
Fault Tolerance and the Five-Second Rule

Ang Chen Hanjun Xiao Andreas Haeberlen Linh Thi Xuan Phan
University of Pennsylvania

Abstract
We propose a new approach to fault tolerance that we call
bounded-time recovery (BTR). BTR is intended for sys-
tems that need strong timeliness guarantees during nor-
mal operation but can tolerate short outages in an emer-
gency, e.g., when they are under attack. We argue that
BTR could be a good fit for many cyber-physical sys-
tems. We also sketch a technical approach to providing
BTR, and we discuss some challenges that still remain.

1 Introduction
In everyday life, we are often willing to overlook small
mistakes, as long as they are fixed quickly. For instance,
when a customer is shortchanged at the register but the
clerk immediately notices the mistake and corrects it, the
customer will typically not complain. This makes sense
because a) ensuring perfection – perhaps by hiring addi-
tional clerks that double-check the change before hand-
ing it over to the customer – would be cumbersome and
expensive, and because b) the mistakes cause no actual
damage, as long as they are noticed and fixed quickly.
The second point is crucial: if the customer notices the
mistake after leaving the store, it will be difficult or im-
possible to get the money back.

In this paper, we argue that allowing small mistakes
could also be a useful approach to fault tolerance in dis-
tributed systems. For instance, systems could provide the
equivalent of the infamous “five-second rule”:1 when a
fault occurs, the system is allowed to produce incorrect
outputs for at most R seconds, but must recover and re-
sume correct operation afterwards. We refer to this prop-
erty as bounded-time recovery (BTR).

At first glance, bounded-time recovery seems very
weak, particularly if we consider adversarial faults, since
it allows the system to output anything (or nothing) dur-
ing the R-second recovery period. However, the potential
damage depends on how these outputs are used. For in-
stance, many distributed systems interact with some kind
of physical system (say, an airplane), and this system of-
ten has some inertia or is able to tolerate some faults for
other reasons. For instance, the flight control system in
an airplane can typically operate within a relatively large
flight envelope [61] and is already equipped to handle
small disturbances, e.g., because of air turbulence. Be-

1The five-second rule states that a food item that has been dropped
on the floor may still be eaten if it is picked up within five seconds.

cause of inertia, a short malfunction will not be enough
to push the airplane out of this envelope and can thus be
tolerated, as long as the system returns to correct oper-
ation quickly enough. A similar argument holds true for
many other cyber-physical systems (CPS) [64, 72].

BTR has at least three potential advantages to offer
over existing alternatives, two direct ones and one indi-
rect one. The direct ones are efficiency and support for
timeliness. BTR can be more efficient than, say, BFT
because it provides weaker guarantees; for instance, de-
tection requires fewer replicas than masking [36], and
BTR can use the output of some replicas without waiting
for the others to complete. BTR can also guarantee that
outputs are timely when an attack is absent, and that an
attack can only affect the outputs for a bounded amount
of time. This is in direct contrast to most existing fault-
tolerance solutions, which tend to sacrifice liveness to
preserve safety, and it is an important property for the ap-
plications we envision (e.g., CPS), where it is not enough
if the system recovers “eventually”: real, physical dam-
age can occur if correct outputs are missing too long.

BTR’s indirect advantage is an ability to offer more
fine-grained responses to faults and attacks. Since BTR
guarantees timeliness, a BTR-enabled system must nec-
essarily monitor the workload and the available resources
very carefully; thus, when a fault does occur, it can make
very detailed tradeoffs to utilize the remaining resources
in the best possible way. For instance, many CPS run
a mixed workload with tasks of different criticality lev-
els [67] – the CPS on an airplane might run flight con-
trol and the in-flight entertainment system. Thus, when a
fault occurs, the system can disable some of the less crit-
ical tasks and allocate their resources to the more critical
ones. This is in contrast to many existing fault-tolerance
approaches that treat the workload as a “black box” (and
thus protect either all of it or none of it), and that ab-
stract away most of the details of the resources, e.g., the
amount of available bandwidth or the network topology.

Building a practical BTR technique involves several
interesting challenges – e.g., with respect to schedul-
ing, fault detection, and reconfiguration – and we dis-
cuss these in the rest of this paper, along with a sketch of
a possible BTR technique. However, our main goal is to
make the case for BTR as an interesting addition to the
fault-tolerance toolbox that should have useful, practical
applications in systems such as CPS.

