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Abstract
In this paper, we argue that recent device hardware trends
enable a new approach to the design of operating sys-
tems: instead of the operating system mediating access
to hardware, applications run directly on top of virtual-
ized I/O devices, where the kernel provides only control
plane services. This new division of labor is transpar-
ent to the user, except that applications are able to offer
more robust extensibility, security and performance than
was previously possible. We discuss some of the hard-
ware and software challenges to realizing this vision.

1 Introduction

Operating system researchers have long struggled with
the tension between the different design aims of ap-
plication developers and those of the operating system.
The key features of an operating system—sandboxed
execution of application code, resource allocation be-
tween applications, and virtualization of limited physical
resources—all seem to require applications to operate at
one level removed from the hardware. The result is pre-
dictable if lamentable: application developers have long
railed that the operating system should “get out of the
way”, with few robust, secure solutions available to ad-
dress the problem.

Twenty years ago, many operating systems researchers
promoted a nano-kernel design pattern to try to address
this tension [2, 7, 12, 25]. In this model, the operat-
ing system retains its sandboxing role and allocates re-
sources to applications, but as much as possible, from
that point forward the application is in complete control
over how it uses its resources. User-level virtual mem-
ory pagers in Mach [21], scheduler activations for multi-
processor management [3], and Exokernel disk manage-
ment [16] all took this approach. The key idea in all of
these systems is that the operating system remains free to
change its allocation decisions, as long as it notifies the

application. However, the nano-kernel movement largely
failed in practice. Instead, modern operating systems
provide hooks for applications to request pinned phys-
ical resources, which the OS then promises to respect.
This far simpler model achieves most of the performance
benefits of a nano-kernel design, especially for dedicated
server environments.

In this paper, we argue that recent application and
hardware trends merit a fresh look at the application-
operating system interface. We have named our project
Arrakis, as it presages the end of the operating system
kernel as the singular source of operating system control.

On the application side, increasingly applications are
becoming miniature operating systems – not just wanting
to be able to do their own resource optimization, as in a
nano-kernel, but also their own sandboxing, resource del-
egation, and virtualization. An example is a web browser
wanting to protect itself against untrusted scripts and ex-
tensions (e.g., NaCl [29]). Web servers likewise need
to sandbox to combat security attacks; complex applica-
tions desire transactional semantics for their data storage;
and so on.

At the same time, I/O devices have become increas-
ingly sophisticated, taking on more and more of tradi-
tional operating system functions. For example, some
modern network interface cards can demultiplex incom-
ing packets directly into the target application waiting
on the port [1, 17]; modern disks and flash memory de-
vices embed a virtual to physical block translation layer
for enhanced device reliability. With increasing I/O per-
formance (e.g., 100 Gb/s Ethernet, microsecond I/O la-
tency on solid state disks), unmediated hardware access
becomes ever more important.

The trend towards increasingly sophisticated I/O de-
vices is further powered by the commercial importance
of virtual machines. Systems increasingly provide hard-
ware support for direct execution of a guest virtual ma-
chine without mediation by the host kernel. For exam-
ple, Intel supports a nested paging structure, enabling
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the guest operating system to directly manipulate its own
page tables, without trapping to the kernel to reflect these
changes in the system-level page tables [20].

We take a further step: can we remove the operating
system kernel from normal application execution? An
apt analogy is that the kernel becomes a network router.
The operating system on a hardware router sets up data
transfers to occur without any software mediation. Pol-
icy control in the router software sets up the hardware to
prevent transfers that would violate security constraints.

Similarly, in our vision the operating system performs
only control plane, and no data plane, operations: it sets
up the application, and interacts with it in the rare case
where resources need to be reallocated or name conflicts
need to be resolved, but otherwise gets completely out
of the way. The application gets the full power of the
unmediated hardware, through an application-specific li-
brary linked into the application address space, and can
interact with it directly for its fast-path I/O activities (the
data plane).

This would be relatively easy if applications were
complete silos – we could just run each application in its
own lightweight virtual machine [28], and be done. Our
interest is also in providing the same lightweight sharing
between applications as in a traditional operating system,
so the user sees one file system, not many partitions, and
applications are able to share code and data segments be-
tween different processes.

The rest of this paper discusses the challenges needed
to realize this vision: in hardware, operating system ker-
nel design, and in the application library.

2 Hardware Considerations

An inspiration for this work is the recent development of
virtualizable network interfaces [15]. High performance
network access requires pipelining: instead of program-
ming one I/O operation at a time, modern network in-
terfaces have a queue of buffer descriptors, specifying
where in memory to put/get each incoming and outgo-
ing packet (and even where to separately put/get packet
headers and packet data). As long as the operating sys-
tem keeps both queues full, the hardware is able to oper-
ate completely asynchronously from the kernel, achiev-
ing full line rate even if the kernel or application is busy
elsewhere.

