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Abstract
Many data sets, such as system logs, are generated from
widely distributed locations. Current distributed systems
often discard this data because they lack the ability to
backhaul it efficiently, or to do anything meaningful with
it at the distributed sites. This leads to lost functionality,
efficiency, and business opportunities. The problem with
traditional backhaul approaches is that they are slow and
costly, and require analysts to define the data they are
interested in up-front. We propose a new architecture that
stores data at the edge (i.e., near where it is generated) and
supports rich real-time and historical queries on this data,
while adjusting data quality to cope with the vagaries of
wide-area bandwidth. In essence, this design transforms
a distributed data collection system into a distributed data
analysis system, where decisions about collection do not
preclude decisions about analysis.

1 Introduction
Recent years have seen an explosion in the number and
variety of devices producing data streams, from software
logs to handheld phones to aerial cameras. About 2.5
quintillion bytes of data are created globally each day [1].
Much of this data starts its life widely distributed. How-
ever, users often want to analyze data across the system
as a whole. By focusing only on data processing within
datacenters, the research community is overlooking an
increasingly important part of the Big Data challenge.

Today, a common technique for data analysis is to back-
haul all the data generated at wide-area sources to a central
datacenter, where it is then stored and processed. This ap-
proach allows analysts to use existing tools developed for
single-datacenter large-scale analytics. Backhaul, how-
ever, incurs the high cost associated with wide-area data
transfer. This tradeoff is a bad one given historical and
contemporary trends in computing cost.

Historically, local storage and processing costs have
been dropping faster than WAN costs. For example, prices
from 2003-2008 of wide-area bandwidth to large ISPs
dropped only 2.7x, while CPU and storage dropped 16x
and 10x, respectively [5].

A few short-term factors are slowing the decline in
some of these areas, but should have little impact on the
long-term cost trend: disk prices have been impacted by

supply chain problems caused by floods in Thailand [20],
and bandwidth prices are being temporarily suppressed
by recession economics and government subsidies [22].
So in the short term, WAN bandwidth prices are expected
to decline at about 25% per year [26], while CPU and
disk prices should fall 15-30% and 10-20% per year [20].

In the long run, though, the bottleneck for wide-area
bandwidth is capacity at trans-oceanic crossings, and
the fundamentals there have not changed: from 2007 to
2011, transatlantic cable bandwidth grew at a 19% annual
rate [25], and prices only fell insignificantly. The high
capital costs for laying trans-oceanic cables are unlikely
to change significantly; the bandwidth available through
these cables is also unlikely to increase quickly.

These cost trends point to the fact that it is simply not
economical to copy all the data that is collected globally
to a central location. The question that analysts face is
how to prioritize the data that is transferred across the
wide-area for analysis. A common approach is to create a
static policy of which data to backhaul, but this approach
forces analysts to commit, in advance, to a valuation of
the data. The value of data is hard to predict, however, and
may also change over time [14]. For example, monitoring
data may either be vital for debugging, or pointless trivia,
depending on the context. While some wide-area stream-
processing systems (e.g., Hourglass [21]) reduce data
volumes by aggregating near the source, they still suffer
from the same flaw of requiring users to decide up-front
which data to transfer.

As a motivating example, suppose a content distribu-
tion network operator wants to know the 100 most popular
domains, each minute. A naive approach is for each node
to send the popularity of each domain to a central location
for analysis, each minute. This is wasteful of bandwidth.
An optimized, though sometimes inaccurate, approach is
to send only the top-k domains, for some k > 100. Now
suppose the popularity of some domain surges. An analyst
might wish to inspect the history of the domain, before
it entered the top 100. However, that data is unavailable
because it was never backhauled.

A great deal of valuable data is never collected due to
costs. Many CDNs discard or do not collect low-level con-
nection monitoring and progress information, for example.
Such data has value, but backhauling it incurs high eco-
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nomic costs and is slow when system resources are under
load and bandwidth is limited, precisely the times when
monitoring data is needed typically most. (We use CDNs
as a running example due to our familiarity with them.
Additional widely distributed data sources are discussed
in the next section.)

Ignoring the changing value of data necessarily leads
to mischosen data, which translates to lost functionality,
efficiency, and business opportunities. A better analysis
system would let user queries transparently span data at
the edge and data that has been backhauled.

