Amber: Decoupling User Data from Web Applications

Tej Chajed, Jon Gjengset, Jelle van den Hooff, M. Frans Kaashoek (MIT),
James Mickens* (MSR), Robert Morris, and Nickolai Zeldovich (MIT)

ABSTRACT

User-generated content is becoming increasingly com-
mon on the Web, but current web applications isolate
their users’ data, enabling only restricted sharing and
cross-service integration. We believe users should be able
to share their data seamlessly between their applications
and with other users. To that end, we propose Amber, an
architecture that decouples users’ data from applications,
while providing applications with powerful global queries
to find user data. We demonstrate how multi-user appli-
cations, such as e-mail, can use these global queries to
efficiently collect and monitor relevant data created by
other users. Amber puts users in control of which applica-
tions they use with their data and with whom it is shared,
and enables a new class of applications by removing the
artificial partitioning of users’ data by application.

1 VISION

The rise of user-generated content is a striking trend on the
web. Users store and manipulate e-mail, calendars, spread-
sheets, and photos in the cloud. They publish videos,
blogs, product reviews, and social updates; they collab-
orate on documents and communicate via comments in
forums. These scenarios contrast with more traditional sit-
uations in which users consume content that is generated
by the web sites they visit.

In principle, cloud storage should be a perfect match
for user-generated data, allowing users to flexibly share
their data with an open-ended set of applications and
users. Once a user stores photographs in the cloud, she
ought to be able to use a photo editor from one vendor,
an organizer from another vendor, and a presentation
manager from a third. She ought to be able to share
those photos selectively with any set of users, the general
public, or nobody at all. Similarly, the user should be able
to control how her photos are (or are not) embedded in
blog posts, social feeds, and documents.

In practice, current web sites create storage silos in
which a particular data object is tightly bound to a par-
ticular site. Thus, a user must scatter her data across a
large number of disjoint sites, each of which treats storage
and management of the user’s data as its private business.
Some sites do allow users to share their site-local data
with third-party applications or with other users, but these
abilities tend to be limited and site-specific. Thus, tradi-

*Work performed as a Visiting Professor at MIT.

tional web services fail to provide users with the powerful,
fine-grained sharing that the cloud can enable.

We envision a web where users control their own data
— where users choose which applications they use to ma-
nipulate their data, and which users to share that data
with. In this paper, we propose Amber, a new architecture
for web services that provides users with such control.
Our proposal is guided by the principle that user data
should be cleanly separated from the web applications
which process that data. We are motivated by the exam-
ple of PCs and workstations: users store their data in an
application-neutral file system which allows the user to
control which software is applied to the data. We have
applied this approach to web applications; in the rest of
this paper, we describe our preliminary design.

2 APPROACH

Amber completely decouples storage from applications.
Each user rents storage space from an Amber service
provider. Providers participate in Amber’s distributed
protocols to present a single global namespace for all
users’ data objects. Web applications, running locally in
users’ browsers or on separate servers, access users’ data
by talking to the users’ Amber providers. Amber’s access
controls give users control over who can see their data.

Because Amber organizes data by user, not by appli-
cation, an application that wishes to combine data from
many users needs a way to find relevant data across many
providers. To address this, Amber provides a global query
system; a query in Amber can in principle cover all data of
all users of all providers, access controls permitting. The
query language is a much-simplified form of SQL, and
considers each user data object as a database row, similar
to the approach taken by Dremel [16]. Amber’s queries
help web applications build shared views aggregated from
many users’ data, manage concurrent updates to shared
data structures, and provide streams of relevant updates.

Amber can be deployed incrementally to make adop-
tion practical. Initially, small-scale applications will bene-
fit from using Amber to build applications without writing
server code. As the amount of user data stored in Amber
grows, more applications will be written to exploit that
data, and there is a potential for network effects to drive
adoption.

3 MOTIVATION

We expect Amber to enable classes of web applications
that are difficult to build today. For example, a univer-

sal messaging application could consult a user’s e-mail,
chat conversations, and Twitter interactions to assemble a
full set of contacts, and display conversations with each
contact across all these messaging systems. A calendar
application could provide a unified view of events pulled
from co-workers’ calendars, even though each user might
use different calendar software. A third application could
warn the user of potential calendar conflicts with events
mentioned in e-mail. Today, these kinds of applications
require explicit data exports or APIs if users want to use
software from different vendors. In an Amber ecosystem,
users can give such applications open access to the data
that they need.

