
Rethinking Network Stack Design with Memory Snapshots

Michael Chan Heiner Litz David R. Cheriton
Department of Computer Science

Stanford University
{mcfchan , hlitz , cheriton}@stanford.edu

Abstract

Hardware virtualization is a core operating system fea-
ture. Network devices, in particular, must be shared
while providing high I/O performance. By redesigning
the network stack on a novel memory system that sup-
ports snapshot isolation, the operating system can ef-
fectively share network resources through the familiar
socket API, enable zero-copy, reduce memory alloca-
tions and simplify driver communication with network
interface cards. Starting with network I/O, we hope to
further the discussion on hardware-software co-design to
improve operating system architecture.

1 Introduction

Sharing hardware resources is the core functionality of
operating systems. Each hardware device needs to be
virtualized so that it can be simultaneously accessed by
multiple threads of execution. A case in point is the
network interface card, which must be shared by many
threads with minimal impact on I/O performance.

Network stacks achieve resource sharing by continu-
ously allocating and deallocating network buffers, and
copying data between user and kernel space. Zero-copy
techniques are application-specific [14][16] and have
stringent memory access restrictions [17]. Kernel bypass
reduces system-call overheads, but pushes the virtualiza-
tion problem to a user-space library [13], or sacrifices
resource sharing altogether [12]. An extreme case is pro-
viding per-thread hardware, thus virtualizing the network
interface card (NIC) at the hardware level [8]. How-
ever, this does not match the ubiquitous sockets model,
assumes tight coupling between threads using protocols
incompatible with TCP/IP, and is not scalable to today’s
network applications involving thousands of loosely cou-
pled threads.

Modern NICs and network stacks adopt a hybrid ap-
proach — NICs provide a small set of independent hard-

ware resources. Each resource set is shared by a sub-
set of threads, thus scaling out network I/O to multiple
cores [6][11]. However, it has been shown that the NIC
can be the bottleneck with increasing number of cores,
even after extensive optimization of both the kernel and
applications [1].

In this paper, we propose a novel approach to I/O de-
vice virtualization based on modifying the main memory
architecture instead of providing explicit hardware virtu-
alization support in the device hardware. Our approach,
which targets, but is not limited to, network I/O, reduces
network buffer management overhead, reduces the num-
ber of copy operations, simplifies NIC design and scales
to a large number of cores. Our memory architecture pro-
vides isolation through immutability and snapshots. This
allows secure access to shared resources, such as packet
data, without the need for explicit memory pinning or
data copying. This reduces the processing overhead for
memory allocation and data copy, and the memory foot-
print of the network stack significantly. As memory re-
gions are isolated by hardware, both software and hard-
ware (NICs) can write to and read from memory without
memory corruption concerns. Furthermore, this reduces
the amount of overhead due to DMA address updates,
and hence simplifies NIC DMA engines.

The paper is organized as follows. We elaborate on
challenges in network I/O and describe the snapshot
memory architecture in Section 2. We then present a
new network stack design based on memory snapshots
in Section 3, discuss the benefits in Section 4 and open
issues in Section 5. While the paper is mostly focused on
network I/O and network stacks, our hope is to spark dis-
cussions of how advanced memory-level features can be
employed for high performance I/O, whether a redesign
of other OS subsystems is valuable, and spur tighter in-
teractions between designers of hardware and software
are desirable [9].

1



2 Background

2.1 Challenges in Network I/O

Data copies: A network stack maintains multiple per-
connection queues and per-NIC queues so that NIC re-
sources can be shared by many concurrent threads. These
queues are also necessary to absorb speed mismatches
between user threads and the NIC, and are required to
implement various protocol features, such as TCP in-
order delivery. Queuing packets entails data copies to en-
sure memory isolation. Prior work shows that data copies
incur a significant overhead [5].

