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Abstract

Realizing elasticity in cloud applications today is often
a cumbersome process, requiring applications to inte-
grate with services like elastic load balancers and/or be
rewritten to accommodate distributed frameworks like
map/reduce or cluster-based operating systems. In this
paper, we introduce the concept of ElasticOS, which
enables a process (or even a single thread) to stretch
its associated resource boundaries across multiple ma-
chines automatically, expanding and contracting on de-
mand without requiring the application to be re-designed
or configured with a complex combination of additional
tools and frameworks. Our initial implementation within
Linux 3.2 and a study of a MySQL execution trace pro-
vide hope that the ElasticOS vision is achievable.

1 Introduction

A key property of cloud-based based systems is elastic-
ity, namely the ability to dynamically provision resources
to applications on demand in order to scale up/down to
accommodate changing requirements for CPU, memory,
storage, and network bandwidth. Achieving elasticity
in the cloud today remains non-trivial as it relies on a
management soup of various frameworks, independently
configured services, and frequently requires applications
to be (re)written.

In particular, there are four general steps that a cloud
based application must go through to achieve elastic-
ity. First, the application must be partitioned into in-
dependent units as the current granularity of adaptation
is either on the order of an entire virtual machine or a
process that does not overload a single machine. Sec-
ond, the developer must use a monitoring system and
write extra logic to implement their own heuristic to trig-
ger expansion or contraction of number of VMs. Third,
the developer must implement or configure an existing
system to distribute the workload among the partitioned
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Figure 1: Example of elasticity of memory.

application instances. Fourth, the developer must in-
corporate mechanisms to overcome partitions that have
some shared state. These patterns are exemplified in the
deployment procedures of cloud applications like web
servers (used with load balancers like HAProxy [8]),
compute intensive jobs (whose execution is often man-
aged by frameworks like HTCondor [12]), or databases
modified and specially configured for high scale opera-
tions (like MySQL’s cluster software [19]). Commercial
cloud offerings have attempted to address this complex-
ity through custom services with custom APIs such as
load balancing [2], auto scaling [1], or a job processing
framework [3]. While useful, these are simply extra ser-
vices to configure by custom scripting.

We can see that the current limitations imposed by the
cloud today could lead to missed opportunities for elas-
ticity. By limiting elasticity to fixed application-specific
units based on what can run on a single machine, we cru-
cially miss the opportunity to elastically scale to take ad-
vantage of the collective distributed resources provided
by many cloud machines. Recent approaches in improv-
ing SMP scalability [26] and elasticity [24] tend to fa-
vor/target specific application types. Instead of requir-
ing a great deal of additional applications, services, or
frameworks, or targeting a specific class of applications,
we should provide to applications a generic OS service
that allows them to automatically elasticize processing,
memory or I/O, without code modification or additional
frameworks/scripting.
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Figure 2: Example of elasticity of processing or I/O .

An ElasticOS with Elastic Page Tables

Following on many of the innovations of modern op-
erating systems, which handle the complex demands
of todays software “under the hood”, we propose that
elasticity be a first order design concern of modern
cloud operating systems, and as such be integrated seam-
lessly into an OS such as Linux to allow large scale
applications like those in data centers to automatically
expand/contract/scale to accommodate changing load,
without being rewritten. For example, in the case of
a large in-memory database, the system would auto-
matically scale to incorporate newly available memory
on other cloud machines (Figure 1). For Web servers,
the system would automatically load balance, moving
the code for handlers to other machines while retain-
ing the code which receives requests and divvies them
out to worker threads (e.g., a load balancer) on the en-
try node (Figure 2). Importantly, in contrast to pro-
posed distributed operating systems like fos [28] and
Barrelfish [4], we believe this can and should be achieved
without requiring a brand new OS and forcing applica-
tion developers to adopt new programming models.

In order to achieve this, we propose to implement
an ability to stretch processes elastically on demand as
memory, CPU, network and storage demands increase.
In particular, we propose to implement memory elastic-
ity via the concept of elastic page tables. Conventional
page tables map a virtual page number within an address
space to a physical page number in memory under the
standard assumption that all of the physical memory is
local. However, if we relax this assumption and permit
different code and data pages from the same process to be
placed or spread out across many machines, then this en-
ables us to realize elasticity by adaptively changing the
placement of pages across machines in response to the
execution flow and data page access patterns.