Hosted application ecosystems such as Google Apps
and Microsoft Windows Live support sharing among their
own applications and users. External applications can
access users’ data through custom APIs or explicit data
exports. Amber’s advantage over these proprietary ecosys-
tems is that Amber has no barriers between different
vendors’ applications, or between customers of different
providers. A user storing photos in Amber will be able
to use applications from multiple vendors to manipulate
the photos and will be able to share the photos with other
users, all without moving data between web sites. Amber
provides the most value if applications adhere to informal
or formal standards (e.g. JPEG, iCalendar, H.264); such
adherence is common, particularly among new vendors
wishing to join an existing ecosystem.

Amber permits a variety of business models, an impor-
tant practical consideration for adoption from developers
and providers. Providers can directly charge users for
their services, similar to utility companies or ISPs. Ad-
vertisers and ad brokers can subsidize users’ payments
in exchange for access to some of their data. The suc-
cess of ad-supported services such as GMail, Facebook,
and Twitter suggest that many users do not mind granting
access to some of their data in lieu of payment. Some
applications will also form financial relationships with
users in the form of a subscription business model, as
many current web services do.

4 CHALLENGES

Realizing Amber’s vision will require overcoming many
challenges:

e Queries must be inexpensive in the common case
even though they notionally consult all Amber
providers. This is perhaps the hardest technical chal-
lenge Amber faces.

e The authentication and access control system must
be expressive (e.g., support useful groups) but not too
costly. This is particularly important since Amber
queries must only return data to which the querying
user has access. A single query may thus involve a
very large number of access control decisions.

e Each user can be expected to trust their own provider,
and each provider can be trusted to speak for its own
users, but no other trust is likely to be warranted.
This constrains how data can be allowed to move
between providers, and how query execution and
access checks can be divided among providers.

e Amber’s mechanisms must be hardened against abu-
sively large volumes of data, queries, or query re-
sults, either accidental or intentional.

e Amber must cope when some providers are tem-
porarily offline.

e Amber’s architecture must be compatible with sen-
sible economic arrangements among users, Amber
providers, and application developers.

5 DESIGN
5.1 Providers

Each Amber provider operates a cluster of servers offer-
ing access to Amber storage. Each user is a customer of
a provider which stores that user’s data, executes queries
for the user’s applications, and handles user authentica-
tion. The user might rent service from the provider, or
an organization might operate an Amber provider for its
employees. Since providers have a financial relationship
with their users, the quantity of resources available in the
system in principle scales with the number of users.

An Amber application can run in a user’s browser (e.g.
as JavaScript) or on the application vendor’s servers. In
either case, the application acquires credentials proving
that it speaks for the user, and then communicates with
Amber providers to fetch objects, create objects, and exe-
cute queries. The Amber APIs make provider boundaries
mostly transparent to users and applications. For example,
access control permitting, an Amber provider is expected
to provide access to its users’ stored objects to users of
other Amber providers.

5.2 Objects

Storage takes the form of immutable objects, each con-
sisting of a set of key/value pairs. For example, an object
might correspond to an e-mail message, with key/value
pairs indicating content, source, destination, time, etc.
Applications can view objects as relational records, and
retrieve them with a limited form of SQL-like queries.
Objects are named with handles that contain a crypto-
graphic hash of the object’s key/value pairs along with a
hint indicating which provider holds the object. Objects
are immutable to simplify caching and to avoid the com-
plexity of concurrent object writes; updates must take the
form of newly created objects. Each object has a muta-
ble access control list (ACL) indicating which users and
groups can read it. This list may only be modified by the
object’s owner.

5.3 Global Queries

Amber’s simple object model places a large burden on
applications; an application must collect relevant objects
from Amber’s many providers, as well as synthesize data
mutability and grouping. Amber provides a query system
to help with this, and introduces standing queries to help
it optimize query execution.

A query can filter objects with simple expressions
over keys and values, and can sort, group, and aggregate.
Standing queries are long-lived queries that an application
installs ahead of time to indicate data it is interest in.

