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We propose a new system-level abstraction, the

lightweight immutable execution snapshot, which com-

bines the immutable characteristics of checkpoints with

the direct integration into the virtual memory subsystem

of standard mutable address spaces. The abstraction can

give arbitrary x86 programs and libraries system-level

support for backtracking (akin to logic programming)

and the ability to manipulate an entire address space as

an immutable data structure (akin to functional program-

ming). Our proposed implementation leverages modern

x86 hardware-virtualization support.

1 Introduction

Operating systems and programming languages serve

fundamentally different purposes: operating systems ab-

stract hardware, manage resources, and provide applica-

tions with familiar abstractions such as address spaces,

threads of control, and file descriptors. From an appli-

cation perspective, the operating system ensures that the

application can make forward progress by granting it re-

sources and serving its system calls in an efficient and

fair manner.

Programming languages, on the other hand, generally

provide a level of abstraction that separates the represen-

tation of the computation—i.e., how the programmer ex-

presses a problem—from its underlying execution—i.e.,

how the program gets executed on hardware. For exam-

ple, logic programming languages such as Prolog enable

the succinct description of exponential search problems

by automating the backtracking process within the lan-

guage runtime. Similarly, functional programming and

its use of immutable data structures enables the natural

decomposition of complex problems into tasks that can

be executed in parallel [12].

Because they focus on different issues, commod-

ity operating systems provide general-purpose abstrac-

tions and are generally oblivious to the specific require-

ments of programming language runtimes, and specifi-

cally when that runtime provides backtracking support

as a first-order primitive.

We propose a new operating system abstraction:

lightweight, immutable execution snapshots, which con-

sist of a copy of the register file and an immutable logical

copy of the entire address space of a process. They differ

from a traditional address space abstraction because of

their immutability. Unlike classic checkpoints [14], these

snapshots are directly integrated into the virtual mem-

ory subsystem to enable the rapid creation (and destruc-

tion) of snapshot trees, and to initiate execution from any

given snapshot. The snapshots are not scheduled by a

traditional OS scheduler, but instead by one of the vari-

ous well-understood search strategies, such as DFS, BFS

or A⋆, which provide a controlled exploration through a

problem space. For example, we use the DFS scheduler

to provide system-level support for fast backtracking of

user-space programs. We can also use this snapshot ab-

straction to convert a program’s address space into an

immutable data structure of its own.

We argue that such an OS-level primitive can pro-

vide competitive performance for realistic problems by

exploiting hardware virtualization, and propose an im-

plementation sketch based on Dune [1]. Unique to our

system, the exploration steps (the partial candidate ex-

tension step in backtracking terms) can be implemented

in any language and runs as arbitrary x86 code without

requiring any user-space bookkeeping. For example, a

search problem can be written in any programming lan-

guage as a simple “single path to solution” program with-

out having to worry about undoing any side-effects. In-

stead, it simply relies on the system software to guess (or

appear to guess) each decision along the path.

By moving backtracking and lightweight, immutable

data structures from the field of programming languages

and runtime libraries into the operating system space, we

see opportunities to broaden the scope of solutions that

can benefit from the approach, for example with many

applications that currently rely on ad-hoc mechanisms to



emulate snapshots or backtracking operations.

2 The Need for Speed

Our interest in the systematic, controlled exploration of

an exponential search space was triggered by the rising

(practical) use of symbolic execution in testing and ver-

ification [6, 9]. In such an approach, some (hopefully

many, ideally all) possible paths of a program or system

are explored systematically to validate or invalidate as-

sertions about a particular program [6] or an entire vir-

tual machine [9]. We show here two different applica-

tions that could benefit from lightweight snapshots and

system support for backtracking:

Testing and verification of program binaries.