One basic use case would involve for example a node
that has run out of local memory and begun thrashing.
In this case, a new cloud machine with available mem-
ory could be found, and some of the data pages in the
current process could be moved to the newly available
memory, thus stretching the process across two or more
machines simultaneously. In this way, a process such
as a large in-memory database could expand to operate

over the collective memory of a large number of rack-
mounted machines. Conversely, as demand drops, the
process would contract to occupy less physical mem-
ory over fewer machines. While this may raise concerns
about performance, we are inspired by prior studies that
have shown that accessing memory on another machine
across the network is faster than accessing disk, for ex-
ample for swap space [17]. Even more, Section 2 dis-
cusses how locality in access patterns of code and data
pages for a common application like a MySQL database
allows placement of clustered groups of pages together
on the same physical node to minimize network traffic
from distributed stretched execution.

Revisiting / Extending Distributed Shared Memory

A key mechanism in our proposed approach for Elasti-
cOS is to move thread execution context towards its fre-
quently accessed data pages (Figure 3) to amortize access
cost. This is in contrast with Distributed Shared Mem-
ory (DSM) systems [5, 6, 10, 23, 25, 27], where sup-
port for shared memory, used for IPC by parallel appli-
cations, was achieved by replicating data and maintain-
ing consistency through the use of coherency protocols
(Figure 4). By choosing not to use data page replicas for
the purpose of page access optimization, we will avoid
the network cost of coherency messages !. Our interest
is in investigating a model in which there will be one
“active” copy of data pages — i.e., the copy that threads
read/write to. The read-only nature of code pages, how-
ever, allows them to be replicated on every node without
coherency costs. The “active” data page set spread over
several nodes is therefore like the distributed equivalent
of a working set of data pages of a typical process. In the
earlier DSM research mentioned above, execution con-
text was fixed on a node. More recently, movement of
the execution stream was explored in DSM/Single Sys-
tem Image (SSI) related research [11, 22, 13, 14, 16],
but only under the umbrella of full process migration
used for balancing CPU load across a cluster. These (and
even newer projects [7]) retain the paradigm of data be-
ing moved (and cached) closer to execution streams on-
demand and being kept current by the use of costly co-
herency mechanisms.

We think exploring our design choice to dynamically
move thread execution context to follow data could po-
tentially reveal several advantages for ElasticOS, some of
which are: the system will be able to reactively co-locate
fragments of code and data that are strongly coupled and
in doing so, naturally align available resources with any
inherent thread level parallelism in the application; the

LOf course, data page replicas will exist for fault tolerance purposes,
but outside the execution path with looser consistency requirements
that do not block the application.
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Figure 3: Accesses in ElasticOS
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Figure 4: Accesses in Traditional DSM Systems

system can introduce new optimizations that are possible
because of the ability to move thread execution context
— e.g., using lock wait time to co-locate a waiting thread
to a machine where the lock owner is executing. Such
co-location could have two fold benefits of (a) reducing
data access traffic (a promising scaling property) and (b)
being able to leverage existing, well engineered mecha-
nisms in modern operating systems that handle concur-
rent access of data between threads/processes.

We should point out that our goal extends beyond just
a global virtual address space as we envision elasticity of
resources such as network I/O as well. While in some
sense we are proposing revisiting the problem domain of
DSM?, with advances in technology such as faster net-
works, new applications beyond high-performance com-
puting, and with a new goal of elasticity in cloud com-
puting, we are advocating a concept that extends beyond
DSM. Of course, this elastic approach introduces a host
of interesting new research issues and challenges, which
are described in the following sections.

2 Is Elasticity Achievable ?

To gauge the feasibility of this vision, we conducted ini-
tial experiments based on 2 fundamental questions.

Can locality be detected in common applications at
run-time? : Itis our goal that an in-memory application
that is elastic would eventually form natural groupings of
data pages that are frequently accessed together on each
node. As access patterns of the application temporally

2Much as virtualization technology from the 70s was revisited in
the late 90s and led to a great wave of innovation in cloud computing.