Various zero-copy techniques have been proposed to
minimize data copies. sendfile() supports transmission of
data in the file cache, and hence is not applicable to data
in user space. Some other solutions involve application-
specific changes [14], and even putting the trusted ap-
plication into the kernel [16]. Pinning user space buffers
requires explicit buffer tracking from the application, im-
poses space limitations and often needs to resort to copy-
ing when the user thread is unable to keep up with re-
ceived traffic [17]. Copy-on-write techniques allow ker-
nel and user threads to share a packet buffer, however
it operates on a coarse-grained page granularity, and are
only efficient when the user thread rarely modifies the
buffer after the send() call.

Therefore, the goal of our architecture is to minimize
data copies without changing applications or sacrificing
programmability.

Buffer allocations: Buffers — both packet data
buffers and metadata buffers such as sk buff — are
continuously allocated and deallocated by the network
stack. Buffer isolation among many concurrent user
and kernel threads requires allocation of new buffers.
For example, upon receiving new packets, the driver
must allocate new buffers to refill the NIC DMA space,
incurring significant overhead [7].

NIC and OS interactions: The operating system
must ensure isolation between NIC DMA engine and
other threads. As a result, the driver must create and
maintain memory address mappings. The NIC obtains
and stores memory mappings by reading DMA descrip-
tors separately from packet data. NICs have limited
descriptors, and if all descriptors are consumed, the NIC
needs to drop packets.

2.2 The HICAMP Memory Architecture

We present an overview of the HICAMP architecture, a
recently proposed memory system which provides snap-
shots, deduplicates memory and supports the familiar lin-

D2 D3D1 D5

S1 S1'S2

Root

Parent

Leaf D4

Figure 1: HICAMP memory lines, segments and seg-
ment mapping.

ear memory addressing scheme [3].
In HICAMP, physical memory is divided into equal-

sized lines. Each memory line is addressed by a Physi-
cal Line ID (PLID) and is immutable — the content is
written as part of line allocation and cannot be modi-
fied. Therefore, write operations lead to allocation of
a new line instead of modifying the original content.
A line may contain data or pointers to (i.e. PLIDs of)
other memory lines. Application objects are accessed
via memory segments, which are represented as a di-
rected acyclic graph (DAG) of memory lines. Figure 1
provides an example of three HICAMP segments. The
leaf lines of the DAG contains object data. Segment S1 is
mapped to the root line of the DAG containing data D1,
D2, D1, D3. The DAG is augmented with parent lines
as data is appended to the segment. HICAMP creates
snapshots of objects by generating a new segment and
mapping it to the same root line, effectively copying the
original segment. Segment S2 is thus a snapshot of the
object. When S1 is overwritten (becoming S1’), the data
accessed through S2 remains unchanged. Moreover, note
that HICAMP automatically deduplicates memory at the
line level. Deduplication occurs both within a DAG and
across DAGs at all line levels by letting multiple parent
lines point to the same data line.

The mapping from segment to root line is stored as
a simple two-column translation table called the segment
map stored in main memory and can be cached in a TLB-
like hardware structure. Creating an object snapshot is
very cheap, because it simply entails duplicating a map-
ping entry in the table, and the memory system automat-
ically performs fine-grained copy-on-write in hardware.
Each line has a reference count, which is incremented
or decremented whenever a PLID reference to the line
is established or removed respectively. When the count
reaches zero, the line is deallocated and made available
for writing again.

HICAMP memory is integrated into the memory hi-
erarchy and virtual address translation, as illustrated in
Figure 2. The process address space consists of two par-
titions — conventional and HICAMP space. Accesses to

2



CPU Core

Conventional
MMU

HICAMP
Memory 

Controller

Physical
Memory

Physical 
Memory

Virtual address

Physical address

HICAMP-
aware
NIC

Seg.
ID

Figure 2: Memory system with HICAMP extensions.

virtual addresses in the HICAMP partition are directed
to the HICAMP memory controller. The controller then
translates virtual addresses into physical addresses by ex-
tracting the segment ID and leaf offset from the virtual
address.