S2E [9] is a platform for writing tools that analyze the

properties and behavior of software systems. So far, we

have used S2E to develop a comprehensive performance

profiler, a reverse engineering tool for proprietary

device drivers [8], a bug finding tool [13], and a tester

for file system code [7]; others have used S2E for a

number of other tools [15, 18, 17]. The platform enables

developers to simultaneously analyze entire families of

execution paths, instead of just one execution at a time,

and to perform these analyses in-vivo within a real and

complete software stack of a virtual machine.

S2E combines symbolic execution based on KLEE [6]

with the QEMU virtual machine [2]. S2E employs back-

tracking when exploring multiple paths of execution of

a virtual machine that has a combination of symbolic

and concrete inputs. Conceptually, S2E is an automated

path explorer with modular path analyzers: the explorer

drives the target system down all execution paths of in-

terest, while analyzers check properties of each such path

(e.g., to look for bugs) or simply collect information

(e.g., count page faults). When searching for bugs, e.g.,

one may direct the S2E explorer down the paths that are

likely to have such bugs and let analyzers check whether

the desired properties hold.

At the core of S2E exploration is a conceptual fork

of the entire state of the VM. This is currently im-

plemented by snapshotting in software all QEMU data

structures and the VM. The snapshot is optimized by

emulating copy-on-write behavior within QEMU itself.

Even though S2E can scale to large systems, such as a full

Windows stack, it faces significant inefficiencies result-

ing from the fact that multiple (relatively fat) software

layers need to be “tricked” into doing the right thing to

implement copy-on-write of symbolic system state.

System-level hardware-assisted backtracking would

dramatically cut the implementation complexity of S2E

and increase performance. S2E currently modifies about

2 KLOC spread in the QEMU’s code base (about 800

KLOC) in order to catch all register and memory writes.

These changes implement copy-on-write and ensure that

accesses to symbolic data call the S2E emulator. System-

level backtracking can remove all the ad-hoc instrumen-

tation and cut several layers of indirection, including the

software MMU emulation. The resulting performance

gain would allow S2E to verify larger software, find more

bugs, and achieve higher code coverage faster.

SAT/SMT solving. Finding values for variables of a

given Boolean formula that make the formula evaluate

to true (i.e., the SAT problem) is a fundamental goal for

much of computing. SAT’s younger cousin, SMT (“sat-

isfiability modulo theories”) is a similar decision prob-

lem, but for logical formulas in classical first-order logic

with equality; examples of theories under which SMT

can be formulated include the theory of real numbers, of

integers, of lists, arrays, bit vectors, etc. SAT and SMT

solvers are extensively used in software and hardware

verification, constraint solving in artificial intelligence,

operations research, electronic design automation, and

many other areas. Both SAT and SMT are NP-complete

problems (SMT can even be undecidable in certain situ-

ations). As a result, solvers generally implement either

a systematic backtracking search procedure to explore

the (exponentially sized) space of variable assignments

looking for satisfying assignments, or take a random-

ized heuristic approach. In essence, they are one of the

quintessential users of backtracking.

While our proposal cannot magically turn NP into P,

it can help make solvers faster. For example, modern

SMT solvers (like Z3 [10]) can reduce the time it takes

to find a satisfying assignment by leveraging the inter-

mediate data structures and results of previously solved

constraints. Specifically, an incremental solver given for-

mula p immediately followed by formula p∧q can solve

both in less time than solving p and then solving p∧ q

from scratch without leveraging the knowledge of p. By

creating a lightweight snapshot for solved problem p, we

can ensure that p∧q is solved incrementally.

3 System-level backtracking

Logic programming allows applications to seemingly ex-

ecute multiple paths through a search space in a deter-

mined order, while providing the simple programming

model of executing through a single path. System-level

backtracking aims to provide the same illusion though

operating system primitives. Figure 1 uses the classic

n-queens problem to illustrate how to use system-level

backtracking: first, the main function selects DFS as a

search strategy; then, for every column, the sys_guess



system call returns an index between 0 and N − 1 and

provides the user-space program with the illusion that

the operating system has guessed the path to the solution;

extension steps backtrack using the sys_guess_fail

system call, similar to the use of fail in Prolog. Once

a puzzle is completed, the answer is printed to stdout.