change, these groupings can change. In order to detect
these changes “on the fly” an ElasticOS would have to
employ a page placement algorithm. As an initial al-
gorithm, we designed the Multinode Adaptive LRU al-
gorithm (illustrated in Figure 5) that works as follows:
when an execution stream references a page on a remote
node, we initially choose to move the page to the location
of the execution stream — that is, pull the remote page to
the current node. Eviction of a page in order to accom-
modate a pulled page is done on a least recently used
(LRU) basis i.e., the working set of a process on each
node over time becomes an LRU based grouping from
which pages are accessed together on that node. Upon
repeated data page “pulls”, beyond a temporal threshold
(for our experiment we used a % of pages pulled from a
remote node in the last 10 pages accessed), we move the
execution context to the target node. In doing this we are
likely to exploit locality in the subsequent page accesses.
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Figure 5: Multinode adaptive LRU algorithm

We conducted a 2-node experiment based on this al-
gorithm to study locality within a common, memory-
intensive real world application, MySQL. We instru-
mented a MySQL daemon using Intel’s PIN [9, 15]
framework to retrieve a trace of its accessed pages dur-
ing execution of a customized MySQL-Bench [20] work-
load. Using this trace we ran a simulation of our algo-
rithm and measured how many execution context jumps
and data page pulls took place. The simulation was re-
peated for various threshold values. Lower threshold val-
ues make the algorithm more responsive in moving exe-
cution context, which can hurt performance by moving
away from locality prematurely. Higher thresholds make
the algorithm more sluggish in moving execution con-
text, and can cause an application to be late in exploiting
locality at a remote node.

As seen in Figure 6, our simulation results show that
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Figure 6: Simulation of the multinode adaptive LRU al-
gorithm for a 334 second MySQL execution trace.

as we vary the threshold, we can tradeoff between ex-
ecution context jumps and data page pulls. Finding the
right “sweet spot” (found in this experiment at Threshold
= 20%) between this tradeoff in real time, is one of the
problems we plan to investigate in our future research.

What is the latency cost of execution context
jump/data page pull on today’s hardware? : As oth-
ers have shown, it is extremely fast to pull a data page
from across the network [21]. In order to verify that per-
forming an execution context jump to a remote machine
is likewise fast, we set out to measure this within the
Linux 3.2 kernel by implementing an initial version of
a stretched process. Our test process consisted of a sim-
ple program that loops and increments a counter stored
on a data page and a second counter stored in a register.
We wrote a system call for this test process to invoke the
movement of execution context and a data page to a lo-
cation where we had pre-distributed its code pages. The
actual state transfer mechanism was implemented within
our initial version of the ElasticOS Manager component
(described futher in Section 3), and was done over a per-
sistent TCP connection. This test verified the feasibil-
ity of execution state transfer — e.g., the counters would
count to 10 on one machine, then execution state would
be transferred, and the counters would resume counting
up 11-20 on the other machine, followed by another state
transfer and a count up 21-30 on the original machine,
and so forth. The average measured latency of a state
transfer was approximately 0.4 ms over a gigabit Eth-
ernet link. This 0.4ms represents a pause in the execu-
tion of a single thread (parallel execution within the en-
tire application ensures that this is not simply idle time).
As such, this results in a slowdown of the application as
compared to the case where a single machine has infi-
nite memory (and therefore never swaps to disk). For
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Figure 7: ElasticOS Architecture.

the threshold of 20%, the combined transitions (jumps
+ pulls) of our MySQL trace was approximately 9 per
second. Using 0.4ms for each, implies a delay of 36ms
for every 1 second of actual execution, or a slowdown of
only 3.6% (we do not expect slower execution, but in-
stead improvements over operations such as swapping to
disk).

Based on these results, our algorithm was effective for
this particular workload in being able to maintain a rea-
sonable page grouping that dynamically captures some
application locality. We intend to explore this design
space further in our search for an algorithm that adapts
well to various applications and realistic workloads.

3 Elastic OS Architecture

We identified the following major new components to
support an ElasticOS architecture, as shown in Figure 7.

Elastic Page Table for Tracking Remote Pages

We extend the traditional page table to include an ex-
tra field to note the machine that is holding the page —
nominally shown as an IP address for illustration as any
addressing scheme can be used. Note that the machine
holding the page may be the local machine, which indi-
cates the page is on the local disk (i.e., valid bit set means
in memory, not valid and machine ID is local means
on disk, not valid and machine ID is remote means the
page is on a remote machine). Of course, the processor’s
memory management unit (MMU) will not (currently)
recognize the ElasticOS modified page table entry, so it
is implemented as a separate data structure, but used in-
ternally by the operating system as a single table. Main-
taining the page to machine mapping falls to the Elasti-
cOS Manager discussed below.

