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Abstract
While the CAP Theorem is often interpreted to preclude
the availability of transactions in a partition-prone envi-
ronment, we show that highly available systems can pro-
vide useful transactional semantics, often matching those
of today’s ACID databases. We propose Highly Avail-
able Transactions (HATs) that are available in the pres-
ence of partitions. HATs support many desirable ACID
guarantees for arbitrary transactional sequences of read
and write operations and permit low-latency operation.

1 Introduction
To provide high availability and low latency, many recent
distributed data stores eschew strongly consistent seman-
tics [30, 32, 37, 40, 56, 58, 62]. Indeed, the CAP The-
orem shows that it is impossible to simultaneously pro-
vide single-key linearizable data “consistency” [46] and
available operation in the presence of arbitrary partitions
between servers [42]. In the absence of partitions, an
algorithm that is not highly available may also require
costly round-trip messaging between servers [19]. Ac-
cordingly, CAP sends a clear message: strong semantics
have a cost, and systems designers desiring “always on”
operation and low latency must choose between one of
many weak consistency models.

The CAP Theorem addresses a strict form of dis-
tributed consistency (linearizability) [42] that provides
strong recency guarantees on data [46]. As such, CAP
does not directly apply to database transactions, which
allow users to combine sequences of separately submit-
ted operations (possibly on different items) into groups
with useful properties including atomicity, (application-
level) consistency, isolation, and durability [44]. While
these ACID transactions are grounded in decades of
database tradition [27, 28, 43], many low-latency, highly
available stores eschew transactional, multi-object se-
mantics, often under the impression that CAP pertains
to transactions, that it is impossible or unrealistic to pro-
vide highly available general-purpose transactional se-
mantics [25, 30, 31, 39, 40, 56, 58]. Today’s users
must often settle for transactions with restricted data
types or operations (e.g., read-only transactions, entity
groups) [21, 24, 50, 51, 52] or instead face unavailability
and high latency [29, 33, 34, 35, 47, 48, 50, 59, 61].

In this paper, we show that many transactional seman-
tics from ACID databases can be provided with high
availability in the presence of partitions. Serializabil-
ity, the classic form of ACID isolation—which, unlike

linearizability, does not provide recency guarantees—
is not achievable with high availability [36]. However,
most ACID and “NewSQL” databases provide weaker
forms of isolation—usually by default, and often as the
only options offered (§2). Databases have provided
these weak guarantees for decades [43], suggesting that
they are useful to application programmers, yet tradi-
tional implementations of these guarantees are not avail-
able: lock-based [43], mastered [27], and several other
distributed transaction implementations [28] all suffer
from unavailability. We show that this need not be
the case: many of these transactional semantics can
be made available in partition-prone environments (e.g.,
geo-replicated systems), and, as a consequence, achiev-
able with low latency—two increasingly common re-
quirements [32, 51, 52, 59, 64].

In this work, we motivate the further study of Highly
Available Transactions (HATs): the class of transactional
guarantees achievable with high availability and low la-
tency in partition-prone environments (§3). HATs of-
fer the opportunity to match the formal semantics pro-
vided by today’s databases without compromising low
latency and “always on” operation. For the many ap-
plications written for non-serializable but still transac-
tional databases commonly used in practice, we believe
HATs can provide a useful programming model without
the cost of traditional implementations. In this paper, as a
starting point, we specifically demonstrate that HAT sys-
tems can provide ANSI-compliant Read Committed and
Repeatable Read isolation via simple, proof-of-concept
implementation strategies such as variants of lightweight
client-side caching and server-side concurrent write rec-
onciliation. We also describe guarantees that are not
achievable, such as providing recency bounds or enforc-
ing arbitrary global correctness criteria (§4).

Although the traditional database literature does not
typically consider requirements for high availability, we
believe that there is a rich opportunity to do so. Instead of
reinventing decades of work on useful transactional se-
mantics, the systems community can adopt existing, ac-
cepted standards when designing emerging highly avail-
able and scalable database systems. Our goal here is not
to provide high-performance algorithms, a design space
exploration, or a full exploration of HAT semantics. In-
stead, we briefly demonstrate that several useful ACID
properties can be implemented with high availability and
advocate the adoption of practical and prevalent transac-
tional semantics in future HAT systems.
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2 CAP, ACID, and Availability
Highly available systems have attracted substantial atten-
tion in recent years. The introduction of the CAP Theo-
rem informed systems developers of concrete trade-offs
between semantic strengths and coordination cost [40]:
a system without high availability risks the possibility of
indefinitely stalling a client in the presence of network
partitions, and, in their absence, may incur long round-
trip times (RTTs) [19]. In contrast, a highly available
system guarantees a response and low latency but faces
associated semantic costs.1 This balance is the subject of
considerable ongoing research [33, 50, 51, 52, 59].