Amber continuously maintains that query’s output
(much like a materialized view), causing it to reflect newly
created objects. When a provider receives a standing
query, it creates inter-provider subscriptions with each
other provider. The subscriptions are themselves persis-
tent queries, describing objects that would be relevant to
the associated standing query. Whenever a provider cre-
ates a new object, it pushes information about the object
to peer providers who have registered subscriptions that
match this new object.

The application can then issue ad-hoc queries whenever
it needs parts of the standing query’s output. For example,
the following standing query maintains a count of the
number of votes on each article in a Reddit-like system:

SELECT article_id, COUNT() AS votes
WHERE type = ’reddit-vote’
GROUP BY article_id

This standing query covers all vote objects created at
all providers, thus summing votes from users all over the
Internet. The application can later fetch individual vote
counts, or the most popular articles, by issuing queries on
the output of this standing query.

By having access to standing queries ahead of time,
Amber can optimize their execution (e.g. by sharing some
or all of the work with similar queries from other users).
For example, identical queries can be unified, such as
if many users request Reddit vote counts. Queries that
differ in small ways, e.g. just in the user name, can be
combined into a single, more general, inter-provider sub-
scription. The provider receiving a subscription may note
that many providers have placed similar subscriptions,
and unify them to reduce the matching work needed on
object creation. We believe these standing queries, and
the opportunities they provide for work-sharing between
users and applications, are the key to achieving efficiency
for Amber’s global query system.

5.4 Access Control and Groups

The biggest challenges facing Amber’s access control
system are the ways in which access control interacts
with global queries. The most immediate problem is that
providers cannot generally trust each other to enforce

access control. If a query from provider p; to p, matches
object o at ps, po must decide whether to send p; a copy
of o, and thus whether to trust that p; will enforce o’s
ACL. In our design, py sends o to p; only if some entry
in 0’s ACL mentions a user of p;; such an entry implies
that o’s owner must trust p;.

When p5 sends object o to p; in response to a query, p
must also send access control information to p;, so that
p1 knows which of its users should see this query result.
Relaying this information allows p; to match o against
multiple standing queries running as different users that
may have been merged before they were sent to ps. How-
ever, the full ACL may itself contain private information
such as readers of controversial political documents. This
means that p» must send only the subset of the ACL that
includes p;’s users to p;.

Queries place special pressure on Amber’s group sys-
tem: group membership resolution must be cheap enough
to run for every object matching a query. In Amber, a
group is an ordinary principal, and can appear on an ACL.
The group’s provider has a list of users who are allowed
to act as the group, and will hand out a group credential
to an application which can prove it speaks for a user on
that list. If an application wishes to gain access to an
object by virtue of a group entry in the ACL, it must issue
its request with the group credentials, rather than as the
user’s principal. This restriction requires that applications
know why they can access an object (since the relevant
group credentials must be used), but allows object access
checks to be simple, since they require no searches in a
graph of groups.

6 WRITING AMBER APPLICATIONS

This section provides example implementations of two
well-known applications, e-mail and Twitter, to give a
better understanding of how applications would be written
in the Amber ecosystem.

6.1 E-mail

In an Amber-based e-mail system, each e-mail would
consist of a single object containing the e-mail’s metadata
and contents. To fetch e-mail, a client’s e-mail reader
would issue a standing query like this to its provider:

EQl: SELECT from, subject, body
WHERE to = ’sal@amber.mit.edu’
AND type = ’email’

sal@amber.mit.edu is the issuing user’s e-mail ad-
dress; amber.mit.edu is that user’s provider. This stand-
ing query causes the provider to subscribe to e-mail ob-
jects for sal from users on all other providers. Whenever
the e-mail reader wants to check for new e-mail, it asks its
provider for new rows from the standing query’s output.

The sender’s e-mail application sends e-mail by creat-
ing a new object at its provider with the e-mail contents
and metadata. The sending application would also give
the recipient access to the e-mail. The recipient’s standing
query then handles delivering this object to their provider.

The standing query EQ1 has global scope, and may
match e-mail objects created at any of thousands of
providers. While it might seem as though the standing
queries produced by millions of users’ e-mail readers
would impose a heavy global load on Amber, the number
of queries can in fact be kept quite small with a single op-
timization: each provider need only register interest once
with each other provider for all objects addressed to any
of its users. Sam’s provider could send a single subscrip-
tion for to = *@amber.mit.edu to all other providers,
and match against each individual EQ1 only when the sub-
scription matches some e-mail. If there are e-mail users at
every provider and there are p providers, the total number
of merged subscriptions is p(p — 1) = O(p?). This scales
much better in practice than a number of subscriptions
proportional to the number of users. Having providers
automatically perform this kind of optimization is one of
the requirements for allowing Amber to scale to millions
of users.