This paper proposes a new architecture for wide-area
data analysis. Rather than statically defining the data to be
collected and backhauled, we envision systems that priori-
tize data in the presence of changing requirements and re-
sources, and that can re-plan if the perceived value of data
changes. Realizing this vision requires wide-area analysis
systems to embrace three high-level design choices:

Store data near the edge, either within the local net-
work where the data is generated, or as close to it as
physically possible, such as points of presence or com-
pute platforms co-located with sensors. This retains data
in case its perceived value changes and it becomes subse-
quently worth backhauling for further processing.

Incorporate aggregation and approximation as
first-class primitives to reduce data volume while pre-
serving value. The user needs to express how data will
be used and the requirements on data quality. This extra
information can allow the system to degrade gracefully
when resources are limited, giving approximate answers
promptly and refining them later if desired and possible.

Use structured storage that tracks data quality. We
envision using data cubes from online analytical pro-
cessing (OLAP) as a unifying abstraction for tracking
incrementally-refined data.

A system that incorporates these techniques can cope
with expensive and unreliable wide-area bandwidth. It
will move data only when necessary, prioritize data based
on its value, and compensate when bandwidth becomes
more available.

2 Uses
We now provide some example applications that could
benefit from efficient analysis of large, dynamic, wide-
area data sets to illustrate the importance of the topic.

Content analytics: CDNs can generate very large vol-
umes of log data (e.g., recording full HTTP header data
for each request), spread across widely distributed servers.
Yet detecting hot spots or popular items requires only
aggregate statistics, while forensic analysis of anomalies
typically involves only a few servers in detail.

Debugging logs: Systems can keep extensive logs of
their internal behavior to enable debugging. This data
is useful only when an issue is detected; centralizing all

debugging data may be overly costly in the normal case.
On the other hand, centralizing aggregates derived from
such logs may also be useful, since statistical methods for
log analysis have become increasingly effective [19].

Adaptive resource control: Many large distributed
systems collect nodes’ performance data to better manage
and coordinate resources. Having all nodes report to a
centralized controller does not scale well, especially in
the wide area. Rather than building ad-hoc monitoring,
a general-purpose data-stream analysis engine can effi-
ciently track resource utilization across the entire system.

Imaging data: Highways and public places are in-
creasingly festooned with cameras, mounted on both fixed
and aerial platforms. While the data collected is large im-
ages or video, the answers to queries of interest are often
much smaller (e.g., “what was the average speed of traf-
fic on this stretch of highway over the last month?” or
“where are there unexpectedly large gatherings of peo-
ple?”). In many cases, there are no technical barriers
(space, power, etc.) to installing large compute or storage
resources near the point of data generation. For exam-
ple, IP-based closed-circuit television (CCTV) cameras
support recording to on-site network-attached storage, or
to internal flash. In contrast, bandwidth to widely dis-
persed sites (sometimes over cellular or satellite links) is
expensive and likely to remain so.

Medical records: The barrier to backhauling data is
not always cost. There are many useful queries one might
wish to run on medical records data, such as searching for
population-wide trends or trying to assess the frequency
of a given genetic variation. However, a centralized na-
tional medical records repository poses significant privacy,
economic, and regulatory challenges (as does centraliza-
tion in many other application domains). Past work has
addressed data integration and schema changes in feder-
ated query systems, yet efficient standing queries remain
an open problem [13].

The above applications all share a common thread: (i)
high data volumes are generated across the wide-area and
(ii) most analysis tasks require a small fraction of this data
or generate summaries that are much smaller than the raw
data. In each application, there will be some computation
and storage resources at each site where data is generated,
and some centrally.

We envision two classes of queries: (i) ad-hoc queries
that use stored data to produce detailed information about
past events, and (ii) standing queries that continuously
update their results as new data comes in. In practice, the
two are not only both necessary, but are mutually depen-
dent. One-off queries execute more quickly and reliably if
they can use continuously-maintained centralized aggre-
gates, rather than touching many edge storage locations.
Standing queries can indicate surprises or anomalies that
are investigated with ad-hoc queries.
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3 Requirements of wide-area analytics
To understand the requirements that shape design deci-
sions for a wide-area analytics system, we discuss some
key factors and how they differ from local-area systems.

Local domains as visible abstractions. We expect users
will have strong views about which data will be stored in
what locations, and when data will be backhauled. Like
the decision of which database indices to maintain, the
decision of what to backhaul will shape the performance
landscape of subsequent queries. As a result, we foresee
the need for novel “region” abstractions that group related
systems and allow the user to explicitly define which data
is transferred between them. Regions can even represent
a highly-connected local area domain, such as a cluster
or a point-of-presence, or may define legal domains with
specific data retention and reporting policies. Analysis
systems cannot conceal region boundaries since users
need to control what data is stored where.