1



2 Case study: CPS

For the purposes of this paper, we use cyber-physical sys-
tems (CPS) as our running example. A cyber-physical
system contains both digital control and physical sensors
and actuators; examples include factory or power plant
control systems [54], avionic systems [24], building con-
trol systems [22], robots [66], and even self-driving ve-
hicles [7]. Unlike classical embedded systems, which
typically have a central controller, CPS are truly dis-
tributed systems, with a heterogeneous mix of different
nodes that are connected by various networks: even a
simple CPS such as a modern (non-self-driving) car con-
tains about a hundred microprocessors [20].

Requirements: CPS require very high reliability: if they
fail, or even take too much time to respond to a trigger
from their environment, the result can be physical dam-
age or even loss of life. As discussed earlier, timing is
critical: for instance, when a sensor indicates a pressure
increase in some part of the system, the system may need
to respond within seconds – e.g., by opening a safety
valve – to prevent an explosion. However, somewhat
counterintuitively, perfect accuracy is not as critical: the
physical part of the system has properties like inertia or
thermal capacity, and thus can tolerate small mistakes
or omissions, as long as they are fixed within a bounded
amount of time. Control algorithms can be designed to
preserve stability under these conditions [56, 64, 72]. In
other words, this domain requires stronger liveness, and
potentially weaker safety, than classical fault-tolerance
solutions tend to offer, making it suitable for BTR.

Network: The strict timing requirements have conse-
quences for the network: in the presence of an end-to-end
deadline for multi-node data flows, queueing delays or
packet drops can be devastating. Hence, it is more com-
mon to see circuit-switched networks with strict band-
width reservations, which enable predictable timing and
prevent packet drops due to queue overflows. Packets can
still be dropped due to transmission errors, but forward
error correction (FEC) can be used to minimize this risk
where necessary. Thus, stronger synchrony assumptions
about the network seem reasonable in this domain.

Processing power: CPUs in this domain are often far
less powerful than CPUs in servers and workstations.
This is partly due to a desire to reduce cost (or size,
weight, power consumption, ...), which encourages sys-
tem designers to use the least powerful CPU that will do
the job, at the lowest possible clock frequency. Indeed,
the impact on clock frequency is a common evaluation
metric in this domain, e.g., for scheduling techniques.
Because of this, developers may be reluctant to accept
the cost of techniques like BFT, especially if their strong
safety guarantees are not strictly needed.

2.1 System model and threat model

Existing fault-tolerance techniques commonly assume
either an asynchronous (or at most weakly synchronous)
system model [17, 40] or a simple synchronous one in
which processes take abstract “steps” and the details of
the network (such as bandwidth and topology) are ab-
stracted away. Neither model is suitable for our pur-
poses: to give timeliness guarantees, we need both syn-
chrony and a more detailed view of the available re-
sources. Therefore, we define our own tentative system
model that captures some of the special features of CPS
that we have outlined above.

System model: The system consists of a set of nodes
and a set of links. Nodes have a finite processing speed
and access to a local clock. For simplicity, we assume
that the processing speeds are all the same; some nodes
are sources or sinks, that is, they can receive inputs from,
or accept outputs for, the physical world. Each link is
connected to some subset of the nodes and has a finite
bandwidth. We assume that losses are rare enough to be
ignored, and that there is some solution to the babbling-
idiot problem [11] – e.g., that the bandwidth of each link
is statically allocated between the nodes.

Some of these assumptions are very strong (for in-
stance, there is a rich literature on clock synchronization
alone [3, 10, 25, 32, 46]), and in a longer paper we would
definitely discuss them in more detail. Here, we can only
briefly argue that they do seem reasonable for typical
CPS hardware: for instance, buses like CAN support the
use of FEC to mask packet corruption [11], and the MAC
is often implemented in hardware and thus can enforce
bandwidth allocations even if nodes are corrupted.

Workload: For simplicity, we assume a static, periodic
workload that can be described as a dataflow graph. (This
model clearly does not fit all possible CPS, but seems ap-
propriate for many – e.g., [58].) The system has a period
P and releases a set of tasks during each period. Each
task requires some inputs from the sources and/or from
other tasks, and it sends at least one output to a sink or
another task. Each output has a criticality level and a
deadline by which it must arrive at the appropriate sink.