3 Redesigning the Network Stack

Packet transmission and receipt using HICAMP mem-
ory operates as follows. A user application prepares a
packet by creating a segment comprised of immutable
lines. Instead of copying the entire packet into the ker-
nel space it only passes a reference to the segment. The
kernel network stack prepends header information and fi-
nally passes an updated reference to the NIC without ever
copying payload data. Reference passing involves cre-
ation of a snapshot, hence user and kernel space software
is allowed to overwrite packet buffers immediately after
passing them to the next layer as the original content is
never modified due to immutability. Our technique com-
bines asynchronous zero-copy transmission with a clean
and synchronous socket interface, unburdening the pro-
grammer of pinning memory, performing synchroniza-
tion or checking whether buffers can be reused. Similar
techniques are used on the receive side. We now elabo-
rate on packet representation, transmission and receipt.

3.1 HICAMP Network Packets

Packets are represented as HICAMP segments. Figure 3
shows how a transmit packet is created. Initially, the pay-
load being sent is appended at a certain leaf offset in the
segment (Figure 3a). The offset is set to provide enough
space for protocol headers and NIC descriptor metadata.
The header space is initialized with zeroes and gets popu-
lated while traversing the network stack as shown in Fig-
ure 3b. HICAMP snapshots enable concurrent changes

tx_packet
(seg 801)

P60

app_obj
(seg 800)

app data app data

P2P1

(a)

app_obj
(seg 800)

app data app dataUDP hdr

P2P1

P6P5

P40

tx_packet
(seg 801)

(b)

app data app dataIP hdr UDP hdr

P2P1

P6P5

P4P3

tx_packet
(seg 801)

P7P2

app data

P9P6 app_obj
(seg 800)

(c)

Figure 3: Example of creating a packet for transmission.

to segments without compromising isolation. While pro-
tocol processing is taking place, modifications to the pay-
load through the application object segment do not affect
the payload of the packet segment due to immutability of
lines (Figure 3c).

3.2 Network Packet Transmission

The redesigned transmission path is illustrated in Fig-
ure 4. It has two main components: Interactions between
user-space and kernel-space as well as interactions
between the driver and the NIC.

User and kernel interactions: The user process
creates an application-level object as HICAMP segment
9000, which is mapped to the root PLID 1. The object
is transmitted through the send() system call. The
kernel creates a snapshot of the object and appends
it to segment 30. This new segment, called the stack
segment, is passed through the TCP/IP protocol stack.
The various layers append protocol headers to the stack
segment, as depicted in Figure 3.

Driver and NIC interactions: The device driver
further writes some metadata to the stack segment. This
metadata is used to communicate control information
to the NIC. For example, this could include offsets
of the IP and TCP checksums in the packet and the

3



User space

Kernel space

30 P3

1058TX Tail
TX Head 1059

1001-5096TX RangeNIC

30 P2

9000 P1

TCP/IP

Driver

send()

TX post
1068

TX interrupt
(up to

1068 done)

1059 P3

Figure 4: Using memory snapshots for zero-copy packet
transmission.

number of MSS-sized segments for the hardware TCP
segmentation engine.

The NIC accesses memory with DMA as in a conven-
tional architecture. However, it uses segment IDs instead
of physical addresses for DMA operations (Figure 2).
The transmit DMA state is represented by 4 segment IDs.
Two segment IDs define a contiguous range of segments
for DMA reads from the HICAMP memory controller.
The range creates a TX DMA ring similar to the con-
ventional TX descriptor ring. However, unlike contem-
porary DMA, metadata is embedded within the segments
instead of being stored in a separate descriptor ring. The
NIC also maintains two segment IDs, TX Head and TX
Tail. Segments in the range [TX Tail+1, TX Head-1] are
ready for transmission by the NIC, whereas segments in
the range [TX Head, TX Tail] are owned and being pro-
cessed by the operating system.