This example demonstrates the power of global queries,
and suggests some benefits of separating e-mail data from
applications. Any of a user’s applications can read a user’s
e-mail objects if the user allows them to, so a user may opt
to use different applications for search, spam detection,
mailing list maintenance, etc. Similarly, new applications
can combine e-mail with other user data to, for example,
extract calendar and travel information. Shared manage-
ment of e-mail folders among collaborating users (e.g. to
jointly manage incoming support requests) is also natural,
and ACLs can be used to control the sharing.

6.2 Twitter

We have implemented a Twitter-like application on top of
Amber. Users send tweets by creating a single tweet
object per tweet, and making it publicly accessible.
If Sam (sam@providerl.com) wants to follow Alice
(alice@provider2.com), he creates a standing query
to match all of her tweets, using the special .owner field
to refer to the owner of the tweet:

TQl: SELECT content
WHERE .owner = ’alice@provider2.com’
AND type = ’tweet’

The application indicates that the query operates on
public data by running it as a special “public” user. This
allows Sam’s provider to unify the identical standing
queries of all its users who subscribe to Alice; for popu-
lar users, this results in significantly fewer subscriptions.
The query has global scope, but Sam’s provider knows
from the .owner filter that it only needs to register the

inter-provider subscription with Alice’s provider. Alice’s
provider will now send just one copy of each of her tweets
to any provider with a user following Alice.

This scheme requires Amber providers to maintain a
set of inter-provider subscriptions. Each user at a provider
requires subscriptions from the providers of all of that
users’ followers. For popular users, this is likely to be
every other provider, while for unpopular users, it can be
as many as a subscription per follower if they are all at
different providers. Every new object must be matched
against the list of inter-provider subscriptions: efficiently
matching objects against these subscriptions is important
to support applications that generate a large number of
subscriptions.

The takeaway from these examples is that Amber’s
global queries shoulder much of the burden of the global
communication in large-scale applications. Queries, if
cleverly written, can be executed efficiently despite global
scope using a powerful merging optimization we plan to
explore further. This Twitter example is representative
of a large class of many-to-many communication appli-
cations, such as mailing lists and chat groups, which can
use a similar design to attain efficiency on Amber.

7 DISCUSSION

This section outlines lessons learned from designing and
partially implementing an Amber prototype.

7.1 Applicability

Amber seems most useful when data is naturally associ-
ated with individual users, and when most computation
(e.g. formatting) can be carried out in browsers. In these
situations, Amber can act as a shared universal back-
end service, with all application-specific logic in user
browsers. Amber is less natural when a service owns the
data (e.g. an online store), when there is data that no
single user can be allowed to own (e.g. auctions), or when
data-intensive computation is required.

7.2 Queries

Amber’s global queries are a powerful tool for applica-
tions, but are also potentially a source of great cost. We
expect two technical challenges in making global queries
practical using standing queries: unifying subscriptions to
reduce the number of issued subscriptions, and efficiently
matching objects against subscriptions. The problem of
merging queries for content-based subscription systems
has been studied previously [5, 10, 21] and we plan to
explore how some of the advanced techniques from this
work might apply to Amber. Content-based subscrip-
tion systems have also explored approaches to efficiently
matching a set of subscriptions [2, 13].

Some instances of query merging are easy (e.g. if mul-
tiple users issue identical queries), but in most cases, even

a single application will issue slightly different queries
for each user, such as in the e-mail query example above.
Amber must spot situations where many slightly different
queries can be unified, perhaps by issuing inter-provider
queries that use wildcards. More general, unified queries
may again lead to extraneous objects being sent between
providers, and providers will need to carefully balance
the costs of query matching and object transmission.

For certain standing queries, remote providers could
conceivably perform some of the work, such as report
vote counts rather than individual vote objects. However,
providers may not wish to perform significant computa-
tions for one another, or may not trust other providers
to faithfully execute queries. Queries that wish to in-
crementally maintain the output of standing queries also
face tough technical challenges that have been studied
extensively in the context of database systems.