Threat model: We assume Byzantine [47] faults – that
is, there is an adversary who has compromised some sub-
set of the nodes and has complete control over them.
Perhaps surprisingly, this model is considerably stronger
than the one CPS typically use: although faults can result
(and have resulted [44, 48, 63, 73]) in substantial dam-
age and many CPS must therefore undergo a strict cer-
tification process, this process is usually based on crash
faults. However, we note that there is growing concern
about non-crash faults and attacks, both in the commu-
nity [15, 16] and from operators and the government [1].

2



3 Bounded-time recovery
We now offer a first intuitive (but still imperfect) defini-
tion of BTR. Assume that, for each node in the system,
there is some notion of its expected behavior – for in-
stance, a function that maps a sequence of messages min

i
that the node receives at times t in

i to a sequence of mes-
sages mout

j that the node should send at times tout
j . We say

that the node is correct in an interval [t1, t2] if its actual
behavior matches the expected behavior, and we say that
a fault manifests on the node at time t if it is correct in
[0, t) but not in [0, t ′) for any t ′ > t. Similarly, we say that
the outputs of the system as a whole (e.g., its commands
to the actuators) are correct in an interval [t1, t2] if they
are consistent with the outputs of a system in which all
nodes are correct. Then we can define BTR as follows:

Definition 3.1 (Bounded-time recovery). A system of-
fers recovery with a time bound R if its outputs are cor-
rect in any interval [t1, t2] such that no fault has mani-
fested in [t1−R, t2).

In other words, the system is allowed to produce incor-
rect outputs during an interval of length R whenever a
fault manifests on a new node.

In practice, BTR would obviously need a bound f on
the number of nodes that can become faulty. Note that,
if an adversary controls k ≤ f nodes, he can trigger a
new fault every R seconds and thus potentially force the
system to produce bad outputs for kR seconds; thus, if the
system has an overall deadline D after which damage can
occur in the absence of correct outputs, it seems prudent
to set R := D/ f rather than R := D. Also, our intuitive
definition does not yet account for mixed-criticality, but
it should not be difficult to extend it, e.g., by allowing a
certain set of outputs to fail permanently if the number
of faults rises above a certain level.

3.1 Strawman solutions
There are two special cases where BTR closely re-
sembles existing fault-tolerance approaches: for R = 0,
BTR is analogous to classical fault tolerance – as in
BFT [17, 47] – where all faults must be masked; without
a hard upper bound on R, BTR closely resembles self-
stabilization [28], where the system is simply required
to return to correct operation eventually. However, even
with R = 0, BTR is not quite the same as BFT because a)
it has a different system model, with finite resources and
a partially connected network, and because b) it gives
strong timing guarantees, even in the presence of com-
promised nodes. Thus, an implementation of BTR al-
ways requires a set of detailed schedules for different
scenarios to ensure that the timing guarantees can be met.

The difficulty of BTR also depends on the magnitude
of R and the amount of resources the system has avail-
able. If R is large, the system can simply drop all of its

current tasks as soon as a fault is detected, and then per-
form diagnosis and rescheduling at its leisure; if there are
plenty of resources, the system can afford enough repli-
cas for fault tolerance, which of course simplifies recov-
ery (though not necessarily planning). However, recall
that CPS are often resource-constrained and tend to have
strong timeliness requirements, so we expect the “easy”
cases to be less common in practice.

4 Solution sketch
Our approach to BTR is centered around the concept of
a plan, which is basically a distributed schedule: it maps
the tasks from the workload (and some additional tasks,
such as replicas) to specific nodes, and it prescribes a
schedule for each of the nodes. At runtime, the system
is either operating in one of several modes, which corre-
spond to a particular plan, or it is executing a mode tran-
sition, in which the system starts, reconfigures, or shuts
down tasks on some of the nodes in order to switch to
a new plan. (Mode transitions are triggered by detected
faults and are intended to isolate the faulty nodes from
the rest of the system.) Together, the plans, and the con-
ditions for switching between them, form the system’s
strategy for responding to faults.