As in Prolog, we can simply use backtracking to print all

answers to the puzzle. We note that the implementation

appears to execute in linear time, and does not require

any manual instructions to undo changes to the state.

A naive implementation of sys_guess and

sys_guess_fail would simply use the POSIX

fork, wait and exit system calls. Sequential

depth-first-search (DFS) exploration of a search problem

could be implemented by simply issuing a fork before

exploring any extension off that partial candidate, and

having the child process explore the subtree while the

parent waits for completion. A parallel depth-first-

search strategy might simply fork without waiting,

with possibly dire consequences.

However, using fork as the foundation for system-

level backtracking is inappropriate for a number of rea-

sons. First, fork creates both a new address space and

a new thread of control. Although the former is required

to ensure isolated execution, the latter is undesirable.

Instead, search algorithms require the systematic, con-

trolled exploration of the problem space. Second, forked

processes are neither isolated from each other nor en-

capsulated, e.g., shared file descriptors provide problem-

atic communication channels and changes made to files

are visible to other processes. And last but not least,

the large performance overheads of this naive approach

would likely dwarf any benefit in most circumstances.

3.1 Concepts and Abstractions

Our proposed system-level abstractions use the classic

backtracking terminology: a partial candidate is an im-

mutable state abstraction, and collectively, the partial

candidates form the vertices of the search graph; a can-

didate extension step is a deferred computation abstrac-

tion that, when evaluated against its parent partial candi-

date, can generate a new partial candidate and new ex-

tensions. The extensions form the directed edges of the

search graph. Finally, the algorithm is controlled by a

search strategy (such as DFS), which schedules the eval-

uation of extensions.

We apply backtracking to the system-level abstraction

of a single-threaded process:

Partial candidates. A partial candidate is a state ab-

straction, which consists of the combination of an im-

mutable register file, an immutable address space, and

immutable files. Each sys_guess system call creates

void nqueens(int N)

{

for (int c=0;c<N;c++) {

int r = sys_guess(N); // a little magic;

if (row[r]||ld[r+c]||rd[N+r-c])

sys_guess_fail(); // backtrack;

col[c] = r;

row[r] = c+1;

ld[r+c] = 1;

rd[N+r-c]= 1;

}

printboard(N);

}

main() {

if (sys_guess_strategy(DFS)) {

nqueens(8);

sys_guess_fail(); // print all answers;

}

}

Figure 1: N-queens with system-level backtracking.

a new partial candidate that is the lightweight immutable

snapshot of the currently executing thread. Each par-

tial candidate also has an immutable relationship with its

parent, which can be leveraged to encode the state in a

space-efficient manner.

Candidate extension steps. A candidate extension

step consists of the execution of arbitrary x86 code in

a controlled environment: the starting point is the com-

bination of a lightweight snapshot with a return value

from sys_guess corresponding to the extension num-

ber. Candidate extension steps subsequently execute in

an isolated fashion to not violate the immutability of the

parent partial candidate, and to not accidentally commu-

nicate with other extension steps currently executing, or

any external entity. This implies that all system calls is-

sued by the extension step are appropriately interposed

on.

Failure. Reaching a contradiction is intrinsic to back-

tracking problems. The sys_guess_fail system

call, similar to Prolog’s fail, simply discards the cur-

rently executing extension steps and never returns.

Flexible search strategies. The search strategy is im-

plemented separately from the extensions or the partial

candidates. It implements a policy that schedules the

next extension to be evaluated on a given thread. This

includes classic search strategies such as DFS, BFS and

A⋆. These are all internally driven strategies where the

search exploration process generates a stream of candi-

date extension steps to be evaluated. In addition, we can

support externally controlled search strategies where an



external entity can generate new extension steps for any

given partial candidates, and schedule their execution.