Virtualizable network interfaces take this idea one step
further, and provide a separate queue of buffer descrip-
tors for each application. The network interface demul-
tiplexes incoming packets on the address or port, and
delivers the packet into the appropriate virtual memory
location based on the buffer descriptors set up by the ap-
plication. Of course, the kernel still specifies which ad-
dresses and ports are assigned to which virtual network

interface, so there is no security vulnerability. Once the
setup is done, however, the data path never touches the
kernel: packets are read and written directly into and out
of the (virtually addressed) buffers specified by the ap-
plication. For this to work, the network device needs to
be more sophisticated, but Moore’s Law favors hardware
complexity that delivers better application performance.

Something similar is happening with disks, but in a
more limited way. A hardware RAID controller can be
set up to provide a guest operating system direct, un-
mediated, access to a disk partition [18]; the host kernel
only enables access for the partition pre-configured for
that guest.

What we need is something more: the ability to give
any application direct access to its own virtual disk
blocks from user space. Unlike a fixed disk partition,
applications could request the kernel to extend or shrink
their allocation, as they are able to do for main memory
today. The disk device maps the virtual disk block num-
ber to the physical location. Flash wear leveling and bad
block remapping already support this type of virtualiza-
tion. As with the network interface the disk hardware
would then read and write disk data directly to applica-
tion memory. Most importantly, the application would
have direct access to the full power of the disk hardware:
an explicit asynchronous request queue, the ability to in-
sert barriers between adjacent operations, and the ability
to specify which blocks represent discarded data. For
example, this would enable an application to implement
an efficient write-ahead logging or copy-on-write system
for its own data, something not possible on top of a stan-
dard file system interface. Of course, we also need to
allow files written by one application to be read by an-
other; we discuss this issue in the next section.

An interesting research question we are investigating
is whether we can efficiently simulate this model on top
of existing hardware. The idea is to create a large number
of disk partitions, which are then allocated as needed to
different applications. Application data is spread across
different partitions, but the application library synthe-
sizes into a logical whole seen by the higher level code.

Other devices can also be virtualized. For example,
we could provide efficient interprocessor interrupts be-
tween instances of the same application running on dif-
ferent cores; today, interrupts are mediated by the kernel,
but for no essential reason. In fact, for good parallel per-
formance, it would be useful for an application to be able
to control which of its cores is to receive each type of in-
terrupt; the hardware provides this ability to the kernel,
but it is not exported today.

Likewise, power management can be virtualized [19].
At the application level, it is easier to know which de-
vices need to be powered on, and which can be put into
low-power mode. Applications are likely to know more
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about their present and future usage of a device, and
therefore are capable of smarter power management than
a device driver running within a traditional kernel.

It is beyond the scope of this paper to discuss the issues
involved in providing direct, unmediated access to the
portion of the display under control of the application,
and so we do not discuss it further.

Finally, we observe that Intel now supports multiple
levels of (multi-level) page translation (Extended Page
Tables [20]). The intent of this is to support direct read-
write access by a guest operating system to its own page
tables, without needing to trap into the kernel to reflect
every change into the host kernel, shadow page table seen
by hardware. The Dune [5] project recently showed how
to provide this capability to application libraries, to al-
low applications to manipulate their own virtual mem-
ory space, without mediation by the kernel. This can
support secure sandboxing, where an application can set
up a restricted execution environment for untrusted code,
so that it can only touch certain memory locations. But
page translation hardware can also be used for a raft of
application-level services, such as transparent, incremen-
tal checkpointing, external paging, user-level page allo-
cation, and so forth.

For portability, the operating system will need to cor-
rectly handle the case where hardware virtualization does
not exist, or when the number of contexts is smaller
than the number of applications needing direct access.
While we expect this case to be rare due to hardware
trends, it can be handled in much the same way as a
software router works today—by emulating the hardware
data transfer in software.

3 Operating System Considerations

Given the above trends in hardware support, how does
that change how we should build operating systems? To
explore this, we sketch the design of Arrakis, a next-
generation nano-kernel designed to take advantage of the
hardware trends we have outlined. A number of goals
guide the design of Arrakis:

Customizability. We allow applications maximum free-
dom to develop their own OS services and abstractions.
Cloud, web and desktop applications have for some time
provided their own custom versions of many major OS
abstractions and services, such as protection, process
management, and memory management. Often this has
required extensive development expense. For example,
NaCl has to play many tricks to realize multiple pro-
tection domains within a web browser. Arrakis supports
customization of OS functionality as a first-class princi-
ple, by allowing these services to be implemented within
applications using native hardware support.