In comparison, systems like MapReduce expose the
boundaries between both task instances and separate clus-
ters, but do not explicitly expose nodes or racks to users.
Related systems may internally use rack- or node-locality
to optimize performance, but users do not refer to these
boundaries when defining computations to perform.

Dealing with bandwidth variability. Local-area analy-
tics clusters can be provisioned to match the worst-case
expected inputs, since compute and local networking re-
sources are predictable and reliable. In contrast, wide-area
bandwidth availability may be affected by shared lines
and congestion, while the bandwidth demands of a service
may be affected by diurnal variation, unexpected peak de-
mands on the service, or popularity differences among
the nodes of a geographically-distributed service. When
available network resources become too scarce to transfer
all the data for a standing query, system designers are
faced with a choice: that query must either abort, fall ever
farther behind, or be modified to stay within the resource
limits. We believe the right approach is to alter the query,
delivering as much data quality as possible to the user.

We refer to these query modifications as adaptation,
and think it is likely to be a characteristic of wide-area
streaming analytics. In the local domain, processing sys-
tems can mitigate stragglers via speculative execution.
This strategy does not help if wide-area bandwidth is the
bottleneck. Since data is not replicated across the wide
area, there is no alternate location where a task can be
usefully relocated; stragglers and data unavailability have
to be mitigated in some other way. Possible adaptation
strategies may include keeping only a sample of incom-
ing data, sending data less often (e.g., emitting aggregate
statistics every minute instead of every second), or even
filtering data, discarding records judged likely irrelevant.

Network resources can fluctuate on a minute-by-minute
and hour-by-hour basis, and applications like real-time
anomaly detection and load balancing require up-to-date
information on timescales of seconds. As a result, an ana-
lysis system for these purposes must continuously probe
bandwidth and quickly detect if it is falling behind. In con-
trast, local-area bandwidth is relatively predictable, and
systems can use admission control to prevent overloads.

The sort of dynamic tracking and query adaptation we
envision cannot be easily deployed atop current frame-
works. MapReduce, streaming databases, and most other
distributed systems do not collect or expose resource us-
age at fine granularities and do not have mechanisms for
modifying currently-running jobs.

Backfill to improve data. Some current streaming sys-
tems support backfill, i.e., situations in which a query
result has already been output, but then the result changes
due to the arrival of new data. In wide-area systems, how-
ever, not only do we expect backfill to be more frequent
due to the variability of wide-area systems, but we also
expect greater delays between initial results and the ar-
rival of more data. As a result, it makes sense to think of
backfill as a first-class part of the system, which can be
intentionally exploited to make the system more adaptive.

While backfill naturally arises from things like band-
width shortages and temporary failures, it can also be
paired with approximation. When a system encounters
a bandwidth shortage, it can send approximate or coarse
data immediately, and then fill in precise values later
if and when bandwidth allows. This approach allows
time-shifting bulk data transfer of raw records, while still
allowing real-time analytics. Backfill ensures that the
long-term quality of the data is not impaired.

As a result, backfill cannot simply be bolted onto exist-
ing processing frameworks; it must be considered early
in the design process. Enforcing policy requires user
specification, a global view of running queries, and the
ability to change the data quality requirements for one
query to support new downstream queries. Past research
has looked at efficient incremental mechanisms for back-
fill [4, 9, 17, 18], and we expect to be able to leverage
their design efficiencies.

4 Structuring Wide-Area Computation
We now discuss approaches for incorporating widely dis-
tributed storage into analytics systems, and processing
steps that can make it feasible and bandwidth adaptive.

Structuring storage with cubes. We believe that analy-
tics systems should incorporate structured storage in ways
that simplify analysis tasks. Analysts working with on-
line analytics processing (OLAP) databases often find it
useful to represent data using a structure called an OLAP
cube, which is a multi-dimensional array that encapsulates

3



numerical properties and relationships between fields in
structured input data, similar to a database relation [10].
It is defined by a set of dimensions, which specify the
coordinates of an array cell, and a set of aggregates, which
specify the statistics stored in a cell. Each dimension in-
dexes some properties of the input data, such as the URL
or time period of web requests. The cells addressed by
these dimensions contain statistics about a given URL and
time period: for example, the total number of requests
and the maximum request latency.