New system calls. As extensions run arbitrary x86

code, they communicate through system calls that map

directly to the backtracking framework. The three sys-

tem calls of Figure 1 provide the minimal API required

for simple search strategies such as DFS and BFS. In ad-

dition, search strategies that rely on goal-distance heuris-

tics such as A⋆ and SM-A⋆ require that the distance vec-

tor of the extension steps be communicated via an ex-

tended guess system call. Additional APIs can be envi-

sioned to allow a richer interaction with the system, e.g.,

to selectively encapsulate I/O interactions, control exe-

cution timeouts, or create explicit sharing mechanisms

between lightweight snapshots.

3.2 Applications

Our two motivating examples map to the concepts as

follows: in S2E, each partial candidate corresponds to

a different state of the VM (consisting of the concrete

state augmented with symbolic data and symbolic con-

straints), executed up to the point where a symbolic

branch condition is encountered, i.e., a branch whose

condition depends on symbolic values. The evaluation

of an extension is the simulation of the virtual machine

execution (by QEMU and KLEE) until it terminates or

reaches the next symbolic branch. At that point, it cre-

ates a partial candidate together with the two extensions

corresponding to the branch taken and branch not-taken

constraints. S2E uses a search strategy (such as DFS or a

coverage-optimized strategy) to select partial candidates

according to problem-specific heuristics.

With incremental solvers, partial candidates corre-

spond to solved SAT/SMT problems, complete with

their intermediate data; extensions represent incremen-

tal clauses that are logically combined with the parent

partial candidate clauses. When incremental solvers are

used by symbolic execution systems, they typically run

as a library loaded within the address space of the sym-

bolic execution engine. Then, the natural positive side-

effect is that the incremental solver will be able to build

upon the prior solved problem since it is its parent’s.

Alternatively, one could use lightweight snapshots

directly to create a multi-path incremental SAT/SMT

solver service, built using a single-path incremental

solver. In this case, the service waits for client requests

consisting of of an opaque reference to a previously

solved problem p and an incremental constraint q, and

returns to the client the solution to p∧ q together with a

opaque reference to that new problem.
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Figure 2: System architecture. Filled triangles represent

partial candidates; arrows represent extensions.

4 Implementation Sketch

Although we here claim that adding system-level back-

tracking support can help with a number of relevant ap-

plications, the community is also aware of the difficulty

of getting any operating system modifications into the

mainstream. Fortunately, we are building our lightweight

snapshots and system-level backtracking support directly

on top of the Dune framework [1], which loads as a stan-

dard Linux kernel module and leverages hardware vir-

tualization to safely expose hardware features to library

operating systems (libOS). However, and unlike prior-

generation libOS-es that were designed to run on top of

exokernels [11] or virtual machine monitors [5], Dune

enables our libOS to run as an application on top of an

unmodified commodity OS like Linux.

Dune directly takes advantage of two hardware fea-

tures introduced in x86 CPUs to support virtual ma-

chines: (i) VT-x [19] (or AMD-v), which supports CPU

virtualization and (ii) nested page tables [3]. The for-

mer enables the creation of a protected libOS, which can

intercept all system calls, whereas the latter enables the

libOS to directly create and manipulate address spaces

and efficiently handle page faults. The original evalua-

tion of Dune [1] is promising, showing for example that

memory protection events and forks can be implemented

via a specialized libOS with an order of magnitude better

performance than corresponding Linux abstractions.

Figure 2 describes the architectural building blocks

involved in our proposed implementation. Lightweight

snapshots and system-level support for backtracking

are implemented as a Dune libOS running at ring 0

(non-root). The libOS builds on the Dune sand-

box application, in particular to load the application in

ring 3. From the perspective of the host OS, the libOS



runs as a single multi-threaded process, with the num-

ber of threads typically corresponding to the number of

hardware threads. The libOS manages the internal struc-

tures of the search graph: each partial candidate is a

lightweight immutable snapshot consisting of the register

file, a logical copy of the guest-virtual address space ac-

cessible to applications, and a logical copy of open disk

files; unevaluated extensions are simply a reference to

their parent partial candidate and the extension number;

the libOS’s scheduler selects the next unevaluated exten-

sion, restores the lightweight snapshot, sets the extension

number into %rax, and resumes execution at ring 3.