We use four components to achieve BTR: an offline
planner, which computes a feasible strategy, based on
the requested workload, the fault assumptions (such as
an upper bound on the number of faulty nodes), and the
desired recovery bound R; an online fault detector that
looks for manifested faults and generates some kind of
evidence; an evidence distributor that quickly and reli-
ably gets the evidence to the nodes that need to know
about it; and a mode switcher that executes the appro-
priate mode transition based on valid evidence of faults.
Next, we discuss each of the components in more detail.

4.1 The Planner
Before the system can run a given workload, it must first
find a strategy that can ensure BTR. Some representation
of the strategy is then installed in each node, so that cor-
rect nodes will have a consistent view of it at runtime.
Choosing the strategy offline seems safer than dynamic
rescheduling at runtime because a) a centralized sched-
uler would be an obvious target for the adversary, and be-
cause b) to guarantee BTR, we would need a time bound
on rescheduling, which seems difficult to obtain.

The planner first augments the dataflow graph with
additional tasks. It adds 1) replicas; 2) checking tasks,
which compare the outputs of the replicas to detect
faults and generate evidence; and 3) verification tasks,
which distribute and verify incoming evidence from
other nodes. These tasks all consume resources at run-
time and must therefore be scheduled together with the
workload tasks – there are no “extra resources” for BTR.

3



Next, the planner computes a plan for each mode.
Each task is mapped to a node; this involves some “hard”
constraints – for instance, no two replicas of the same
task can run on the same node – but also some heuris-
tics: for instance, putting replicas close to each other
may save bandwidth, and putting checking tasks close
to replicas can make it easier to detect omission faults.
The planner then tries to derive a schedule for each node
and a resource allocation for each link. If the system is
not schedulable (e.g., because the current mode contains
many faulty nodes, and thus few resources), the planner
removes some of the less critical tasks and retries.
Challenges: So far, there has not been much work on
real-time mixed-criticality scheduling for distributed sys-
tems; most of the work we are aware of is for single
or multicore CPUs [12]. Moreover, BTR’s scheduling
problem involves dependencies, which are challenging
to support – especially in mixed-criticality systems. De-
pendencies can arise between tasks (e.g., checking tasks
must run after the corresponding replicas) but also be-
tween plans. For instance, if plan B would be activated
if a fault is detected on node X while the system is run-
ning some other plan A, then B must obviously reassign
the tasks that were running on X, but it should otherwise
change as little as possible. Any extra reassignments
will consume resources (e.g., bandwidth for transferring
state) and can thus prolong recovery.

Finally, planning has an interesting strategic compo-
nent. Suppose, for instance, that the planner has already
chosen a plan Π{X} for the case where node X has failed,
and is now looking for a plan Π{X ,Y} that can handle an
extra fault on node Y. If the planner was not careful when
choosing Π{X}, it may be impossible to find a Π{X ,Y} that
can be activated quickly enough – for instance, a task
with a lot of state may have been moved to a node whose
only high-bandwidth connection to the rest of the system
is via Y. Thus, computing a strategy is a bit like build-
ing a game tree for a game like chess. Techniques like
empirical game-theoretic analysis [68, 69] may be useful
for finding good strategies efficiently.

4.2 The Fault Detector
Fault detection and diagnosis in distributed systems are
interesting problems in their own right [49], particularly
when non-crash faults are considered [36, 41]. How-
ever, BTR adds an interesting twist: since there are no
trusted nodes, the compromised nodes can try to con-
fuse the detector, e.g., by reporting nonexistent faults or
by making false statements about the actions of other
nodes. Therefore, it is necessary to generate evidence of
detected faults that other nodes can verify independently.
Challenges: Systems like PeerReview [37] can already
generate evidence for asynchronous systems, but syn-
chronous systems – and BTR particularly – present at

least three additional challenges. First, BTR addition-
ally requires the detection of timing-related faults (such
as doing the right thing at the wrong time). Second, BTR
requires a time bound on detection; this is difficult be-
cause an adversary can break the BTR guarantee simply
by delaying the detector, e.g., by running a DoS attack
against some of the nodes. The strong assumptions in our
system model should be enough to build a countermea-
sure, but even so, designing and proving the correctness
of a concrete protocol that does this seems challenging.