Unfortunately, the relationship between the CAP The-
orem and ACID transactions is not always well under-
stood. As formally proven [42], the CAP Theorem states
that it is impossible to guarantee that every request to
a correct server eventually receives a response—even in
the presence of partitions— while ensuring linearizabil-
ity [46] (informally providing the user with the illusion
of a single, centralized replica for each key). While CAP
is an important result with implications for many end-
users, recency guarantees are orthogonal to most ACID
guarantees. For example, serializability, the gold stan-
dard of ACID transactions, requires that the effect of ex-
ecuting a set of transactions corresponds to some serial
ordering between them; this guarantees application-level
integrity constraints will not be violated. However, by
itself, this serializability guarantee does not say anything
about real-time ordering. Indeed, several notable models
couple serializability guarantees with recency guarantees
like linearizability (yielding Strong (or Strict) Serializ-
ability [20]). Yet CAP does not address the ability to
provide serializability or any weaker ACID variants.

This apparent gap raises the question: is it possible
to achieve ACID semantics with high availability? In
the presence of network partitions, a system can guar-
antee clients a response by simply aborting all transac-
tions (i.e., causing them to fail); this is highly available
but is not very useful [55]. However, aborts may be in-
trinsic to some transactions: for example, in a bank, a
withdrawal transaction may need to abort if it would vio-
late an integrity constraint requiring every bank account
balance to remain positive. Other transactions may be
caused externally—by the availability and configuration
of the database servers. We refer to the formal as inter-
nal aborts and the latter as external aborts. We say that

1There is a range of intermediate failure models to consider—for ex-
ample, systems such as Spanner [33] require that a majority of repli-
cas be available. They correspondingly may provide strong semantic
guarantees but requests that are routed to non-failing (minority groups
of) servers are not guaranteed a response under network partitions. In
the absence of network partitions, transactions can incur latency from
round-trips, which may be particularly expensive over WANs. We fo-
cus on the requirement of high availability, wherein every non-failing
server guarantees a response, whether partitioned or not [42].

a transaction has replica availability if it can contact at
least one replica for every item it attempts to access [42].
We say that a system provides transactional availability
if every transaction either eventually commits or inter-
nally aborts. We say a system provides high availabil-
ity if, given replica availability, it provides transactional
availability.

Serializability and Unavailability The database com-
munity has studied distributed database design and op-
eration for decades, and it is well known that serializ-
ability is at odds with high availability; that is, for arbi-
trary read-write transactions, it is impossible to provide
high availability and guarantee equivalence with a serial
execution [36]. Consider the following example, where
wd(v) denotes a write of value v to data item d and rd(v)
denotes a read of value v from data item d:

T1 : wx(1) ry(a)

T2 : wy(1) rx(b)

Suppose we have two servers, each acting as a replica for
both x and y, and there is a network partition between the
two servers. We can trivially achieve serializability by
aborting both of these transactions. However, this lacks
liveness and admits the possibility that the database will
never make progress [55]. For transactional availability,
T1 and T2 should eventually commit on their respective
replicas. However, when they do, due to the partition, T1
will read a = null and T2 will read b = null: there is
no serial ordering of T1 and T2 under which these reads
could have occurred, so serializability is violated.

Weak Isolation and the Status Quo While serializ-
ability is not achievable with high availability, databases
frequently offer a wide spectrum of weaker guaran-
tees [20, 43]. Even on a single-node database, the penal-
ties associated with providing serializability can be se-
vere, including decreased concurrency, reduced perfor-
mance, and the possibility of deadlock. Accordingly,
since the earliest database systems such as System R
in 1976 [43], databases have provided a range of user-
configurable “weak isolation” properties. These prop-
erties do not guarantee serializability but offer benefits
such as increased concurrency and ease of implemen-
tation. The range of models has parallels to the many
distributed consistency models found in the systems lit-
erature: weaker models provide performance benefits but
are often more difficult to reason about.