The libOS is in charge of handling the page faults

and system calls resulting from the evaluation of candi-

date extensions. Unique to our system, these extensions

run as arbitrary x86 code that can make arbitrary system

calls—the libOS interposes on these calls to ensure that

all visible side effects are contained within the extension.

Page faults are dominated by the copy-on-write faults

that guarantee the immutability of the parent snapshot.

5 Discussion

We implemented a proof-of-concept prototype as a Dune

libOS, which supports DFS, BFS, and A⋆ search strate-

gies, and can run complex software such as Z3 [10]. It

is not yet optimized, has only partial support for system-

call interposition, and supports only single-threaded ex-

ecution. When applied to toy applications like n-queens,

our prototype performs (as expected) substantially worse

than a hand-coded implementation, but better than a Pro-

log implementation running on XSB [16].

Problem granularity and memory locality. One of

the primary design goals is to minimize the overheads of

system-level backtracking, for example as compared to a

native implementation that hand-codes the backtracking

or state forking logic. Clearly, problems with a trivial

instruction count per extension step (e.g., n-queens) are

best implemented by hand-coding the backtracking logic

on a stack. But our motivating examples have address

spaces measured in GB, the software that performs the

extension evaluation consists of many thousands of lines

of code and touches dozens or even hundreds of 4-KB

pages during a single extension step. The execution gran-

ularity, complexity of hand-coded logic, and page-level

memory locality will each play a role to determine when

the approach provides a performance win.

Immutable data structures. Functional programming

revolves around the manipulation of immutable data

structures, which simplify both sequential and concur-

rent programs. Although imperative languages have ex-

isting libraries that efficiently implement immutable sets,

maps, and other simple structures, domain-specific im-

mutable types can be more difficult to write. Lightweight

snapshots provide a very coarse, yet very simple to use,

immutable type: the entire address space of the program.

Our motivating example of incremental solvers is only

one of many examples of that paradigm.

System call interposition. The framework intercepts

system calls to ensure the isolated execution of the ex-

tension. At the very least, any call that changes the

address space (e.g., brk) must be logged and reversed

upon backtracking. This interposition logic can easily

be made sound by supporting only the minimal required

set of conditions (e.g., only open regular files but not de-

vices) and failing all others. Making the interposition

logic complete does not appear tractable (e.g., the chal-

lenges in interposing on socket I/O with a remote peer).

6 Related Work

Our approach builds on the Dune framework and its

sandbox libOS. Like Dune, we leverage virtualization

hardware to create new process-level abstractions.

Lightweight, immutable snapshots are a form of

checkpointing [14]. However, our approach differs in

that we establish the snapshot as a system-level abstrac-

tion, fully integrated with the virtual memory subsystem

of our libOS, and designed to both take and restore snap-

shots with very high frequency. Wedge [4] (as imple-

mented in Dune) has a similar integration, but for the

different purpose of thread recycling.

Our approach bears some similarity to the Warren Ab-

stract Machine (WAM) [20], a way of implementing in-

terpreters for Prolog, with our sys_guess calls cor-

responding to the WAM choice points. Our solution

is unique in that it operates exclusively with hardware-

defined concepts such as the register file and the paged

virtual address space, making the backtracking logic sub-

stantially simpler and more efficient.

7 Conclusion

We have presented a new system-level abstraction, the

lightweight snapshot, which directly integrates into the

virtual memory subsystem of a libOS relying on hard-

ware virtualization support. We made the case for adding

system-level support for backtracking through the com-

bination of lightweight snapshots, system call interposi-

tion, and a minimal set of new system calls. Our ap-

proach uniquely allows arbitrary x86 programs to per-

form partial candidate step extensions without any back-

tracking bookkeeping done by the program.
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