The third challenge is handling omission faults. In
contrast to commission faults, there is no direct way to
prove that a faulty node failed to send – or correctly sign
– a required unicast message. Thus, a faulty node may
be able to drain substantial resources from the system
by constantly failing to send messages and then claiming
that the problem is with the recipient. One way to avoid
this would be to allow both the sender and the recipient
to declare (without further evidence) a problem with the
path between them; the system could then a) switch to a
mode that does not use this particular path, and b) keep
track of which paths have been declared problematic. If
a node is on a large number of problematic paths, it may
be possible to attribute the problem to that node.

4.3 Evidence Distribution
Once a node has detected a fault, the resulting evidence
must quickly be distributed to any other nodes that need
to be aware of it. (If the system’s strategy is composi-
tional, not all nodes will need to know about all faults,
at least not immediately.) The distribution process must
a) compete for resources with the foreground tasks, b) be
completed within bounded time, and c) prevent the ad-
versary from causing delays via DoS, e.g., by flooding
the system with bogus evidence.
Challenges: As a first approximation, we can achieve
the above properties by reserving some amount of com-
putation and bandwidth for evidence distribution, and by
having each node validate incoming evidence before dis-
tributing it further. If nodes are required to endorse ev-
idence they distribute, invalid evidence can be counted
as evidence against the signer. However, a compro-
mised node can still fabricate evidence that is improperly
signed, or that can only be recognized as invalid after a
lot of expensive computation – thus, there must be a way
to quickly recognize and reject such cases.

4.4 Mode Change
When a node receives evidence of a new fault, it con-
sults the strategy, picks the plan for the new fault pat-
tern, and initiates a mode change to transition to this new
plan. This can involve starting new tasks or terminating
existing ones, sending or receiving the state of migrating
tasks, and adjusting the local schedule.

4



At first glance, it may seem that some form of global
agreement (e.g., via BFT) is needed to reconfigure the
system. Agreement would certainly suffice, but it does
not seem necessary: since the new plan is a function of
the set of faulty nodes, it is sufficient for the nodes to
agree on the latter – but (if we ignore physical repair by
the administrator) this set is append-only, and, if a node
receives valid evidence of a fault on some other node X, it
can safely add X to its local set. Thus, as long as all new
evidence reaches each correct node, the system should
converge to a single, consistent plan.
Challenges: The key challenge here is not convergence
itself but rather coordination and timing: if different
nodes switch modes at different times, some confusion
can briefly result, e.g., when a new task on some node X
waits for an input from another node Y that has not yet
completed (or even started) its mode transition. Since
BTR allows the system to produce incorrect outputs for
a limited time, some brief confusion may even be ac-
ceptable, as long as evidence distribution and mode tran-
sitions are fast enough, but for quick recovery, a more
sophisticated solution is needed.

5 Related work
So far, the literature on real-time systems and on non-
crash fault tolerance has had few intersections – the for-
mer has mostly focused on crash faults, and the latter
mostly on asynchronous systems. This disconnect has
been pointed out before us, e.g., by Aguilera and Wal-
fish [4], and BTR is an attempt to bridge this gap.
Recovery: The idea of recovering systems from disrup-
tions is not new; indeed, the term “bounded-time re-
covery” has been used in the database literature [60]
to describe a real-time database that can recover from
a failure within bounded time. However, most of the
recovery work we are aware of is application-specific,
such as [18, 19, 35], or focuses exclusively on crash
faults, such as [13, 60]. Some systems also support
simple forms of recovery, such as rebooting faulty ma-
chines [17] or application components [14].
BFT: There is a rich literature on protocols for tolerat-
ing Byzantine faults [2, 17, 26, 34, 45], and some of
these protocols have been applied to time-critical dis-
tributed systems (e.g., in [39, 42, 52]). Many classi-
cal BFT protocols are unsuitable for time-critical sys-
tems [62], but more recent protocols have improved in
this respect [6, 23, 51], although they still do not provide
“hard” timing guarantees. In contrast, BTR focuses ex-
plicitly on timeliness, which requires different assump-
tions and a more detailed system model; it also offers
different properties, e.g., less masking at lower cost.