A standing query’s output reflects both existing objects
and (as time passes) newly created objects. Significant
work might be required to collect all relevant existing
objects when a standing query is first installed. This his-
torical data is often not needed; for example, vote counts
on ancient articles are irrelevant for generating today’s
front page on a Reddit-like site. The query language must
allow (or even require) applications to limit how much
historical data must be collected for new standing queries.

Amber must send queries and objects between
providers, and there are tensions here between efficiency
and privacy. Much of the reason why Amber’s access con-
trol mechanisms and group features are complicated is
to avoid leaking sensitive information. Applications will
also need to be carefully written so that they do not leak
such information. Standing query conditions and objects
with poorly thought-through ACLs can easily reveal more
information than the user wishes.

7.3 Abuse

We suspect Amber would be subject to at least two kinds
of abuse: application-level abuse such as e-mail spam, and
provider-level denial-of-service overloads such as excess
query generation. Existing techniques can be used for
e.g. e-mail spam detection. Preventing provider overload
requires defenses within Amber itself; rate-limiting may
provide some protection.

7.4 Provider Relationships

Amber fundamentally relies on providers to cooperate by
satisfying object fetches and queries generated by each
other’s users. We believe this burden is reasonable: when
a provider serves objects owned by its users, it can charge
them, much as hosting services charge customers for out-
going traffic [3, 11, 17]. However, some work a provider
performs for other providers may not be so obviously
attributable to any of its users, for example queries that

don’t (yet) match any objects. It is an open question how
the economics of these cases will work.

8 RELATED DESIGNS

Amber resembles systems such as W5 [15] and BStore [8],
but provides cross-provider queries that allow applications
to compute across all users’ data on a global scale. User
data collation systems such as openPDS [18] are similar
in spirit to Amber, but focus on the problem of single-user
data collection rather than multi-user data sharing.

Amber’s standing queries are similar to continuous
queries [4] over the stream of all created objects. The
underlying inter-provider subscriptions function similarly
to content-based subscription systems such as Siena [7]
and Thialfi [1], but benefit from the richer set of features
provided by Amber’s global queries.

Systems aiding in constructing and maintaining dis-
tributed web applications have previously been proposed
in designs such as Sapphire [22] and Orleans [6]. These
systems ease the development of traditional web applica-
tions, but do not address the tight coupling of user data to
applications that Amber aims to remove.

There is much existing work on distributed databases,
distributed query processing, and federation [20, 9, 14,
19]. Since Amber is based on queries, the system can
draw on this existing work, particularly for the initial
installation of standing queries.

Many web applications share user data by accessing
general-purpose storage backends like Dropbox with stan-
dardized authentication mechanisms such as OAuth [12].
This approach requires service-dependent integration.
The fact that applications tolerate the significant com-
plexity this introduces is a sign of the need for the kind of
functionality Amber provides.

9 ACKNOWLEDGEMENTS

We thank Matei Zaharia and the HotOS reviewers for their
feedback on this paper. We also gratefully acknowledge
the support of Quanta Computer under the T-Party project,
and of the VMWare Academic Program.

10 CONCLUSIONS

We have described Amber, an architecture that provides
user-centric global storage that is separate from any in-
dividual application. This arrangement allows users to
flexibly share their data with an open-ended set of ap-
plications and users. To allow applications to fetch and
aggregate content from users scattered across the Inter-
net, Amber exposes flexible queries with global scope.
These powerful queries are both expressive and efficient,
and we have demonstrated how they can implement ex-
isting services, as well as enable entirely new classes of
applications.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Atul Adya et al. “Thialfi: A Client Notification
Service for Internet-Scale Applications”. In: Proc.
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP). 2011, pp. 129-142.

Marcos K. Aguilera et al. “Matching Events in a
Content-based Subscription System”. In: Proceed-
ings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing. PODC ’99.
Atlanta, Georgia, USA: ACM, 1999, pp. 53-61.
URL: http://doi.acm.org/10.1145/301308.
301326.

Amazon. Amazon EC2 Pricing. URL: https://
aws . amazon . com/ ec2 /pricing (visited on
01/09/2015).

Shivnath Babu and Jennifer Widom. “Continuous
Queries over Data Streams”. In: SIGMOD Rec.
30.3 (Sept. 2001), pp. 109-120.