Safety. Data, including that of an OS service, is shared
among application containers only when necessary. Each
application is confined along with the necessary OS ser-
vices, such as file systems and device drivers, in its own
protection domain by default. This provides for a small
trusted computing base (TCB).

User transparency. From the user perspective, the be-
havior of the system is unchanged: files can be saved, di-
rectories listed, applications can crash and be restarted,
and so forth. Arrakis gives applications additional ca-
pabilities, which they can in turn use to provide better
security, performance, and reliability to users.

Arrakis provides the following abstractions to realize
these design goals:

Semantic names. In Arrakis, an application can directly
read and write its file data to disk, and even directories,
without kernel mediation. File layout and recovery se-
mantics are up to the application; for example, a web
browser cache might use a write-anywhere format, since
losing several seconds of data is not important, while
others might use traditional write-ahead logging. In the
common case, most files are used only by the applica-
tions that wrote them. However, we still need to be able
to support transparent access by other applications and
system utilities, such as system-wide keyword search and
file backup.

To achieve this, the format of files and directories is
independent of name lookup. We insert a level of indi-
rection, akin to NFS vnodes [24] or names in the Seman-
tic File System [14]. When a file name lookup reaches
an application-specific directory or file, the kernel routes
an upcall to an application-specific library which fills in
the requested data. If the file is intended to be exported
to others, e.g., a PDF file, the application can write the
file in the traditional way through the kernel read/write
interface.

Application containers. In place of traditional process
management, application resources are allocated in con-
tainers, similar to virtual machines. The kernel assigns
each container an allocation of hardware resources and
provides an interface for the application library to request
and release additional resources, such as cores, memory,
and disk space. The abstraction is that of the hardware;
the setup of individual protection domains, address trans-
lation and the ability to create new containers is provided
within a container.

Application containers are similar to resource contain-
ers [4] and can be used in the same way. By coupling OS
services in containers, resource limits can be enforced
through the entire software stack, but with minimum im-
plementation overhead. A special root container that re-
ceives all host resources at system startup is responsible
for managing the creation of new application containers
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Figure 1: Arrakis architecture, showing three example
application containers (rounded dashed boxes) and their
components, including device drivers (unlabeled boxes).
Thin dashed lines and boxes separate protected address
spaces.

by relinquishing some of its resources to them.

Application memory. Similar to VM guest physical
memory, application memory is an intermediate memory
abstraction, between virtual memory and physical mem-
ory. It is realized via Extended Page Tables, which pro-
vide two levels of hardware memory translation. Appli-
cation memory may be shared. The Arrakis kernel main-
tains a list of shared memory regions, associated with the
container that owns the region. A container can restrict
which other containers are permitted to share one of its
memory regions.

Directed context switches. To facilitate low-latency
communication among applications, Arrakis provides an
asynchronous notification facility between applications.
Akin to LRPC [6], an application container can request
that a particular, specified container should be switched
to immediately, in order to react to an event, such as a
shared memory page being updated.

4 Use Cases

A number of applications can benefit from Arrakis’ de-
sign, among them are web applications, cloud comput-
ing, and high-performance computing (HPC) applica-
tions. We show a few examples of these applications
along with the architecture of Arrakis in Figure 1 and
discuss their use cases within this section.

4.1 Sandboxing in Web Browsers
Web browsers have become platforms that run a myriad
of complex, untrusted web applications that consist of
native and managed code, such as HTML5 or JavaScript.
Via libraries, applications have access to low-level OS
and hardware features, like file systems and devices [10,

22]. Sandboxing this code is important to protect system
integrity.

Neither threads nor processes are adequate OS ab-
stractions to represent browser sandboxes, as they need
strong protection, but they also need to share common
browser services, such as the programming language
run-time. Sandboxing solutions, such as NaCl go to great
lengths to provide a secure, portable execution environ-
ment, but their task would be much simpler with the right
level of hardware and OS support.

Arrakis enables web application sandboxes to be im-
plemented within application containers. Each sandbox
occupies a different protected address space within the
web browser application container, with shared code and
data mapped into all of its address spaces. This model
affords a much simpler sandboxing implementation that,
consequently, has a smaller attack surface. In the ex-
ample in Figure 1, a web application runs in its own
protection domain alongside a regular web page and the
browser’s normal mechanisms, like the graphical user in-
terface and JavaScript JIT compiler. Downloaded device
drivers operate within their own protection domains di-
rectly on devices multiplexed and protected by the hard-
ware. If a buggy device driver fails, only the applica-
tion instance using that driver instance will have to be
restarted. The failure will not impact the rest of the
browser environment or, worse, the operating system.