Perhaps surprisingly, most databases today typically
provide weak isolation instead of serializability. We sur-
veyed the default and maximum isolation levels for many
“ACID” and “NewSQL” databases according to vendor
documentation (Table 1). Only three of 18 databases
provided serializability by default, and eight—including
database titans like Oracle 11g—did not provide se-
rializability at all. In contrast, eight stores provided
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Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S
RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Table 1: Default and maximum isolation levels for ACID
and NewSQL databases as of January 2013.

Read Committed by default, while three “NewSQL” data
stores only offered Read Committed isolation.

In our investigation, we found that many databases
claiming strong guarantees often offered weaker seman-
tics. One store with an effective maximum of Read Com-
mitted isolation claimed to provide “strong consistency
(ACID)” [2], while another claiming “100% ACID” and
“fully support[ed] ACID transactions” uses consistent
read isolation [13]. Moreover, snapshot isolation is often
labeled as “serializability” [14]. We have accompanied
our bibliographic references with additional detail, but it
is clear that these “ACID” guarantees rarely meet serial-
izability’s goal of automatically protecting data integrity
as set out by the database literature. This is especially
surprising given that these databases’ “stronger” seman-
tics are often thought to substantially differentiate them
from their “NoSQL” peers [30, 56, 58].

These results—and several discussions with database
developers and architects—indicate that weak isolation
models are viable alternatives for many applications.
There are applications that either work correctly with
these models or else work well enough to accept the
resulting anomalies in exchange for their performance
benefits [45]. A key challenge is that, while the litera-
ture provides reasonable taxonomy of the models, it con-
siders them in either a single-node context [43] or ab-
stractly [20, 26]—it is unclear which models are achiev-
able with high availability and which are not. Indeed,
most weak isolation levels today are implemented in an
unavailable manner.

3 Highly Available Transactions
The large number and prevalence of “weak ACID” guar-
antees suggests that, although we cannot provide serial-
izability with high availability, providing weaker guar-
antees still provides users with a useful programming in-
terface. In this section, we show that two major mod-
els: Read Committed and ANSI SQL Repeatable Read
are achievable in a highly available environment. This
paves the way for broader theoretical and design stud-
ies of Highly Available Transactions: multi-operation,
multi-object guarantees achievable with high availability.
We will sketch algorithms solely as a proof-of-concept
for high availability; further engineering is required to
improve and evaluate their performance.

Read Committed We first consider Read Committed
isolation—a particularly widely used isolation model in
our survey. Read Committed is often the lowest level of
isolation provided in a database beyond “No Isolation.”
It requires that transactions do not read uncommitted data
items, which would result in “Dirty Reads phenomena
(i.e., ANSI P1 [22] and Adya G1{a,b,c} [20]). In the ex-
ample below, T3 should never see a = 1, and, if T2 aborts,
T3 will never see a = 3:

T1 : wx(1) wx(2)
T2 : wx(3)
T3 : rx(a)

Read Committed is a useful property because it ensures
that transactions will not read intermediate versions of a
given data item or read data from transactions that will
eventually be rolled back (and thus will never have “ex-
isted” in the database).

Read Committed also disallows “Dirty Write” phe-
nomena (Adya’s G0 [20]), so the database will “consis-
tently” order writes from concurrent transactions . Effec-
tively, the database induces a total order on transactions,
and the replicas of the database should apply writes in
this order. For example, if T1, T2 commit, T3 can eventu-
ally only read a = b = 1 or a = b = 2:

T1 : wx(1) wy(1)
T2 : wx(2) wy(2)
T3 : rx(a) ry(b)

This is useful because it effectively guarantees cross-
item convergence, or eventual consistency. “Dirty Write”
occurs when a database chooses different “winning”
transactions across simultaneously written keys.

We can implement Read Committed isolation with
high availability. If servers never reveal dirty data to
clients, then clients will never experience “Dirty Read”
phenomena. To ensure this, servers should only serve
data that they are sure has been committed. Servers
can explicitly buffer incoming writes until they receive a
commit message from clients. Alternatively, clients can
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buffer their writes until they decide to commit and then
send the servers the final value for every data item that
they write. To prevent “Dirty Write” phenomena, servers
need to pick which version of each item to store in a way
that is consistent with some transaction ordering. To pro-
vide an ordering, clients can choose a unique integer ID
(e.g., client ID and timestamp) at the start of each trans-
action and attach it to all writes that they send to servers.
In turn, servers can ensure that they only store values
for each data item with increasing IDs (Thomas Write
Rule [28]). Transaction ID generation is coordination-
free and, if a transaction can access a server, the server
can safely apply its updates and provide a response.