Unlike a relational database, the aggregates are part of
schema. Each field in a cell is associated with a particular
aggregation function, such as count or max. When new
data is added is added to a cell (i.e., a new web request
comes in), that aggregation function is applied to the old
and new values, and the result stored back into the cell.
Aggregation functions yield the same result regardless of
the input data order.

A key benefit of the cube abstraction is that it decom-
poses gracefully: given two cubes with the same schema,
there is one unambiguous way to merge them. Cells with
the same dimension values get merged together by com-
bining their partial aggregates. As a result, a cube-based
system can reason about aggregation trees, and can intro-
duce partial aggregation without altering the result. This
is not possible in a purely key-value or relational model.

Using data cubes as a storage abstraction does not con-
strain the choice of programming model. Today’s stream-
ing systems often use a dataflow model, in which data
flows through a network of operators that transform the
data flowing past [2, 6, 8, 24]. One can integrate cubes
into this model, treating them as part of the dataflow graph.
One might also write purely declarative SQL-style pro-
grams for querying or transforming cubes. One might
even combine cubes with a data-parallel imperative pro-
gramming model.

Reasoning about data quality. Wide-area streaming
analytics will sometimes have to trade away some data
quality to reduce bandwidth consumption. Analytics sys-
tems, particularly if they are dynamically adjusting data
quality, need to track the ways in which data has been
degraded. This lets the system put error bounds on query
results. It also lets the system notify the user if data is not
available at the requested granularity but is available in a
less precise form.

Different data sources may have different quality lev-
els. In a CDN, for example, some nodes may be at peak
diurnal usage and sending only rough data, while other
nodes may be lightly loaded and sending complete data.
The analytics system must be able to gracefully combine
these disparate intermediate inputs.

Coarsening is an adaptation that fits particularly well
with the cube model. In this context, coarsening means

keeping aggregate statistics about larger items, such as
per-minute instead of per-second data. The cube data
model makes it easy to reason about and support coars-
ening, since a cube cell can explicitly indicate the range
of dimension values that it covers. If the input data is at
different granularities, the system can aggregate all the
data together at the coarsest level of granularity.

Coarsening is not the only useful adaptation that re-
duces data precision. Data might also be sampled or
filtered according to (potentially complex) criteria. To
help the user assess a system’s output, the system must
keep enough metadata to explain the accuracy and lineage
of data. The cube model, by making aggregation explicit,
helps. In addition, addressing collections of cells through
dimension value ranges is a compact way of tracking and
querying metadata.

Incorporating explicit degradation policies. A wide-
area system can dynamically adjust queries in several
different ways, where the right strategy depends on the
query and the user’s needs. Analytics systems can ease
the pain of articulating such policies, via interactive tools
for authoring and reasoning about degradation policies.

Data quality has many aspects, and is not a simple lin-
ear scale [15]. A delay of ten seconds might be acceptable
for one query but not another. Sampling is most effective
for aggregates that are not sensitive to outliers. No sin-
gle strategy is appropriate for all queries. Instead, users
will need a way to specify the appropriate bandwidth-
conservation strategy for each query.

Reasonable policies may be complex. A user might de-
sire the following policy: “Under normal circumstances,
report a histogram of latencies every second. If band-
width is scarce, the reporting interval should be gradually
increased up to every thirty seconds. Beyond that point,
the reporting interval should remain unchanged, but the
histogram itself should be coarsened (represented with
fewer buckets).” A system’s policy language should be
expressive enough to represent policies of this sort.

The policy language should also be extensible. The
scope of possible data degradations is very large and users
will sometimes need to introduce new degradations. Con-
sider the case of quantiles (such as medians). Quantiles
are a so-called holistic aggregate that require storage over-
head proportional to the size of the full data set [16]. To
compensate, a wide variety of approximation (synopsis)
techniques have been developed, appropriate for different
data volumes, distributions, and accuracy goals [7]. Users
should be able to add additional synopsis techniques tai-
lored to their specific needs, and have the analytics system
use these techniques appropriately.

Optimizing across queries. Analytics systems typically
have many concurrent queries. Multi-query optimization
has therefore been extensively researched [23]. The topic
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takes on new aspects, however, in a system with widely
distributed storage and with data at multiple fidelities.
Today’s cross-query optimizers look for sub-queries that
can be reused. In wide-area analytics, the cost of reusing
a sub-query depends strongly on where it is computed,
and on the resultant precision.