Sven Bittner and Annika Hinze. “The Arbitrary
Boolean Publish/Subscribe Model: Making the
Case”. In: Proc. 2007 Inaugural International
Conference on Distributed Event-based Systems.
DEBS ’07. Toronto, Ontario, Canada: ACM, 2007,
pp. 226-237.

Sergey Bykov et al. “Orleans: Cloud Computing
for Everyone”. In: Proc. 2nd ACM Symposium on
Cloud Computing. SOCC ’11. Cascais, Portugal:
ACM, 2011, 16:1-16:14.

Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. “Achieving Scalability and Ex-
pressiveness in an Internet-scale Event Notifica-
tion Service”. In: Proc. 19th ACM Symposium on
Principles of Distributed Computing. PODC ’00.
Portland, Oregon, USA: ACM, 2000, pp. 219-227.

Ramesh Chandra, Priya Gupta, and Nickolai Zel-
dovich. “Separating Web Applications from User
Data Storage with BStore”. In: Proc. 2010 USENIX
Conference on Web Application Development (We-
bApps ’10). USENIX. Boston, Massachusetts,
2010.

James C. Corbett et al. “Spanner: Google’s
Globally-distributed Database”. In: Proc. 10th
USENIX Conference on Operating Systems Design
and Implementation. OSDI’12. Hollywood, CA,
USA: USENIX Association, 2012, pp. 251-264.

Arturo Crespo, Orkut Buyukkokten, and Hector
Garcia-Molina. “Query Merging: Improving Query
Subscription Processing in a Multicast Environ-
ment”. In: IEEE Trans. on Knowl. and Data Eng.
15.1 (Jan. 2003), pp. 174-191.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Google. Google Compute Engine Pricing. URL:
https : / / cloud . google . com / compute /
pricing (visited on 01/09/2015).

Dick Hardt. The OAuth 2.0 Authorization Frame-
work. RFC 6749. Fremont, CA, USA: RFC Editor,
Oct. 2012. URL: http: //www . rfc- editor.
org/rfc/rfc6749.txt.

Satyen Kale et al. “Analysis and Algorithms for
Content-Based Event Matching”. In: Proceed-
ings of the Fourth International Workshop on
Distributed Event-Based Systems (DEBS) (ICD-
CSW’05) - Volume 04. ICDCSW ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 363—
369. URL: http://dx.doi.org/10.1109/
ICDCSW.2005.40.

Donald Kossmann. “The State of the Art in Dis-
tributed Query Processing”. In: ACM Comput. Surv.
32.4 (Dec. 2000), pp. 422-469.

Maxwell Krohn et al. “A World Wide Web Without
Walls”. In: Proc. 6th Workshop on Hot Topics in
Networks (HotNets-VI). ACM SIGCOMM. Atlanta,
Georgia, Nov. 2007.

Sergey Melnik et al. “Dremel: Interactive Analysis
of Web-Scale Datasets”. In: Proc. 36th Int’l Conf
on Very Large Data Bases. 2010, pp. 330-339.

Microsoft. Data Transfers Pricing Details. URL:
https://azure .microsoft .com/en-us/
pricing/details/data- transfers (visited
on 01/09/2015).

Yves-Alexandre de Montjoye et al. “openPDS: Pro-
tecting the Privacy of Metadata through Safe An-
swers”. In: PLoS ONE 9.7 (July 2014), €98790.

Amit P. Sheth and James A. Larson. “Feder-
ated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases”. In:
ACM Comput. Surv. 22.3 (Sept. 1990), pp. 183—
236.

Jeff Shute et al. “F1: A Distributed SQL Database
That Scales”. In: Proc. VLDB Endow. 6.11 (Aug.
2013), pp. 1068-1079.

Sasu Tarkoma. “Chained Forests for Fast Subsump-
tion Matching”. In: Proc. 2007 Inaugural Interna-
tional Conference on Distributed Event-based Sys-
tems. DEBS ’07. Toronto, Ontario, Canada: ACM,
2007, pp. 97-102.

Irene Zhang et al. “Customizable and Extensible
Deployment for Mobile/Cloud Applications”. In:
11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). Broom-
field, CO: USENIX Association, Oct. 2014, pp. 97—
112.