Modified Page Fault Handler to Transition Execution
The traditional page fault handler must be modified to
handle the new case where a page fault does not neces-
sarily mean fetch from disk. If the machine ID in the
elastic page table indicates the page is local, then the
page fault handler will proceed as normal and swap from
disk. If the page is remote, there are two possible actions
that can occur: (i) pull the remote page across the net-



work to the local memory (as with network-based mem-
ory swapping [17, 21]), (ii) transition execution to the
other machine. In either case, with ElasticOS we will put
the process in the suspended state and notify the Elasti-
cOS manager (EOM), which will perform the action.

ElasticOS Manager for Intelligent Orchestration

The EOM is a continually running process that monitors
the system and provides intelligence through two basic
functions: (i) make page placement decisions across the
machines, and (ii) oversee execution transition.

The first is to group related memory pages across the
machines in such a way that minimizes the need for tran-
sitioning execution between machines. To achieve this,
the EOM monitors the entire execution of the process
and analyzes the relationships between memory pages.
Upon an event in the system (e.g., thrashing) that indi-
cates the need to expand to another machine, the EOM
may move pages between machines (possibly specula-
tively). The decision to transition execution to another
machine is based on the overall page placement policy —
e.g., based on analysis of whether this will lead to exe-
cution that accesses more remote pages or whether this
is a single page but future execution will mostly be on
the current machine. Our initial multinode adaptive LRU
algorithm was a policy which pulled first, then jumped
after some number of pulls.

EOM’s second function is to perform execution transi-
tion. If the decision was made to move execution to the
node hosting the page, the page fault handler would have
put the process in a suspended state. The EOM must then
copy to the remote machine the necessary register state
and any memory pages needed for execution to continue
in the exact same state. Note that this transition of ex-
ecution is simply stretching the process across multiple
machines which is distinctly different from entire process
migration [13].

Kernel Hooks to Enable User-space Management

Putting complexity in user-space not only increases se-
curity and stability of the system but also provides
greater flexibility when adding functionality. As such,
we choose to place the ElasticOS Manager in user-space.
The ElasticOS kernel must provide hooks to enable this
user-space management. While the full extent of the API
can not be listed here for space reasons, we highlight
its major functionalities. First, the ability to get and set
pages is needed to perform the page movement. This is
needed to enable smart page clustering, fault tolerance,
and execution transition. Second, access to register state
of a process is needed during the transition of execution.
Finally, counters and various other measurements need
to be exposed to enable intelligent page placement deci-
sions.

4 Open Research

There are a host of additional exciting open research
questions that need to be solved in order to fully realize
the promise of ElasticOS.

Page placement distributed decision making: Since
ElasticOS spans multiple machines, then the EOM and
page placement policies are distributed across many
computers. An open question we expect to explore is to
what extent should this elastic decision-making be cen-
tralized in say a master-slave(s) arrangement, or be fully
decentralized.

Elastic I/0: Stretching virtual memory across a network
provides only one dimension of stretching. We also envi-
sion stretching of other computer resources such as CPU
and I/O (namely network I/O). Network I/O presents an
interesting challenge due to addressing issues. In par-
ticular, a packet directed to the process has a destina-
tion IP address that, due to the current technology, will
be directed to a single server. Outgoing packets can
come from any of the stretched machines. Stretching the
I/O without custom virtual appliances is a significant re-
search direction to explore. We intend to examine lever-
aging advances in software-defined networking (such as
with OpenFlow [18]) as an interface to achieve this. En-
couraged by contemporary research [24] in this direction
that targets network middleboxes, we would like to ex-
tend network elasticity more generally to a large range
of applications.

Fault Tolerance:  Stretching a process over multi-
ple machines has the potential to increase the applica-
tion’s susceptibility to failure. To combat this, we in-
tend to investigate snapshot techniques, rollbacks, dis-
tributed check-pointing, and replication.. In addition, we
will strive to place fault-tolerance functions off the criti-
cal path of normal execution to minimize their impact on
performance.

5 Conclusion

This paper introduced the concept of elasticity in an op-
erating system by stretching the execution of a single
process or thread over many machines without requiring
new programming models or cuambersome new scripting
logic. Memory elasticity is achieved via elastic page ta-
bles, and an initial study of a multi-node adaptive LRU
page placement algorithm explored feasibility. The Elas-
ticOS architecture was outlined, and a host of exciting
new research issues in elasticity were highlighted for OS
researchers to solve.
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