ZZ [71] reduces the normal-case overhead of BFT by
running only f + 1 replicas by default, and by changing
to agreement only if these replicas disagree. BTR shares

this reactive, detection-based approach, but ZZ does not
offer timeliness or fine-grained recovery strategies.
Self-stabilization: One way to make a distributed sys-
tem fault-tolerant is to ensure that it converges to a cor-
rect state even if it is started in an incorrect state. This
approach was first proposed by Dijkstra [28] and has
led to a rich body of work on self-stabilizing systems
(see [30, 59]). Much of the early work assumed that
faults are benign and cannot handle malicious nodes that
might constantly steer the system away from its goal.
Recent work [9, 27, 29, 31, 38, 50] has extended the
approach to the Byzantine setting, but this line of work
tends to use a very different system model that does not
consider scheduling, deadlines, task criticality, or com-
plex network topologies; thus, an application in the con-
text of CPS would be difficult.
CPS security: There is some existing work on fault-
tolerant real-time systems, such as Mars [43] and DeC-
oRAM [8], as well as on fault-tolerant and/or reconfig-
urable control systems [74]. However, most of this work
has considered various types of “benign” faults, such as
hardware defects, software bugs, or electromagnetic in-
terference. There is also an emerging security-oriented
research trend within the control systems and CPS com-
munities (see [33] and the references therein). However,
existing solutions either assume a centralized setting
(e.g., [70]) or focus more on attacks on the sensors and
actuators, and not on the controllers (e.g., [5, 33, 53, 65]).
Accountability: PeerReview [37] can detect node mis-
behavior in distributed systems and produce evidence of
it; however, with one exception, this line of work has
focused exclusively on asynchronous systems. The ex-
ception is TDR [21], which can detect time-related mis-
behavior – specifically, covert timing channels – but can
neither offer recovery nor a time bound on detection.
Multi-mode systems: Many real-time embedded sys-
tems can operate in multiple modes that involve different
sets of tasks, and transitioning between modes requires
elaborate mode-change protocols (MCPs) [55, 57] to pre-
vent deadline misses and other disruptions. Our recovery
approach builds on MCPs, but, to our knowledge, all the
existing work on MCPs assumes benign faults and can-
not work reliably when the system is compromised.

6 Conclusion
We believe that there is room in the “fault-tolerance
toolbox” for an approach that focuses more on timeli-
ness and less on perfect safety, and we have argued that
many cyber-physical systems (and perhaps other sys-
tems) could benefit from such a approach. We have made
a concrete proposal (BTR), and we have sketched a tech-
nique that can achieve it. However, some interesting
challenges remain, and we have started to address some
of them in our ongoing work.

5



References

[1] NSF/Intel partnership on cyber-physical systems secu-
rity and privacy (CPS-security). http://www.nsf.gov/
pubs/2014/nsf14571/nsf14571.htm.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In Proc. SOSP, 2005.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Partial synchrony based on set timeliness. In
Proc. PODC, 2009.

[4] M. K. Aguilera and M. Walfish. No time for asynchrony.
In Proc. HotOS, 2009.

[5] S. Amin, A. A. Cárdenas, and S. S. Sastry. Safe and se-
cure networked control systems under denial-of-service
attacks. In Proc. HSCC, 2009.

[6] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzan-
tine replication under attack. IEEE TDSC, 8(4):564–577,
2011.

[7] Z. Anderson and M. Giovanardi. Self-driving vehicle with
integrated active suspension, Oct. 2 2014. US Patent App.
14/242,691.

[8] J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf, D. C.
Schmidt, C. Lu, and C. Gill. Middleware for resource-
aware deployment and configuration of fault-tolerant real-
time systems. In Proc. RTAS, 2010.

[9] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast self-
stabilizing Byzantine tolerant digital clock synchroniza-
tion. In Proc. PODC, 2008.

[10] M. Buevich, N. Rajagopal, and A. Rowe. Hardware
assisted clock synchronization for real-time sensor net-
works. In Proc. RTSS, 2013.

[11] G. Buja, J. R. Pimentel, and A. Zuccollo. Overcoming
babbling-idiot failures in CAN networks: A simple and
effective bus guardian solution for the FlexCAN architec-
ture. IEEE Trans. on Industrial Informatics, 3(3):225 –
233, Aug. 2007.

[12] A. Burns and R. I. Davis. Mixed criticality systems - a
review. In Tech. Report, July 2014.

[13] G. Candea and A. Fox. Crash-only software. In Proc.
HotOS, May 2003.

[14] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot – a technique for cheap recovery. In
Proc. OSDI, 2004.