Once a stack segment is ready for transmission, a
snapshot is created by the driver. The next segment in
the OS-managed part of the TX segment ring (TX Head)
is used for the snapshot mapping. For example, in Fig-
ure 4, segment 1059 is used. The driver may accumulate
multiple segments before starting the DMA process. In
the example, the driver prepares 10 segments before issu-
ing a TX post to the NIC, indicating that the NIC should
read and transmit segments from TX Head up to segment
1068. The NIC requests for these segments from the
HICAMP memory controller and transmits them. After
that, the NIC updates TX Head and TX Tail to 1068 and
1069 respectively, and issues a TX interrupt. The inter-
rupt handler reads the status code, discovers that all seg-
ments have been transmitted, and recycles segments for

future transmissions. Finally, the driver updates its copy
of TX Head and TX Tail by reading the NIC’s values.

3.3 Packet Receipt
The packet receive process follows a similar pattern. The
NIC deposits received packets into the available RX seg-
ments. Each segment contains receive-specific metadata
followed by the packet. The NIC then issues an RX in-
terrupt. The driver reads segments from the OS-managed
part of the RX ring. For each segment, a snapshot is
taken, which produces a stack segment. The stack seg-
ment is passed up the protocol stack. The RX ring seg-
ments are now available for packet receipt. The driver
informs the NIC of the newly processed RX range.

The recv() system call creates a snapshot of the stack
segment to produce a user-owned segment for applica-
tion processing. The stack segment can then be recycled
for future receipts.

4 Benefits

Zero copy with send() and recv(): Packet snapshots
eliminate data copies between kernel and user space,
because application payload is passed as segment refer-
ences. Because HICAMP is integrated into the virtual
memory architecture, one can provide an enhanced
C library which extends malloc() to allocate virtual
addresses backed by HICAMP segments. send() and
recv() can also be patched to pass segment references
to the kernel instead of copying. This way, application
developers can benefit from zero copy with the familiar
POSIX sockets API. In contrast, buffer sharing schemes
such as IO-Lite [10] and fbufs [4] require all application
objects to be allocated within special IO buffer data
structures, which increases programming complexity.

Reduced per-packet memory overhead: Using
hardware-provided memory snapshots, the network
stack needs not explicitly allocate memory to isolate
user and kernel data. Furthermore, in packet receipt,
after delivering a segment up the stack, the driver needs
not reallocate worst-case-sized RX buffers.

System-wide memory deduplication: The HI-
CAMP controller deduplicates memory at line level.
While zero-copy reduces redundancy by reusing the
same buffer, hardware deduplication further exploits
redundancy between all buffers. One can further dedu-
plicate data in the last-level cache, hence effectively
increasing the size of both main memory and cache.
Some common datasets such as Web pages and images
exhibit significant deduplication potential [3]. Buffer
sharing schemes based on paged memory [2][4][10] are

4



unable to exploit this redundancy.

Simplified NICs: The NIC needs less hardware
resources for DMA state, because the head and tail
pointers suffice for memory addressing. The simplified
DMA engine could support a larger RX ring to better
absorb traffic bursts. Moreover, the NIC issues a single
bus transaction to access a range of segments contain-
ing both descriptor metadata and payload. Reducing
bus transactions further amortizes interconnect overhead.

Efficient memory protection: Snapshots based on
HICAMP segments are guaranteed by hardware to be
completely isolated from other segments. It does not
require page table modifications and TLB shootdowns
as in existing zero copy schemes [2][10]. Optimizations
have been proposed to lower mapping overhead, but at
the cost of reduced memory protection and puts extra
burden on developers to be cognizant of buffer access
control [4]. In contrast, memory protection in HICAMP
is implicit and efficient. Moreover, in HICAMP-based
DMA, NICs must access memory through segments
allocated in the RX and TX rings during device ini-
tialization. Indirection through segments effectively
implements memory protection provided by IOMMUs.