ANSI Repeatable Read ANSI Repeatable Read cap-
tures the spirit that each transaction’s view of the
database should not change as it executes. Under ANSI
Repeatable Read, each transaction can only read one ver-
sion of each data item that the transaction did not itself
produce. In the example below, T3 must read a = 1:

T1 : wx(1)
T2 : wx(2)
T3 : rx(1) rx(a)

ANSI Repeatable Read also subsumes Read Committed
guarantees (preventing “Dirty Read” and “Dirty Write”).
It is a useful property because it captures the essence
of database “isolation.” It does not restrict changes to
data items while a transaction is running but only guar-
antees that each transaction’s view of the database will
be “frozen” along an arbitrary cut of data items.

ANSI Repeatable Read is achievable by a HAT sys-
tem. To ensure that transactions read from a stable cut
across items, clients can cache versions of items that they
read from servers. For each read, the client checks its
cache and, if there is a cache miss, it fetches the latest
value from a suitable server. For each write, the client
updates its cache. Upon commit or abort, the cache is
cleared. This does not require any coordination among
clients or servers and is highly available. Moreover,
the earlier algorithms can simultaneously provide Read
Committed guarantees.

Discussion We have shown that two frequently used
ACID isolation guarantees are achievable with high
availability (via near-trivial implementations). This is
perhaps surprising because traditional implementations
of these guarantees are not highly available; for exam-
ple, if we were to use locking to ensure that we con-
tinued to read the same data item (in ANSI Repeatable
Read), then, in the presence of partitions, mutual exclu-
sion might cause operations to stall indefinitely. Key to
our HAT implementations is a focus on high availability
as a first class concern, leveraging multi-versioning and,
where applicable, caching. However, while these results

are encouraging, we must be careful of several subtleties
in existing implementations and additional guarantees.

Varying guarantees. While we have stayed faithful to
implementation-agnostic interpretations in the literature,
actual implementations of these guarantees can provide
varying additional properties. For example, lock-based
implementations typically provide recency guarantees: if
a client holds a read lock on a data item, it can access
the last written version. Similarly, while ANSI Repeat-
able Read describes the spirit of “isolation,” Gray’s tradi-
tional lock-based implementation provides serializability
except for predicate-based reads [43, 26]. This problem
is further complicated by real-world database implemen-
tations. For example, Oracle 11g will attempt to read the
latest version of each data item as of the wall-clock trans-
action start time. On a single-site system, this property
holds. However, in a distributed setting, Oracle does not
properly synchronize the timestamps across replicas and
accordingly may serve stale reads [54].

Usability. Database idiosyncrasies aside, one might won-
der whether these isolation models are actually meaning-
ful to program against. On the one hand, the prevalence
of their use suggests that programmers have managed
to code around the possible anomalies they permit. On
the other hand, they both allow particularly odd behav-
ior such as reading all null values. We can generously
say that the properties discussed here are underspeci-
fied. Yet, when combined with existing properties (often
from the distributed systems literature), they yield use-
ful transactional models. For example, coupling ANSI
Repeatable Read with causal consistency yields a model
in which causality between transactions is respected and
isolation properties are guaranteed (called PL-2L in the
database literature [20]). Coupled with intelligent con-
flict resolution [60], this yields a semantics that is sub-
stantially stronger than today’s production highly avail-
able systems and “NoSQL” stores.

Implications. Collectively, these issues indicate that
there is need for future exploration of the space of highly
available models. We have characterized two, show-
ing that real-world ACID is not synonymous with un-
availability. However, perhaps unfortunately, ACID is
not easily captured by a single model (or even three)—
rather, just like the plethora distributed consistency mod-
els, there is a range of possible semantics, each varying
from store to store. While it is tempting to jump straight
to the top of the hierarchy and adopt strong serializabil-
ity [33], doing so will sacrifice many of the benefits of
high availability for general-purpose transactions. We
omit a full discussion, but we believe that the many other
ACID properties available to HAT systems will improve
programmability (§6).
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4 Unsupported Semantics
Highly Available Transactions cannot “beat CAP.” The
requirement for high availability prohibits a HAT system
from providing several useful guarantees.