[15] A. A. Cárdenas, S. Amin, and S. Sastry. Secure con-
trol: Towards survivable cyber-physical systems. In Proc.
ICDCS Workshops, June 2010.

[16] A. A. Cardenas, T. Roosta, and S. Sastry. Rethinking se-
curity properties, threat models, and the design space in
sensor networks: A case study in SCADA systems. Ad
Hoc Networks, 7(8):1434–1447, 2009.

[17] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Com-
puter Systems, 20(4):398–461, 2002.

[18] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-
dovich. Intrusion recovery for database-backed web ap-
plications. In Proc. SOSP, Oct. 2011.

[19] R. Chandra, T. Kim, and N. Zeldovich. Asynchronous

intrusion recovery for interconnected web services. In
Proc. SOSP, Nov. 2013.

[20] R. N. Charette. This car runs on code. IEEE
Spectrum, 2009. http://spectrum.ieee.org/

transportation/systems/this-car-runs-on-

code.
[21] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X.

Phan, M. Sherr, and W. Zhou. Detecting covert timing
channels with time-deterministic replay. In Proc. OSDI,
Oct. 2014.

[22] J. Chen, R. Tan, G. Xing, and X. Wang. PTEC: A system
for predictive thermal and energy control in data centers.
In Proc. RTSS, pages 218–227, 2014.

[23] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In Proc. NSDI, 2009.

[24] R. P. Collinson. Introduction to avionics systems.
Springer, 2011.

[25] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Googles globally dis-
tributed database. ACM TOCS, 31(3):8, 2013.

[26] J. A. Cowling, D. S. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In Proc. OSDI, 2006.

[27] A. Daliot and D. Dolev. Self-stabilization of Byzantine
protocols. In Proc. SSS, 2005.

[28] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Commun. ACM, 17(11):643–644, Nov.
1974.

[29] D. Dolev and E. N. Hoch. Byzantine self-stabilizing pulse
in a bounded-delay model. In Proc. SSS, 2007.

[30] S. Dolev. Self-Stabiliaztion. MIT Press, 2000.
[31] S. Dolev and J. L. Welch. Self-stabilizing clock synchro-

nization in the presence of Byzantine faults. J. ACM,
51(5):780–799, Sept. 2004.

[32] J. Elson, L. Girod, and D. Estrin. Fine-grained network
time synchronization using reference broadcasts. ACM
SIGOPS OS Review, 36(SI):147–163, 2002.

[33] H. Fawzi, P. Tabuada, and S. Diggavi. Secure estima-
tion and control for cyber-physical systems under adver-
sarial attacks. Automatic Control, IEEE Transactions on,
59(6):1454–1467, June 2014.

[34] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 BFT protocols. In Proc. EuroSys, 2010.

[35] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang,
Y. Luo, T. Bergan, P. Bodik, M. Musuvathi, Z. Zhang,
and L. Zhou. Failure recovery: When the cure is worse
than the disease. In Proc. HotOS, May 2013.

[36] A. Haeberlen and P. Kuznetsov. The Fault Detection
Problem. In Proc. OPODIS, Dec. 2009.

[37] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerRe-
view: Practical accountability for distributed systems. In
Proc. SOSP, Oct. 2007.

[38] E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing
Byzantine digital clock synchronization. In Proc. SSS,
2006.

6



[39] K. Hoyme and K. Driscoll. SAFEbus. In Proceedings of
the Digital Avionics Systems Conference (DASC), 1992.

[40] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
S. V. Mohammadi, W. Schroder-Preikschat, and K. Sten-
gel. CheapBFT: Resource-efficient byzantine fault toler-
ance. In Proc. EuroSys, 2012.

[41] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith.
Byzantine fault detectors for solving consensus. The
Computer Journal, 46(1):16–35, 2003.

[42] H. Kopetz and G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[43] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schw-
abl, C. Senft, and R. Zainlinger. Distributed fault-tolerant
real-time systems: The Mars approach. IEEE Micro,
9(1):25–40, 1989.

[44] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, and S. Savage. Experimental security anal-
ysis of a modern automobile. In Proc. IEEE S & P, May
2010.

[45] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L.
Wong. Zyzzyva: Speculative Byzantine fault tolerance.
ACM TOCS, 27(4), 2009.

[46] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July
1978.

[47] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, July 1982.