4.2 Application Checkpointing

High-performance computing applications have long
needed robust checkpointing to recover from failures in
long-running computations. However, while implemen-
tations for distributed rollback exist [11], rolling back to
a previously stored checkpoint is complicated when OS
state, such as session, socket and file system state, is in-
volved. Thus, many implementations of checkpointing
in HPC severely limit the types of system calls that can
be made by an application under checkpointing [23].

In Arrakis, we can create checkpoint containers that
contain all processes involved in the computation, along
with the OS and run-time code necessary to orchestrate
them. In Figure 1, two processes together carry out a
conjugate gradient (CG) computation and are orches-
trated by the MPI run-time, using UNIX-style process
management. The container uses a trusted GPU device
driver to allow the use of accelerated GPGPU algorithms
that do not need to be sheltered in their own address
space and can run together with the other OS services
for better performance.

The state of this container can simply be saved and
rolled back as a unit, including operating system services
and device driver state. Hardware device state might be
maintained along with the container. This rollback capa-
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bility is similar to that found in some kernel-level device
drivers (e.g., to restore devices from low power states).

Migration of a checkpoint to a different machine is
also possible. This is difficult on traditional operating
systems, when the OS version is different between the
different machines. Arrakis allows us to simply migrate
application containers that contain the OS services they
rely upon.

4.3 Cloud Resource Sharing and Safety
Cloud infrastructure providers have struggled with soft-
ware bloat for a long time. Even small, simple cloud
applications use whole software stacks, such as LAMP
(Linux, Apache, MySQL, PHP—cf. Figure 1), and run-
ning such applications has significant memory and load
time overheads, even if the application itself might only
run for a short amount of time. It is thus important to
share joint resources among cloud applications, even if
programs do not explicitly share data. Unfortunately, the
virtual machine model sequesters application resources.

In Arrakis, software stacks, such as LAMP, could be
packaged akin to dynamic link libraries. They would
be loaded once on demand and then mapped copy-on-
write into cloud applications that use them, significantly
reducing memory and load-time overhead. We want to
use techniques similar to those used in Disco [8] to share
common program code and data structures.

Similar to the web application use case, each cloud
application can run its own copy of the necessary device
drivers. Driver failures would thus only impact the appli-
cation with the failing driver. This feature also allows for
highly optimized network and disk I/O, as applications
have direct network and disk access.

Further, our design has enhanced security features,
such as safer logging [9], which we get since application
containers are fully virtualized environments.

5 Related Work

By supporting direct application access to virtualized I/O
hardware, Arrakis provides very fast and flexible data
plane operations. Although fast I/O was not a primary
goal of earlier nano-kernel designs, we leverage several
ideas from that earlier work.

Exokernel [12] moves almost all operating system
functions to user-level, allowing applications to fine-tune
their own implementations of common OS services. An
Exokernel, however, is still responsible for multiplexing
hardware devices. To support application customization
of the I/O stack, it resorts to loading device-specific vir-
tual machine code into the OS kernel.

Spin [7] takes the opposite approach and embeds ap-
plication functionality together with OS functionality as

trusted code in the kernel, eliminating expensive protec-
tion boundary crossings. This trusted application code is
implemented in a type-safe language, like Modula-3, for
safety and therefore can be given direct access to low-
level hardware functionality to enhance application per-
formance without impairing system security.

In both cases, the lack of hardware support for device
virtualization limits implementations to running applica-
tion code in the kernel using a particular programming
language or virtual machine abstraction.

Dune [5] allows Linux applications safe access to priv-
ileged CPU and virtual memory features. With Arrakis,
we investigate the OS architecture and hardware support
needed to virtualize both the CPU and I/O devices.

Microdrivers [13] and Microkernel driver architec-
tures have moved device drivers to user space in order
to reduce the trusted computing base and to tackle the
problem of a driver crash taking down the entire system.
Integrating device drivers into application containers in
Arrakis has similar effects (only the application with the
faulty driver is affected by a crash), but with other ben-
efits: it allows several custom device driver versions to
coexist within the same system and provides a perfor-
mance opportunity when tightly coupling a trusted driver
and application in the same protection domain.

The Nooks project [27] and shadow device drivers
[26] try to minimize the effects of driver failure by iso-
lating drivers within lightweight protection domains and
providing fast fail-over mechanisms. This work aug-
ments our efforts and we plan to investigate whether its
integration with Arrakis would simplify our implemen-
tation.

6 Conclusion

We believe that it is time to take a fresh look at nano-
kernel operating systems. Recent hardware trends are
leading towards direct application access to the raw ca-
pabilities of the underlying system, with security and re-
source boundaries enforced in hardware. This enables a
separation between the control plane and data plane of an
operating system: application storage, networking, and
processor and memory management can all be done by
the application itself, with no intervention by the operat-
ing system kernel in the common case.
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