Recency As a corollary to the CAP Theorem, given the
possibility of indefinitely long partitions, HAT systems
cannot guarantee any finite bounds on recency; they are
easily violated by a partition of length greater than the
stated bound. However, HAT systems can limit stale-
ness of reads to the length of partitions, and, when the
system is not partitioned, it is possible to execute more
coordination-intensive protocols than we have discussed
here. Additionally, it is possible to provide a notification
of “potential data staleness” via protocols often requiring
heartbeats and negative acknowledgments [57, 63].

Global Integrity Constraints As a corollary to the un-
availability of serializability, a highly available system
cannot enforce arbitrary global integrity constraints (i.e.,
single-copy semantics) over data [36]. As an example,
general-purpose uniqueness constraints on a set of val-
ues are not achievable: two clients might try to write the
same value on different sides of a partition. This is a lim-
itation of data stores operating at any consistency level
weaker than serializability, whether Repeatable Read or
even PL-2L. We can, however, enforce some local con-
straints, such as checking for a given value like null and
use well known database techniques such as Sagas [41],
compensating actions [45], and limited forms of es-
crow [53] to provide consistency despite partitions. Ad-
ditionally, clients can perform constraint checking on
possibly out-of-date values (e.g., conditional modifica-
tions, which are often supported in weakly consistent
stores like Riak)—useful for monotonic logic [21].

5 Related Work
We note a recent resurgence of interest in distributed
multi-object semantics, both in academia [34, 35, 47,
48, 50, 51, 52, 59, 61, 64] and industry [24, 29, 33].
This is a strong indication that transactional seman-
tics are useful to end-users and that, even in a dis-
tributed environment, their additional design and algo-
rithmic complexity is worthwhile. However, few—if
any—highly available systems have seriously pursued
database ACID semantics. Rather, today’s users must
often settle for operations over restricted data types (e.g.,
commutative and monotonic operations) [21, 50] or with
restricted semantics (e.g., read-only operations, entity
groups) [24, 51, 52] or instead face unavailability and
high latency [29, 33, 34, 35, 47, 48, 50, 59, 61] due to
dependencies on unavailable protocols like Paxos or 2PC
or weakened assumptions about failure.

There are several systems that provide hints at what
is possible with HAT semantics. Bayou has support for
performing atomic multi-read and multi-write transac-

tions as well as conditional multi-write operation. Thus,
Bayou is an example of an early system with highly
available transactional support [60]. Several recent stores
provide PL-2L variants, including Eiger [52] for multi-
read and multi-write transactions, and Swift [64] and
Bolt-on Causal Consistency [23] for highly available
read/write transactions. Moreover, Kraska [47] has pro-
posed an architecture to prevent “Dirty Read” by placing
highly available queues between clients and data stor-
age. These systems all provide useful reference points
for what can be achieved in HAT systems. Our cur-
rent focus is on achieving well-established transactional
isolation levels for read-write transactions: here, Read
Committed and ANSI Repeatable Read guarantees.

6 Towards HATs for All
In this paper, we have investigated the relationship
between the CAP Theorem and ACID transactions—
whether ACID transactions can be made highly avail-
able in the presence of network partitions. We demon-
strated that transactions do not preclude high availabil-
ity, but unavailable designs do. Accordingly, we have
proposed Highly Available Transactions (HATs), which
always provide high availability and typically provide
low latency. We have shown how several standardized
weak isolation properties from widely deployed ACID
databases can be achieved in HAT systems.

According to implementation-independent defini-
tions [20, 26], we believe that HATs can match the
default (and sometimes strongest) semantics of several
existing “ACID” and “NewSQL” stores without com-
promising always on operation. Our preliminary re-
sults (omitted for brevity) indicate that a combination of
transactional atomicity (even under partial replication),
causal consistency, Phantom prevention, ANSI Repeat-
able Read, and replica convergence are achievable with
HATs but preventing Lost Update (as in Snapshot Iso-
lation) and Write Skew are not. While the sample algo-
rithms here serve as feasibility proofs, there is substantial
work to be done improving them and in further mapping
the HAT design space.
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