2010), POPL
’10, ACM, pp. 313–326.

[22] WANG, R., CHEN, S., AND WANG, X. Signing me onto your
accounts through Facebook and Google: a traffic-guided secu-
rity study of commercially deployed single-sign-on web services.
In Proceedings of the IEEE Symposium on Security and Privacy
(2012), IEEE, pp. 365–379.

[23] WANG, R., CHEN, S., WANG, X., AND QADEER, S. How
to shop for free online–security analysis of cashier-as-a-service
based web stores. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (2011), IEEE, pp. 465–480.

[24] WANG, R., ZHOU, Y., CHEN, S., QADEER, S., EVANS, D.,
AND GUREVICH, Y. Explicating SDKs: Uncovering assump-
tions underlying secure authentication and authorization. In Pro-
ceedings of the USENIX Security Symposium (2013), USENIX.

6

https://code.google.com/p/bodgeit/
https://code.google.com/p/bodgeit/

	Introduction
	Aspire for the Web
	Designing a Representation
	Algorithmic Components

	Case Studies
	Related Work
	Conclusion