[48] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon.
Security & Privacy, IEEE, 9(3):49–51, 2011. ID: 1.

[49] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems with
the falcon spy network. In Proc. SOSP, 2011.

[50] M. R. Malekpour. A Byzantine-fault tolerant self-
stabilizing protocol for distributed clock synchronization
systems. In Proc. SSS, 2006.

[51] Z. Milosevic, M. Biely, and A. Schiper. Bounded delay
in Byzantine-tolerant state machine replication. In Proc.
SRDS, Sept. 2013.

[52] P. Miner. Analysis of the SPIDER fault-tolerance proto-
cols. In Proceedings of the NASA Langley Formal Meth-
ods Workshop (LFM), 2000.

[53] Y. Mo and B. Sinopoli. Secure control against replay at-
tacks. In Proceedings of the Allerton Conference on Com-
munication, Control, and Computing, 2009.

[54] NIST. Guide to supervisory control and data ac-
quisition (SCADA) and industrial control systems
security, 2006. https://www.dhs.gov/sites/

default/files/publications/csd-nist-

guidetosupervisoryanddataccquisition-

scadaandindustrialcontrolsystemssecurity-

2007.pdf.
[55] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic frame-

work for mode change protocols. In Proc. RTAS, 2011.
[56] P. Ramanathan and M. Hamdaoui. A dynamic priority

assignment technique for streams with (m, k)-firm dead-

lines. IEEE Transactions on Computers, 44(12):1443–
1451, 1995.

[57] J. Real and A. Crespo. Mode change protocols for real-
time systems: A survey and a new proposal. Real-Time
Systems, 26:161–197, 2004.

[58] N. R. Satish, K. Ravindran, and K. Keutzer. Schedul-
ing task dependence graphs with variable task execution
times onto heterogeneous multiprocessors. In Proc. EM-
SOFT, New York, NY, USA, 2008.

[59] M. Schneider. Self-stabilization. ACM Computing Sur-
veys (CSUR), 25(1):45–67, 1993.

[60] L. C. Shu, J. A. Stankovic, and S. H. Son. Achieving
bounded and predictable recovery using real-time log-
ging. In Proc. RTAS, 2002.

[61] E. J. Sinclair. The army aviator’s handbook for maneuver-
ing flight and power management. U.S. Army Aviation
Branch, 2005.

[62] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe.
BFT protocols under fire. In Proc. NSDI, 2008.

[63] J. Slay and M. Miller. Lessons learned from the maroochy
water breach. In IFIP International Federation for Infor-
mation Processing, 2008.

[64] D. Soudbakhsh, L. T. X. Phan, A. Annaswamy, O. Sokol-
sky, and I. Lee. Co-design of control and platform with
dropped signals. In Proc. ICCPS, Apr. 2013.

[65] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson.
Attack models and scenarios for networked control sys-
tems. In Proc. HiCoNS, 2012.

[66] D. Tesar. Robot and robot actuator module therefor,
Oct. 18 1994. US Patent 5,355,743.

[67] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In Proc. RTSS, 2007.

[68] M. P. Wellman. Methods for empirical game-theoretic
analysis. In Proc. Natl. Conference on Artificial Intelli-
gence, volume 21, page 1552, 2006.

[69] M. P. Wellman and A. Prakash. Empirical game-theoretic
analysis of an adaptive cyber-defense scenario (prelimi-
nary report). In Decision and Game Theory for Security,
pages 43–58. Springer, 2014.

[70] T. Wongpiromsarn, U. Topcu, and R. Murray. Receding
horizon temporal logic planning for dynamical systems.
In Proc. IEEE CDC, 2009.

[71] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. ZZ and the art of practical BFT execution.
In Proc. EuroSys, 2011.

[72] M. Yu, L. Wang, T. Chu, and F. Hao. Stabilization of
networked control systems with data packet dropout and
transmission delays: Continuous-time case. European
Journal of Control, 11(1):40–49, 2005.

[73] K. Zetter. A cyberattack has caused confirmed physical
damage for the second time ever. Wired.com, January
8, 2015; http://www.wired.com/2015/01/german-

steel-mill-hack-destruction/.
[74] Y. Zhang and J. Jiang. Bibliographical review on recon-

figurable fault-tolerant control systems. Annual reviews
in control, (32):229–252, 2008.

7