5 Open Issues

Space tradeoff: Previous studies have shown that du-
plicates in application data offset the increased memory
consumption by DAG structures [3][15]. In network
I/O, HICAMP segments avoids memory allocations via
conventional pages, so there are fewer page metadata
structures. However, the total network stack memory
footprint also depends on the duplication degree in
packet data. Moreover, because incoming traffic is
uncontrollable, it is desirable to have sufficient memory
to absorb receive bursts from the NIC. The operating
system can explicitly track total memory consumption,
and selectively deny/delay segment allocation requests
to prioritize memory space for time-critical operations,
such as receive-side DMA. To handle memory exhaus-
tion, the operating system may swap segments into
disk, but this raises issues on segment selection and
performance overhead. Another option is to fallback to
conventional memory, but this complicates the stack and
NIC with two parallel memory management schemes.
We believe a reasonable approach is to use HICAMP
memory exclusively to reduce complexity, provision
memory based on evaluation of various workloads,
and delay non-urgent memory allocations. Overall,
analysis of the overall deduplication degree and memory
footprint is needed to determine the best operating point
for network I/O.

Time tradeoff: Maintaining the DAG structure re-
quires more memory accesses, which increases memory
bandwidth overhead. The open question here is whether
the extra overhead is a reasonable tradeoff for reduced
number of software memory allocations. The dedu-
plication degree again plays an important role in this
tradeoff. If there is a high degree of duplication in
packet data at the memory line granularity, then some
packets can be allocated through pointer manipulations,
saving memory accesses. The time-scale of duplication
is also significant. For example, during packet RX, two
packets can contain duplicated payload. However, if the
earlier packet is completely processed and deallocated
by the system before the latter packet arrives, then
part of the latter’s DAG structure is rebuilt unneces-
sarily. An optimization is to delay the deallocation of
memory lines for packets to achieve better deduplication.

Impact on kernel subsystems: Because the net-
work stack uses HICAMP memory exclusively for
packet data, interfaces with other kernel subsystems
will need to be updated. For example, splice() will
require copying from HICAMP memory to conventional
memory so that the file system can operate on the
data. A translation layer that is knowledgeable of both
HICAMP and conventional memory allocators in the
kernel is needed. Alternatively, HICAMP memory can
be employed for file I/O as well. For instance, in a
splice()-supported file receive process, the data segment
is directly passed to the segment-based file system code.
The segment is then pushed down through the block
layer to the disk driver. Furthermore, the file cache
could be layered on top of HICAMP to exploit line-level
redundancy in file contents. More generally, one can
apply either technique based on evaluating tradeoffs
between performance and complexity of incorporating
HICAMP into a subsystem.

6 Conclusions

Hardware virtualization is a core operating system fea-
ture. High-performance device sharing is desired espe-
cially for network I/O. In this paper, we posit that net-
work I/O perforamnce can be enhanced with a radical
change in memory architecture. A network stack re-
design based on memory snapshots and dudplication re-
alizes zero-copy, reduced memory allocations and sim-
plifies drivers and NICs, while retaining the familiar
socket API. We believe architectural innovations are cru-
cial to further improve operating systems. By identifying
various open issues in network I/O, we hope to contribute
to discussions of hardware-software codesign for operat-
ing systems.

5



References

[1] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO,
Y., PESTEREV, A., KAASHOEK, M. F., MORRIS,
R., AND ZELDOVICH, N. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the
9th USENIX conference on Operating Systems De-
sign and Implementation, OSDI’10, USENIX As-
sociation, pp. 1–8.

[2] BRUSTOLONI, J. C., AND STEENKISTE, P. Effects
of Buffering Semantics on I/O Performance. In
Proceedings of the 2nd USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI
’96, ACM, pp. 277–291.

[3] CHERITON, D., FIROOZSHAHIAN, A., SOLO-
MATNIKOV, A., STEVENSON, J. P., AND AZ-
IZI, O. HICAMP: Architectural Support for Effi-
cient Concurrency-safe Shared Structured Data Ac-
cess. In Proceedings of the seventeenth interna-
tional conference on Architectural Support for Pro-
gramming Languages and Operating Systems, AS-
PLOS ’12, ACM, pp. 287–300.