Consider the following concrete example, to see how
precision can enter into these calculations. Suppose that
data from several sources is being copied to a central
location and then combined. If one source is sending data
at five-second granularity, while another is sending data
every second, then the combined data will only be at five-
second granularity. Depending on the situation, it might
or might not be useful to keep a copy of the fine-grained
disaggregated data. If future backfill is likely to replace
the coarse data with higher-precision values, for example,
then it would make sense to keep the central copy of the
fine-grained data. The decision of which data to retain
(and where) depends on whether a future computation
will use the data.

5 Related Work
Our work is inspired by existing data stream management
systems, such as Borealis and Storm [2, 6, 8, 24]. These
systems do not handle storage, but instead aim to process
incoming updates with minimal latency. In contrast, our
interest is in processing dispersed and changing data sets,
in the presence of network limitations and failures.

Most streaming systems were designed for single-
datacenter deployments, but there has been some work on
wide-area deployment [12, 21]. That work assumed that
computation resources, sources, and destinations were
scattered around ad-hoc, e.g., as PlanetLab nodes. As a
result, sophisticated techniques were needed for place-
ment. We believe this assumption is too pessimistic and
that placement decisions can be handled relatively simply.
For our applications, there will generally be only two
or three options for data placement: the site where the
data is generated, the nearest point-of-presence, or else a
centralized datacenter. Placement within a datacenter or
point-of-presence can be delegated to existing scheduling
systems or scale-out processing engines. As a result, it
will be sufficient for users to give guidance about data
placement, and the system can then evaluate the (small)
set of reasonable options for placing computation.

There has been a great deal of work on scalable process-
ing systems for the datacenter. This includes traditional
databases, MapReduce, and a range of systems in between.
As we noted above, this work is predicated on flat, reli-
able, and high-performance networks. Much of this work
is therefore inapplicable in the wide area, particularly if
wide-area replication is to be avoided.

We are investigating system architectures that reduce
data volumes while minimizing the reduction in accu-

racy. Similarly, BlinkDB [3] deploys sampling-based
approximations on top of MapReduce and Hive to reduce
latency. In BlinkDB, the data is carefully pre-sampled
with specific statistical goals; small probing jobs are used
to estimate query run-time. In contrast, continuous wide-
area analytics systems will have to measure and adapt to
available bandwidth, without the benefit of a prior data-
import step. We also envision a range of degradation
techniques, not just sampling.

Tree aggregation can be used to reduce bandwidth with-
out reducing accuracy. The sensor network community
has used this technique extensively for power-constrained
devices, such as in the seminal Tiny Aggregation Ser-
vice [22]. Much subsequent work looked at using redun-
dant routes to compensate for unreliable connections and
faulty nodes. In contrast, the applications we envision use
hardware that is not power-constrained, and we expect
conventional IP networking to deliver suitable routes.

There has been substantial recent work on incremental
view maintenance [4, 9, 11, 17, 18], allowing databases
to promptly incorporate updates. We expect many of
the ideas from this work to be applicable to the wide
area. However, the problems to be solved are divergent:
incremental computation tries to reduce the CPU cost of
updates. We are concerned with incorporating updates in
the presence of limited or sporadic connectivity.

Twitter has built an analytics system atop Cassandra
called Rainbird [27]. Rainbird is designed to do near-real-
time counting and statistics on large data volumes. This
demonstrates the industrial need for the sort of analysis
we envision. Rainbird is designed for single datacenter
deployment, however, and does not explore widely dis-
tributed storage or adaptive control.

6 Conclusions
Many data sources create widely distributed data. Back-
hauling the data before storing requires culling data too
early, and therefore results in suboptimal choices of what
to keep and collect. We believe it is time to embrace edge
storage and distributed queries instead.

Edge storage will require far-reaching changes to the
modern analysis software stack. Without wide-area repli-
cation, we need new mechanisms for handling slow and
unavailable nodes. We advocate structured storage and
degradation policies. OLAP cubes are an ideal abstraction
for this, since they are familiar to users, they can be imple-
mented efficiently, and they are sufficiently structured for
the system to plan queries in the face of changing network
conditions.

“Big data”, until now, has predominantly meant data in
big centralized datacenters. It is time to build systems for
storing and processing widely dispersed data. Doing so
will let users get the greatest value from each bit of data.
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