[4] DRUSCHEL, P., AND PETERSON, L. L. fbufs:
a High-bandwidth Cross-domain Transfer Facility.
In Proceedings of the fourteenth ACM symposium
on Operating systems principles, SOSP ’93, ACM,
pp. 189–202.

[5] FOONG, A. P., HUFF, T. R., HUM, H. H., PAT-
WARDHAN, J. R., AND REGNIER, G. J. TCP
Performance Re-visited. In Proceedings of the
2003 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS
’03, IEEE Computer Society, pp. 70–79.

[6] HAN, S., MARSHALL, S., CHUN, B.-G., AND
RATNASAMY, S. MegaPipe: a New Programming
Interface for Scalable Network I/O. In Proceed-
ings of the 10th USENIX conference on Operat-
ing Systems Design and Implementation, OSDI’12,
USENIX Association, pp. 135–148.

[7] LIAO, G., ZNU, X., AND BNUYAN, L. A New
Server I/O Architecture for High Speed Networks.
In Proceedings of the 2011 IEEE International
Symposium on High Performance Computer Ar-
chitecture, HPCA ’11, IEEE Computer Society,
pp. 255–265.

[8] LITZ, H., FROENING, H., NUESSLE, M., AND
BRUENING, U. Velo: A Novel Communication
Engine for Ultra-Low Latency Message Transfers.
In Parallel Processing, 2008. ICPP ’08. 37th Inter-
national Conference on (sept. 2008), pp. 238 –245.

[9] MOGUL, J. C., BAUMANN, A., ROSCOE, T., AND
SOARES, L. Mind the gap: Reconnecting Architec-
ture and OS Research. In Proceedings of the 13th
USENIX conference on Hot topics in operating sys-
tems, HotOS’11, USENIX Association, pp. 1–5.

[10] PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL,
W. IO-lite: a Unified I/O Buffering and Caching
System. In Proceedings of the third symposium
on Operating systems design and implementation,
OSDI ’99, USENIX Association, pp. 15–28.

[11] PESTEREV, A., STRAUSS, J., ZELDOVICH, N.,
AND MORRIS, R. T. Improving network connec-
tion locality on multicore systems. In Proceedings
of the 7th ACM european conference on Computer
Systems, EuroSys ’12, ACM, pp. 337–350.

[12] RIZZO, L. Netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of the 2012 USENIX
Annual Technical Conference, USENIX ATC’12,
USENIX Association, pp. 101–112.

[13] SHALEV, L., SATRAN, J., BOROVIK, E., AND
BEN-YEHUDA, M. IsoStack: Highly Efficient Net-
work Processing on Dedicated Cores. In Proceed-
ings of the 2010 USENIX Annual Technical Con-
ference, USENIXATC’10, USENIX Association,
pp. 61–74.

[14] SONG, X., SHI, J., CHEN, H., AND ZANG, B. Re-
visiting Software Zero-copy for Web-caching Ap-
plications with Twin Memory Allocation. In Pro-
ceedings of the 2012 USENIX Annual Technical
Conference, USENIX ATC’12, USENIX Associa-
tion, pp. 355–360.

[15] STEVENSON, J. P., FIROOZSHAHIAN, A., SOLO-
MATNIKOV, A., HOROWITZ, M., AND CHERI-
TON, D. Sparse Matrix-vector Multiply on the HI-
CAMP Architecture. In Proceedings of the 26th
ACM international conference on Supercomputing,
ICS ’12, ACM, pp. 195–204.

[16] STUEDI, P., TRIVEDI, A., AND METZLER, B.
Wimpy Nodes with 10GbE: Leveraging One-sided
Operations in Soft-RDMA to Boost Memcached.
In Proceedings of the 2012 USENIX Annual Tech-
nical Conference, USENIX ATC’12, USENIX As-
sociation, pp. 347–354.

[17] ULRICH DREPPER. The Need for Aynchronous,
Zero-Copy Network I/O: Problems and Solutions.
In Ottawa Linux Symposium (2006), pp. 247–260.

6


